-
1
-
-
34548847172
-
Diabetic larvae and obese flies - emerging studies of metabolism in Drosophila
-
Baker K.D., Thummel C.S. Diabetic larvae and obese flies - emerging studies of metabolism in Drosophila. Cell Metab. 2007, 6:257-266.
-
(2007)
Cell Metab.
, vol.6
, pp. 257-266
-
-
Baker, K.D.1
Thummel, C.S.2
-
2
-
-
84876335923
-
Of flies and men: insights on organismal metabolism from fruit flies
-
Rajan A., Perrimon N. Of flies and men: insights on organismal metabolism from fruit flies. BMC Biol. 2013, 11:38.
-
(2013)
BMC Biol.
, vol.11
, pp. 38
-
-
Rajan, A.1
Perrimon, N.2
-
3
-
-
84878614163
-
Morphological and molecular characterization of adult midgut compartmentalization in Drosophila
-
Buchon N., et al. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep. 2013, 3:1725-1738.
-
(2013)
Cell Rep.
, vol.3
, pp. 1725-1738
-
-
Buchon, N.1
-
4
-
-
84883398166
-
Physiological and stem cell compartmentalization within the Drosophila midgut
-
Marianes A., Spradling A.C. Physiological and stem cell compartmentalization within the Drosophila midgut. Elife 2013, 2:e00886.
-
(2013)
Elife
, vol.2
, pp. e00886
-
-
Marianes, A.1
Spradling, A.C.2
-
5
-
-
78650866455
-
Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis
-
Cognigni P., et al. Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis. Cell Metab. 2011, 13:92-104.
-
(2011)
Cell Metab.
, vol.13
, pp. 92-104
-
-
Cognigni, P.1
-
6
-
-
80055094597
-
Quiescent gastric stem cells maintain the adult Drosophila stomach
-
Strand M., Micchelli C.A. Quiescent gastric stem cells maintain the adult Drosophila stomach. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:17696-17701.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 17696-17701
-
-
Strand, M.1
Micchelli, C.A.2
-
7
-
-
80755174406
-
Maintaining tissue homeostasis: dynamic control of somatic stem cell activity
-
Biteau B., et al. Maintaining tissue homeostasis: dynamic control of somatic stem cell activity. Cell Stem Cell 2011, 9:402-411.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 402-411
-
-
Biteau, B.1
-
8
-
-
70350571244
-
Autophagy, not apoptosis, is essential for midgut cell death in Drosophila
-
Denton D., et al. Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr. Biol. 2009, 19:1741-1746.
-
(2009)
Curr. Biol.
, vol.19
, pp. 1741-1746
-
-
Denton, D.1
-
9
-
-
0040668305
-
The copper metabolism of Drosophila
-
Poulson D.F., et al. The copper metabolism of Drosophila. Proc. Natl. Acad. Sci. U.S.A. 1952, 38:912-921.
-
(1952)
Proc. Natl. Acad. Sci. U.S.A.
, vol.38
, pp. 912-921
-
-
Poulson, D.F.1
-
10
-
-
0028264931
-
Novel tissue units of regional differentiation in the gut epithelium of Drosophila, as revealed by P-element-mediated detection of enhancer
-
Murakami R., et al. Novel tissue units of regional differentiation in the gut epithelium of Drosophila, as revealed by P-element-mediated detection of enhancer. Rouxs Arch. Dev. Biol. 1994, 203:243-249.
-
(1994)
Rouxs Arch. Dev. Biol.
, vol.203
, pp. 243-249
-
-
Murakami, R.1
-
11
-
-
0037052544
-
Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes
-
Rulifson E.J., et al. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 2002, 296:1118-1120.
-
(2002)
Science
, vol.296
, pp. 1118-1120
-
-
Rulifson, E.J.1
-
12
-
-
4644242353
-
Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells
-
Kim S.K., Rulifson E.J. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 2004, 431:316-320.
-
(2004)
Nature
, vol.431
, pp. 316-320
-
-
Kim, S.K.1
Rulifson, E.J.2
-
14
-
-
0025763856
-
Metamorphosis of the corpus allatum and degeneration of the prothoracic glands during the larval-pupal-adult transformation of Drosophila melanogaster: a cytophysiological analysis of the ring gland
-
Dai J.D., Gilbert L.I. Metamorphosis of the corpus allatum and degeneration of the prothoracic glands during the larval-pupal-adult transformation of Drosophila melanogaster: a cytophysiological analysis of the ring gland. Dev. Biol. 1991, 144:309-326.
-
(1991)
Dev. Biol.
, vol.144
, pp. 309-326
-
-
Dai, J.D.1
Gilbert, L.I.2
-
15
-
-
0000811615
-
Lipid and sugar absorption
-
Chapman & Hall, M. Lehane, P. Billingsley (Eds.)
-
Turunen S., Crailsheim K. Lipid and sugar absorption. Biology of the Insect Midgut 1996, 293-320. Chapman & Hall. M. Lehane, P. Billingsley (Eds.).
-
(1996)
Biology of the Insect Midgut
, pp. 293-320
-
-
Turunen, S.1
Crailsheim, K.2
-
17
-
-
84864614812
-
Lipoproteins in Drosophila melanogaster - assembly, function, and influence on tissue lipid composition
-
Palm W., et al. Lipoproteins in Drosophila melanogaster - assembly, function, and influence on tissue lipid composition. PLoS Genet. 2012, 8:e1002828.
-
(2012)
PLoS Genet.
, vol.8
, pp. e1002828
-
-
Palm, W.1
-
18
-
-
33846279755
-
Specialized hepatocyte-like cells regulate Drosophila lipid metabolism
-
Gutierrez E., et al. Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 2007, 445:275-280.
-
(2007)
Nature
, vol.445
, pp. 275-280
-
-
Gutierrez, E.1
-
19
-
-
70449774815
-
The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila
-
Sieber M.H., Thummel C.S. The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila. Cell Metab. 2009, 10:481-490.
-
(2009)
Cell Metab.
, vol.10
, pp. 481-490
-
-
Sieber, M.H.1
Thummel, C.S.2
-
20
-
-
84864833490
-
Effects of diet and development on the Drosophila lipidome
-
Carvalho M., et al. Effects of diet and development on the Drosophila lipidome. Mol. Syst. Biol. 2012, 8:600.
-
(2012)
Mol. Syst. Biol.
, vol.8
, pp. 600
-
-
Carvalho, M.1
-
21
-
-
0141733277
-
A nutrient sensor mechanism controls Drosophila growth
-
Colombani J., et al. A nutrient sensor mechanism controls Drosophila growth. Cell 2003, 114:739-749.
-
(2003)
Cell
, vol.114
, pp. 739-749
-
-
Colombani, J.1
-
22
-
-
0000421694
-
Fat body
-
Academic Press, M. Ashburner, T.R. Wright (Eds.)
-
Rizki T.M. Fat body. The Genetics and Biology of Drosophila 1978, 561-601. Academic Press. M. Ashburner, T.R. Wright (Eds.).
-
(1978)
The Genetics and Biology of Drosophila
, pp. 561-601
-
-
Rizki, T.M.1
-
23
-
-
26944489689
-
Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila
-
Grönke S., et al. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab. 2005, 1:323-330.
-
(2005)
Cell Metab.
, vol.1
, pp. 323-330
-
-
Grönke, S.1
-
24
-
-
84866166159
-
Drosophila melanogaster acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system
-
Parvy J.P., et al. Drosophila melanogaster acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system. PLoS Genet. 2012, 8:e1002925.
-
(2012)
PLoS Genet.
, vol.8
, pp. e1002925
-
-
Parvy, J.P.1
-
25
-
-
38249032633
-
The source of lipids and polyphenols for the insect cuticle: the role of fat body, oenocytes and oenocytoids
-
Wigglesworth V.B. The source of lipids and polyphenols for the insect cuticle: the role of fat body, oenocytes and oenocytoids. Tissue Cell 1988, 20:919-932.
-
(1988)
Tissue Cell
, vol.20
, pp. 919-932
-
-
Wigglesworth, V.B.1
-
26
-
-
84891927661
-
The development and functions of oenocytes
-
Makki R., et al. The development and functions of oenocytes. Annu. Rev. Entomol. 2014, 59:405-425.
-
(2014)
Annu. Rev. Entomol.
, vol.59
, pp. 405-425
-
-
Makki, R.1
-
27
-
-
0345687447
-
Branching morphogenesis of the Drosophila tracheal system
-
Ghabrial A., et al. Branching morphogenesis of the Drosophila tracheal system. Annu. Rev. Cell Dev. Biol. 2003, 19:623-647.
-
(2003)
Annu. Rev. Cell Dev. Biol.
, vol.19
, pp. 623-647
-
-
Ghabrial, A.1
-
28
-
-
84892775294
-
Neuronal control of metabolism through nutrient-dependent modulation of tracheal branching
-
Linneweber G.A., et al. Neuronal control of metabolism through nutrient-dependent modulation of tracheal branching. Cell 2014, 156:69-83.
-
(2014)
Cell
, vol.156
, pp. 69-83
-
-
Linneweber, G.A.1
-
29
-
-
0027160708
-
Targeted gene expression as a means of altering cell fates and generating dominant phenotypes
-
Brand A.H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118:401-415.
-
(1993)
Development
, vol.118
, pp. 401-415
-
-
Brand, A.H.1
Perrimon, N.2
-
30
-
-
80054896531
-
High-efficiency gene targeting in Drosophila with zinc finger nucleases
-
Carroll D., et al. High-efficiency gene targeting in Drosophila with zinc finger nucleases. Methods Mol. Biol. 2010, 649:271-280.
-
(2010)
Methods Mol. Biol.
, vol.649
, pp. 271-280
-
-
Carroll, D.1
-
31
-
-
84861348512
-
Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy
-
Liu J., et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J. Genet. Genomics 2012, 39:209-215.
-
(2012)
J. Genet. Genomics
, vol.39
, pp. 209-215
-
-
Liu, J.1
-
32
-
-
84892437994
-
Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
-
Bassett A.R., et al. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 2013, 4:220-228.
-
(2013)
Cell Rep.
, vol.4
, pp. 220-228
-
-
Bassett, A.R.1
-
33
-
-
80155182174
-
Developments in obesity genetics in the era of genome-wide association studies
-
Day F.R., Loos R.J. Developments in obesity genetics in the era of genome-wide association studies. J. Nutrigenet. Nutrigenomics 2011, 4:222-238.
-
(2011)
J. Nutrigenet. Nutrigenomics
, vol.4
, pp. 222-238
-
-
Day, F.R.1
Loos, R.J.2
-
34
-
-
38949187953
-
Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment
-
Wardle J., et al. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am. J. Clin. Nutr. 2008, 87:398-404.
-
(2008)
Am. J. Clin. Nutr.
, vol.87
, pp. 398-404
-
-
Wardle, J.1
-
35
-
-
0034837386
-
A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster
-
Reiter L.T., et al. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 2001, 11:1114-1125.
-
(2001)
Genome Res.
, vol.11
, pp. 1114-1125
-
-
Reiter, L.T.1
-
36
-
-
44449095056
-
Functional genomic screen reveals genes involved in lipid-droplet formation and utilization
-
Guo Y., et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 2008, 453:657-661.
-
(2008)
Nature
, vol.453
, pp. 657-661
-
-
Guo, Y.1
-
37
-
-
73349130440
-
Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate
-
Pospisilik J.A., et al. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 2010, 140:148-160.
-
(2010)
Cell
, vol.140
, pp. 148-160
-
-
Pospisilik, J.A.1
-
38
-
-
84875452685
-
Secretion and signaling activities of lipoprotein-associated hedgehog and non-sterol-modified hedgehog in flies and mammals
-
Palm W., et al. Secretion and signaling activities of lipoprotein-associated hedgehog and non-sterol-modified hedgehog in flies and mammals. PLoS Biol. 2013, 11:e1001505.
-
(2013)
PLoS Biol.
, vol.11
, pp. e1001505
-
-
Palm, W.1
-
39
-
-
84893508942
-
A Drosophila in vivo screen identifies store-operated calcium entry as a key regulator of adiposity
-
Baumbach J., et al. A Drosophila in vivo screen identifies store-operated calcium entry as a key regulator of adiposity. Cell Metab. 2014, 19:331-343.
-
(2014)
Cell Metab.
, vol.19
, pp. 331-343
-
-
Baumbach, J.1
-
40
-
-
80053927394
-
Genetics of type 2 diabetes: the GWAS era and future perspectives
-
Imamura M., Maeda S. Genetics of type 2 diabetes: the GWAS era and future perspectives. Endocr. J. 2011, 58:723-739.
-
(2011)
Endocr. J.
, vol.58
, pp. 723-739
-
-
Imamura, M.1
Maeda, S.2
-
41
-
-
84874255352
-
A Drosophila functional evaluation of candidates from human genome-wide association studies of type 2 diabetes and related metabolic traits identifies tissue-specific roles for dHHEX
-
Pendse J., et al. A Drosophila functional evaluation of candidates from human genome-wide association studies of type 2 diabetes and related metabolic traits identifies tissue-specific roles for dHHEX. BMC Genomics 2013, 14:136.
-
(2013)
BMC Genomics
, vol.14
, pp. 136
-
-
Pendse, J.1
-
42
-
-
84863012360
-
The Drosophila Melanogaster Genetic Reference Panel
-
Mackay T.F., et al. The Drosophila Melanogaster Genetic Reference Panel. Nature 2012, 482:173-178.
-
(2012)
Nature
, vol.482
, pp. 173-178
-
-
Mackay, T.F.1
-
43
-
-
84901323480
-
Effect of genetic variation in a Drosophila model of diabetes-associated misfolded human proinsulin
-
He B.Z., et al. Effect of genetic variation in a Drosophila model of diabetes-associated misfolded human proinsulin. Genetics 2014, 196:557-567.
-
(2014)
Genetics
, vol.196
, pp. 557-567
-
-
He, B.Z.1
-
44
-
-
0037031147
-
Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila
-
Ikeya T., et al. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 2002, 12:1293-1300.
-
(2002)
Curr. Biol.
, vol.12
, pp. 1293-1300
-
-
Ikeya, T.1
-
45
-
-
0035916357
-
An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control
-
Brogiolo W., et al. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 2001, 11:213-221.
-
(2001)
Curr. Biol.
, vol.11
, pp. 213-221
-
-
Brogiolo, W.1
-
46
-
-
2942590660
-
Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster
-
Lee G., Park J.H. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 2004, 167:311-323.
-
(2004)
Genetics
, vol.167
, pp. 311-323
-
-
Lee, G.1
Park, J.H.2
-
47
-
-
0036484062
-
Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions
-
Britton J.S., et al. Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev. Cell 2002, 2:239-249.
-
(2002)
Dev. Cell
, vol.2
, pp. 239-249
-
-
Britton, J.S.1
-
48
-
-
42249108516
-
Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance
-
Honegger B., et al. Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J. Biol. 2008, 7:10.
-
(2008)
J. Biol.
, vol.7
, pp. 10
-
-
Honegger, B.1
-
49
-
-
41549087580
-
Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides
-
Arquier N., et al. Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides. Cell Metab. 2008, 7:333-338.
-
(2008)
Cell Metab.
, vol.7
, pp. 333-338
-
-
Arquier, N.1
-
50
-
-
84872309064
-
A secreted decoy of InR antagonizes insulin/IGF signaling to restrict body growth in Drosophila
-
Okamoto N., et al. A secreted decoy of InR antagonizes insulin/IGF signaling to restrict body growth in Drosophila. Genes Dev. 2013, 27:87-97.
-
(2013)
Genes Dev.
, vol.27
, pp. 87-97
-
-
Okamoto, N.1
-
51
-
-
0031860687
-
Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms
-
Britton J.S., Edgar B.A. Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 1998, 125:2149-2158.
-
(1998)
Development
, vol.125
, pp. 2149-2158
-
-
Britton, J.S.1
Edgar, B.A.2
-
52
-
-
78650503295
-
Nutrition-responsive glia control exit of neural stem cells from quiescence
-
Chell J.M., Brand A.H. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 2010, 143:1161-1173.
-
(2010)
Cell
, vol.143
, pp. 1161-1173
-
-
Chell, J.M.1
Brand, A.H.2
-
53
-
-
79953044605
-
Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila
-
Sousa-Nunes R., et al. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 2011, 471:508-512.
-
(2011)
Nature
, vol.471
, pp. 508-512
-
-
Sousa-Nunes, R.1
-
54
-
-
84866978180
-
Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion
-
Rajan A., Perrimon N. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 2012, 151:123-137.
-
(2012)
Cell
, vol.151
, pp. 123-137
-
-
Rajan, A.1
Perrimon, N.2
-
55
-
-
15944408369
-
Nuclear receptors - a perspective from Drosophila
-
King-Jones K., Thummel C.S. Nuclear receptors - a perspective from Drosophila. Nat. Rev. Genet. 2005, 6:311-323.
-
(2005)
Nat. Rev. Genet.
, vol.6
, pp. 311-323
-
-
King-Jones, K.1
Thummel, C.S.2
-
56
-
-
0842263981
-
The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity
-
Ferre P. The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes 2004, 53(Suppl. 1):S43-S50.
-
(2004)
Diabetes
, vol.53
, pp. S43-S50
-
-
Ferre, P.1
-
57
-
-
80053315762
-
Coordinating growth and maturation - insights from Drosophila
-
Tennessen J.M., Thummel C.S. Coordinating growth and maturation - insights from Drosophila. Curr. Biol. 2011, 21:R750-R757.
-
(2011)
Curr. Biol.
, vol.21
, pp. R750-R757
-
-
Tennessen, J.M.1
Thummel, C.S.2
-
58
-
-
77955945353
-
The steroid hormone ecdysone controls systemic growth by repressing dMyc function in Drosophila fat cells
-
Delanoue R., et al. The steroid hormone ecdysone controls systemic growth by repressing dMyc function in Drosophila fat cells. Dev. Cell 2010, 18:1012-1021.
-
(2010)
Dev. Cell
, vol.18
, pp. 1012-1021
-
-
Delanoue, R.1
-
59
-
-
27144524370
-
Antagonistic actions of ecdysone and insulins determine final size in Drosophila
-
Colombani J., et al. Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science 2005, 310:667-670.
-
(2005)
Science
, vol.310
, pp. 667-670
-
-
Colombani, J.1
-
60
-
-
78049317163
-
DDOR is an EcR coactivator that forms a feed-forward loop connecting insulin and ecdysone signaling
-
Francis V.A., et al. dDOR is an EcR coactivator that forms a feed-forward loop connecting insulin and ecdysone signaling. Curr. Biol. 2010, 20:1799-1808.
-
(2010)
Curr. Biol.
, vol.20
, pp. 1799-1808
-
-
Francis, V.A.1
-
61
-
-
84855422546
-
Coordination of triacylglycerol and cholesterol homeostasis by DHR96 and the Drosophila LipA homolog magro
-
Sieber M.H., Thummel C.S. Coordination of triacylglycerol and cholesterol homeostasis by DHR96 and the Drosophila LipA homolog magro. Cell Metab. 2012, 15:122-127.
-
(2012)
Cell Metab.
, vol.15
, pp. 122-127
-
-
Sieber, M.H.1
Thummel, C.S.2
-
62
-
-
0035064152
-
Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span
-
Du H., et al. Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span. J. Lipid Res. 2001, 42:489-500.
-
(2001)
J. Lipid Res.
, vol.42
, pp. 489-500
-
-
Du, H.1
-
63
-
-
0015518311
-
Deficient activity of hepatic acid lipase in cholesterol ester storage disease
-
Burke J.A., Schubert W.K. Deficient activity of hepatic acid lipase in cholesterol ester storage disease. Science 1972, 176:309-310.
-
(1972)
Science
, vol.176
, pp. 309-310
-
-
Burke, J.A.1
Schubert, W.K.2
-
64
-
-
67749110331
-
Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol
-
van der Veen J.N., et al. Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J. Biol. Chem. 2009, 284:19211-19219.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 19211-19219
-
-
van der Veen, J.N.1
-
65
-
-
79551539873
-
The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth
-
Tennessen J.M., et al. The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metab. 2011, 13:139-148.
-
(2011)
Cell Metab.
, vol.13
, pp. 139-148
-
-
Tennessen, J.M.1
-
66
-
-
84873515115
-
HIF- and non-HIF-regulated hypoxic responses require the estrogen-related receptor in Drosophila melanogaster
-
Li Y., et al. HIF- and non-HIF-regulated hypoxic responses require the estrogen-related receptor in Drosophila melanogaster. PLoS Genet. 2013, 9:e1003230.
-
(2013)
PLoS Genet.
, vol.9
, pp. e1003230
-
-
Li, Y.1
-
67
-
-
77949417984
-
The homeobox protein Prox1 is a negative modulator of ERRα/PGC-1α bioenergetic functions
-
Charest-Marcotte A., et al. The homeobox protein Prox1 is a negative modulator of ERRα/PGC-1α bioenergetic functions. Genes Dev. 2010, 24:537-542.
-
(2010)
Genes Dev.
, vol.24
, pp. 537-542
-
-
Charest-Marcotte, A.1
-
68
-
-
45549104823
-
Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors
-
Ao A., et al. Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:7821-7826.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 7821-7826
-
-
Ao, A.1
-
69
-
-
39749140405
-
HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha
-
Arany Z., et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 2008, 451:1008-1012.
-
(2008)
Nature
, vol.451
, pp. 1008-1012
-
-
Arany, Z.1
-
70
-
-
77953356804
-
Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity
-
Unger R.H., Scherer P.E. Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol. Metab. 2010, 21:345-352.
-
(2010)
Trends Endocrinol. Metab.
, vol.21
, pp. 345-352
-
-
Unger, R.H.1
Scherer, P.E.2
-
71
-
-
84875441811
-
Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila
-
Musselman L.P., et al. Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila. J. Biol. Chem. 2013, 288:8028-8042.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 8028-8042
-
-
Musselman, L.P.1
-
72
-
-
79953329970
-
Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans
-
Rhee E.P., et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J. Clin. Invest. 2011, 121:1402-1411.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 1402-1411
-
-
Rhee, E.P.1
-
73
-
-
81455136679
-
A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila
-
Musselman L.P., et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model. Mech. 2011, 4:842-849.
-
(2011)
Dis. Model. Mech.
, vol.4
, pp. 842-849
-
-
Musselman, L.P.1
-
74
-
-
84860448541
-
High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo
-
Pasco M.Y., Leopold P. High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo. PLoS ONE 2012, 7:e36583.
-
(2012)
PLoS ONE
, vol.7
, pp. e36583
-
-
Pasco, M.Y.1
Leopold, P.2
-
75
-
-
22944434929
-
Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes
-
Yang Q., et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005, 436:356-362.
-
(2005)
Nature
, vol.436
, pp. 356-362
-
-
Yang, Q.1
-
76
-
-
33745095399
-
Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects
-
Graham T.E., et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N. Engl. J. Med. 2006, 354:2552-2563.
-
(2006)
N. Engl. J. Med.
, vol.354
, pp. 2552-2563
-
-
Graham, T.E.1
-
77
-
-
84873486964
-
A Drosophila model of high sugar diet-induced cardiomyopathy
-
Na J., et al. A Drosophila model of high sugar diet-induced cardiomyopathy. PLoS Genet. 2013, 9:e1003175.
-
(2013)
PLoS Genet.
, vol.9
, pp. e1003175
-
-
Na, J.1
-
78
-
-
78049279413
-
O-linked beta-N-acetylglucosamine transferase is indispensable in the failing heart
-
Watson L.J., et al. O-linked beta-N-acetylglucosamine transferase is indispensable in the failing heart. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:17797-17802.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 17797-17802
-
-
Watson, L.J.1
-
79
-
-
78049425280
-
High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila
-
Birse R.T., et al. High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab. 2010, 12:533-544.
-
(2010)
Cell Metab.
, vol.12
, pp. 533-544
-
-
Birse, R.T.1
-
80
-
-
84884693719
-
Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons
-
Masek P., Keene A.C. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons. PLoS Genet. 2013, 9:e1003710.
-
(2013)
PLoS Genet.
, vol.9
, pp. e1003710
-
-
Masek, P.1
Keene, A.C.2
-
81
-
-
84864780292
-
Role of high-fat diet in stress response of Drosophila
-
Heinrichsen E.T., Haddad G.G. Role of high-fat diet in stress response of Drosophila. PLoS ONE 2012, 7:e42587.
-
(2012)
PLoS ONE
, vol.7
, pp. e42587
-
-
Heinrichsen, E.T.1
Haddad, G.G.2
-
82
-
-
20044393471
-
Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands
-
Broughton S.J., et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:3105-3110.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 3105-3110
-
-
Broughton, S.J.1
-
83
-
-
56649121807
-
Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs
-
Broughton S., et al. Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PLoS ONE 2008, 3:e3721.
-
(2008)
PLoS ONE
, vol.3
, pp. e3721
-
-
Broughton, S.1
-
84
-
-
77649195357
-
Molecular evolution and functional characterization of Drosophila insulin-like peptides
-
Gronke S., et al. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 2010, 6:e1000857.
-
(2010)
PLoS Genet.
, vol.6
, pp. e1000857
-
-
Gronke, S.1
-
85
-
-
84869209803
-
Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain
-
Bai H., et al. Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell 2012, 11:978-985.
-
(2012)
Aging Cell
, vol.11
, pp. 978-985
-
-
Bai, H.1
-
86
-
-
84860491077
-
Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing
-
Colombani J., et al. Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 2012, 336:582-585.
-
(2012)
Science
, vol.336
, pp. 582-585
-
-
Colombani, J.1
-
87
-
-
55549143025
-
A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis
-
Bharucha K.N., et al. A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J. Exp. Biol. 2008, 211:3103-3110.
-
(2008)
J. Exp. Biol.
, vol.211
, pp. 3103-3110
-
-
Bharucha, K.N.1
-
88
-
-
43149111605
-
Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling
-
Lee K.S., et al. Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat. Cell Biol. 2008, 10:468-475.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 468-475
-
-
Lee, K.S.1
-
89
-
-
79953276547
-
Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search
-
Root C.M., et al. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 2011, 145:133-144.
-
(2011)
Cell
, vol.145
, pp. 133-144
-
-
Root, C.M.1
-
90
-
-
70349992332
-
A neural circuit mechanism integrating motivational state with memory expression in Drosophila
-
Krashes M.J., et al. A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell 2009, 139:416-427.
-
(2009)
Cell
, vol.139
, pp. 416-427
-
-
Krashes, M.J.1
-
91
-
-
84879795740
-
Regulation of circadian locomotor rhythm by neuropeptide Y-like system in Drosophila melanogaster
-
He C., et al. Regulation of circadian locomotor rhythm by neuropeptide Y-like system in Drosophila melanogaster. Insect. Mol. Biol. 2013, 22:376-388.
-
(2013)
Insect. Mol. Biol.
, vol.22
, pp. 376-388
-
-
He, C.1
-
92
-
-
84884758352
-
Short neuropeptide F is a sleep-promoting inhibitory modulator
-
Shang Y., et al. Short neuropeptide F is a sleep-promoting inhibitory modulator. Neuron 2013, 80:171-183.
-
(2013)
Neuron
, vol.80
, pp. 171-183
-
-
Shang, Y.1
-
93
-
-
79955891894
-
Insulin production and signaling in renal tubules of Drosophila is under control of tachykinin-related peptide and regulates stress resistance
-
Soderberg J.A., et al. Insulin production and signaling in renal tubules of Drosophila is under control of tachykinin-related peptide and regulates stress resistance. PLoS ONE 2011, 6:e19866.
-
(2011)
PLoS ONE
, vol.6
, pp. e19866
-
-
Soderberg, J.A.1
-
94
-
-
83155172619
-
Regulation of insulin-producing cells in the adult Drosophila brain via the tachykinin peptide receptor DTKR
-
Birse R.T., et al. Regulation of insulin-producing cells in the adult Drosophila brain via the tachykinin peptide receptor DTKR. J. Exp. Biol. 2011, 214:4201-4208.
-
(2011)
J. Exp. Biol.
, vol.214
, pp. 4201-4208
-
-
Birse, R.T.1
-
95
-
-
39149139300
-
Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster
-
Lee G., et al. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster. Cell Tissue Res. 2008, 331:659-673.
-
(2008)
Cell Tissue Res.
, vol.331
, pp. 659-673
-
-
Lee, G.1
-
96
-
-
84869097636
-
Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin
-
Kapan N., et al. Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cell. Mol. Life Sci. 2012, 10.1007/s00018-012-1097-z.
-
(2012)
Cell. Mol. Life Sci.
-
-
Kapan, N.1
-
97
-
-
84863399603
-
Allatostatin-A neurons inhibit feeding behavior in adult Drosophila
-
Hergarden A.C., et al. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:3967-3972.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 3967-3972
-
-
Hergarden, A.C.1
-
98
-
-
34249003365
-
Single-cell peptidomics of Drosophila melanogaster neurons identified by Gal4-driven fluorescence
-
Neupert S., et al. Single-cell peptidomics of Drosophila melanogaster neurons identified by Gal4-driven fluorescence. Anal. Chem. 2007, 79:3690-3694.
-
(2007)
Anal. Chem.
, vol.79
, pp. 3690-3694
-
-
Neupert, S.1
-
99
-
-
0036768850
-
The Drosophila hugin gene codes for myostimulatory and ecdysis-modifying neuropeptides
-
Meng X., et al. The Drosophila hugin gene codes for myostimulatory and ecdysis-modifying neuropeptides. Mech. Dev. 2002, 117:5-13.
-
(2002)
Mech. Dev.
, vol.117
, pp. 5-13
-
-
Meng, X.1
-
100
-
-
52249099979
-
Comparative neuroanatomy and genomics of hugin and pheromone biosynthesis activating neuropeptide (PBAN)
-
Bader R., et al. Comparative neuroanatomy and genomics of hugin and pheromone biosynthesis activating neuropeptide (PBAN). Fly 2007, 1:228-231.
-
(2007)
Fly
, vol.1
, pp. 228-231
-
-
Bader, R.1
-
101
-
-
77955662751
-
The leucokinin pathway and its neurons regulate meal size in Drosophila
-
Al-Anzi B., et al. The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr. Biol. 2010, 20:969-978.
-
(2010)
Curr. Biol.
, vol.20
, pp. 969-978
-
-
Al-Anzi, B.1
-
102
-
-
0024299504
-
A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster
-
Chen P.S., et al. A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 1988, 54:291-298.
-
(1988)
Cell
, vol.54
, pp. 291-298
-
-
Chen, P.S.1
-
103
-
-
0041886884
-
Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster
-
Liu H., Kubli E. Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:9929-9933.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 9929-9933
-
-
Liu, H.1
Kubli, E.2
-
104
-
-
33645860490
-
Allocrine modulation of feeding behavior by the Sex Peptide of Drosophila
-
Carvalho G.B., et al. Allocrine modulation of feeding behavior by the Sex Peptide of Drosophila. Curr. Biol. 2006, 16:692-696.
-
(2006)
Curr. Biol.
, vol.16
, pp. 692-696
-
-
Carvalho, G.B.1
-
105
-
-
44949153451
-
Feeding, fecundity and lifespan in female Drosophila melanogaster
-
Barnes A.I., et al. Feeding, fecundity and lifespan in female Drosophila melanogaster. Proc. Biol. Sci. 2008, 275:1675-1683.
-
(2008)
Proc. Biol. Sci.
, vol.275
, pp. 1675-1683
-
-
Barnes, A.I.1
-
106
-
-
84880075596
-
Drosophila adiponectin receptor in insulin producing cells regulates glucose and lipid metabolism by controlling insulin secretion
-
Kwak S.J., et al. Drosophila adiponectin receptor in insulin producing cells regulates glucose and lipid metabolism by controlling insulin secretion. PLoS ONE 2013, 8:e68641.
-
(2013)
PLoS ONE
, vol.8
, pp. e68641
-
-
Kwak, S.J.1
-
107
-
-
84874345720
-
Insulin-producing cells in the Drosophila brain also express satiety-inducing cholecystokinin-like peptide, drosulfakinin
-
Soderberg J.A., et al. Insulin-producing cells in the Drosophila brain also express satiety-inducing cholecystokinin-like peptide, drosulfakinin. Front. Endocrinol. (Lausanne) 2012, 3:109.
-
(2012)
Front. Endocrinol. (Lausanne)
, vol.3
, pp. 109
-
-
Soderberg, J.A.1
|