메뉴 건너뛰기




Volumn 25, Issue 10, 2014, Pages 518-527

Drosophila gains traction as a repurposed tool to investigate metabolism

Author keywords

Drosophila; Endocrine; Insulin signaling; Metabolism; Obesity

Indexed keywords

ADIPONECTIN RECEPTOR 1; APOLIPOPROTEIN D; CHOLECYSTOKININ LIKE PEPTIDE; FATTY ACID; GLUCAGON; GLUCAGON RECEPTOR; HORMONE RECEPTOR; INSULIN; INSULIN RECEPTOR; LEPTIN; LEPTIN RECEPTOR; NEUROPEPTIDE Y; NEUROPEPTIDE Y RECEPTOR; ORPHAN NUCLEAR RECEPTOR; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR; SOMATOMEDIN; SOMATOMEDIN BINDING PROTEIN; SOMATOMEDIN RECEPTOR; TACHYKININ; TACHYKININ RECEPTOR;

EID: 84908112610     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2014.03.011     Document Type: Review
Times cited : (101)

References (107)
  • 1
    • 34548847172 scopus 로고    scopus 로고
    • Diabetic larvae and obese flies - emerging studies of metabolism in Drosophila
    • Baker K.D., Thummel C.S. Diabetic larvae and obese flies - emerging studies of metabolism in Drosophila. Cell Metab. 2007, 6:257-266.
    • (2007) Cell Metab. , vol.6 , pp. 257-266
    • Baker, K.D.1    Thummel, C.S.2
  • 2
    • 84876335923 scopus 로고    scopus 로고
    • Of flies and men: insights on organismal metabolism from fruit flies
    • Rajan A., Perrimon N. Of flies and men: insights on organismal metabolism from fruit flies. BMC Biol. 2013, 11:38.
    • (2013) BMC Biol. , vol.11 , pp. 38
    • Rajan, A.1    Perrimon, N.2
  • 3
    • 84878614163 scopus 로고    scopus 로고
    • Morphological and molecular characterization of adult midgut compartmentalization in Drosophila
    • Buchon N., et al. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep. 2013, 3:1725-1738.
    • (2013) Cell Rep. , vol.3 , pp. 1725-1738
    • Buchon, N.1
  • 4
    • 84883398166 scopus 로고    scopus 로고
    • Physiological and stem cell compartmentalization within the Drosophila midgut
    • Marianes A., Spradling A.C. Physiological and stem cell compartmentalization within the Drosophila midgut. Elife 2013, 2:e00886.
    • (2013) Elife , vol.2 , pp. e00886
    • Marianes, A.1    Spradling, A.C.2
  • 5
    • 78650866455 scopus 로고    scopus 로고
    • Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis
    • Cognigni P., et al. Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis. Cell Metab. 2011, 13:92-104.
    • (2011) Cell Metab. , vol.13 , pp. 92-104
    • Cognigni, P.1
  • 6
    • 80055094597 scopus 로고    scopus 로고
    • Quiescent gastric stem cells maintain the adult Drosophila stomach
    • Strand M., Micchelli C.A. Quiescent gastric stem cells maintain the adult Drosophila stomach. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:17696-17701.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 17696-17701
    • Strand, M.1    Micchelli, C.A.2
  • 7
    • 80755174406 scopus 로고    scopus 로고
    • Maintaining tissue homeostasis: dynamic control of somatic stem cell activity
    • Biteau B., et al. Maintaining tissue homeostasis: dynamic control of somatic stem cell activity. Cell Stem Cell 2011, 9:402-411.
    • (2011) Cell Stem Cell , vol.9 , pp. 402-411
    • Biteau, B.1
  • 8
    • 70350571244 scopus 로고    scopus 로고
    • Autophagy, not apoptosis, is essential for midgut cell death in Drosophila
    • Denton D., et al. Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr. Biol. 2009, 19:1741-1746.
    • (2009) Curr. Biol. , vol.19 , pp. 1741-1746
    • Denton, D.1
  • 9
    • 0040668305 scopus 로고
    • The copper metabolism of Drosophila
    • Poulson D.F., et al. The copper metabolism of Drosophila. Proc. Natl. Acad. Sci. U.S.A. 1952, 38:912-921.
    • (1952) Proc. Natl. Acad. Sci. U.S.A. , vol.38 , pp. 912-921
    • Poulson, D.F.1
  • 10
    • 0028264931 scopus 로고
    • Novel tissue units of regional differentiation in the gut epithelium of Drosophila, as revealed by P-element-mediated detection of enhancer
    • Murakami R., et al. Novel tissue units of regional differentiation in the gut epithelium of Drosophila, as revealed by P-element-mediated detection of enhancer. Rouxs Arch. Dev. Biol. 1994, 203:243-249.
    • (1994) Rouxs Arch. Dev. Biol. , vol.203 , pp. 243-249
    • Murakami, R.1
  • 11
    • 0037052544 scopus 로고    scopus 로고
    • Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes
    • Rulifson E.J., et al. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 2002, 296:1118-1120.
    • (2002) Science , vol.296 , pp. 1118-1120
    • Rulifson, E.J.1
  • 12
    • 4644242353 scopus 로고    scopus 로고
    • Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells
    • Kim S.K., Rulifson E.J. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 2004, 431:316-320.
    • (2004) Nature , vol.431 , pp. 316-320
    • Kim, S.K.1    Rulifson, E.J.2
  • 14
    • 0025763856 scopus 로고
    • Metamorphosis of the corpus allatum and degeneration of the prothoracic glands during the larval-pupal-adult transformation of Drosophila melanogaster: a cytophysiological analysis of the ring gland
    • Dai J.D., Gilbert L.I. Metamorphosis of the corpus allatum and degeneration of the prothoracic glands during the larval-pupal-adult transformation of Drosophila melanogaster: a cytophysiological analysis of the ring gland. Dev. Biol. 1991, 144:309-326.
    • (1991) Dev. Biol. , vol.144 , pp. 309-326
    • Dai, J.D.1    Gilbert, L.I.2
  • 15
    • 0000811615 scopus 로고    scopus 로고
    • Lipid and sugar absorption
    • Chapman & Hall, M. Lehane, P. Billingsley (Eds.)
    • Turunen S., Crailsheim K. Lipid and sugar absorption. Biology of the Insect Midgut 1996, 293-320. Chapman & Hall. M. Lehane, P. Billingsley (Eds.).
    • (1996) Biology of the Insect Midgut , pp. 293-320
    • Turunen, S.1    Crailsheim, K.2
  • 17
    • 84864614812 scopus 로고    scopus 로고
    • Lipoproteins in Drosophila melanogaster - assembly, function, and influence on tissue lipid composition
    • Palm W., et al. Lipoproteins in Drosophila melanogaster - assembly, function, and influence on tissue lipid composition. PLoS Genet. 2012, 8:e1002828.
    • (2012) PLoS Genet. , vol.8 , pp. e1002828
    • Palm, W.1
  • 18
    • 33846279755 scopus 로고    scopus 로고
    • Specialized hepatocyte-like cells regulate Drosophila lipid metabolism
    • Gutierrez E., et al. Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 2007, 445:275-280.
    • (2007) Nature , vol.445 , pp. 275-280
    • Gutierrez, E.1
  • 19
    • 70449774815 scopus 로고    scopus 로고
    • The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila
    • Sieber M.H., Thummel C.S. The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila. Cell Metab. 2009, 10:481-490.
    • (2009) Cell Metab. , vol.10 , pp. 481-490
    • Sieber, M.H.1    Thummel, C.S.2
  • 20
    • 84864833490 scopus 로고    scopus 로고
    • Effects of diet and development on the Drosophila lipidome
    • Carvalho M., et al. Effects of diet and development on the Drosophila lipidome. Mol. Syst. Biol. 2012, 8:600.
    • (2012) Mol. Syst. Biol. , vol.8 , pp. 600
    • Carvalho, M.1
  • 21
    • 0141733277 scopus 로고    scopus 로고
    • A nutrient sensor mechanism controls Drosophila growth
    • Colombani J., et al. A nutrient sensor mechanism controls Drosophila growth. Cell 2003, 114:739-749.
    • (2003) Cell , vol.114 , pp. 739-749
    • Colombani, J.1
  • 22
    • 0000421694 scopus 로고
    • Fat body
    • Academic Press, M. Ashburner, T.R. Wright (Eds.)
    • Rizki T.M. Fat body. The Genetics and Biology of Drosophila 1978, 561-601. Academic Press. M. Ashburner, T.R. Wright (Eds.).
    • (1978) The Genetics and Biology of Drosophila , pp. 561-601
    • Rizki, T.M.1
  • 23
    • 26944489689 scopus 로고    scopus 로고
    • Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila
    • Grönke S., et al. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab. 2005, 1:323-330.
    • (2005) Cell Metab. , vol.1 , pp. 323-330
    • Grönke, S.1
  • 24
    • 84866166159 scopus 로고    scopus 로고
    • Drosophila melanogaster acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system
    • Parvy J.P., et al. Drosophila melanogaster acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system. PLoS Genet. 2012, 8:e1002925.
    • (2012) PLoS Genet. , vol.8 , pp. e1002925
    • Parvy, J.P.1
  • 25
    • 38249032633 scopus 로고
    • The source of lipids and polyphenols for the insect cuticle: the role of fat body, oenocytes and oenocytoids
    • Wigglesworth V.B. The source of lipids and polyphenols for the insect cuticle: the role of fat body, oenocytes and oenocytoids. Tissue Cell 1988, 20:919-932.
    • (1988) Tissue Cell , vol.20 , pp. 919-932
    • Wigglesworth, V.B.1
  • 26
    • 84891927661 scopus 로고    scopus 로고
    • The development and functions of oenocytes
    • Makki R., et al. The development and functions of oenocytes. Annu. Rev. Entomol. 2014, 59:405-425.
    • (2014) Annu. Rev. Entomol. , vol.59 , pp. 405-425
    • Makki, R.1
  • 27
    • 0345687447 scopus 로고    scopus 로고
    • Branching morphogenesis of the Drosophila tracheal system
    • Ghabrial A., et al. Branching morphogenesis of the Drosophila tracheal system. Annu. Rev. Cell Dev. Biol. 2003, 19:623-647.
    • (2003) Annu. Rev. Cell Dev. Biol. , vol.19 , pp. 623-647
    • Ghabrial, A.1
  • 28
    • 84892775294 scopus 로고    scopus 로고
    • Neuronal control of metabolism through nutrient-dependent modulation of tracheal branching
    • Linneweber G.A., et al. Neuronal control of metabolism through nutrient-dependent modulation of tracheal branching. Cell 2014, 156:69-83.
    • (2014) Cell , vol.156 , pp. 69-83
    • Linneweber, G.A.1
  • 29
    • 0027160708 scopus 로고
    • Targeted gene expression as a means of altering cell fates and generating dominant phenotypes
    • Brand A.H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118:401-415.
    • (1993) Development , vol.118 , pp. 401-415
    • Brand, A.H.1    Perrimon, N.2
  • 30
    • 80054896531 scopus 로고    scopus 로고
    • High-efficiency gene targeting in Drosophila with zinc finger nucleases
    • Carroll D., et al. High-efficiency gene targeting in Drosophila with zinc finger nucleases. Methods Mol. Biol. 2010, 649:271-280.
    • (2010) Methods Mol. Biol. , vol.649 , pp. 271-280
    • Carroll, D.1
  • 31
    • 84861348512 scopus 로고    scopus 로고
    • Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy
    • Liu J., et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J. Genet. Genomics 2012, 39:209-215.
    • (2012) J. Genet. Genomics , vol.39 , pp. 209-215
    • Liu, J.1
  • 32
    • 84892437994 scopus 로고    scopus 로고
    • Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
    • Bassett A.R., et al. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 2013, 4:220-228.
    • (2013) Cell Rep. , vol.4 , pp. 220-228
    • Bassett, A.R.1
  • 33
    • 80155182174 scopus 로고    scopus 로고
    • Developments in obesity genetics in the era of genome-wide association studies
    • Day F.R., Loos R.J. Developments in obesity genetics in the era of genome-wide association studies. J. Nutrigenet. Nutrigenomics 2011, 4:222-238.
    • (2011) J. Nutrigenet. Nutrigenomics , vol.4 , pp. 222-238
    • Day, F.R.1    Loos, R.J.2
  • 34
    • 38949187953 scopus 로고    scopus 로고
    • Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment
    • Wardle J., et al. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am. J. Clin. Nutr. 2008, 87:398-404.
    • (2008) Am. J. Clin. Nutr. , vol.87 , pp. 398-404
    • Wardle, J.1
  • 35
    • 0034837386 scopus 로고    scopus 로고
    • A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster
    • Reiter L.T., et al. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 2001, 11:1114-1125.
    • (2001) Genome Res. , vol.11 , pp. 1114-1125
    • Reiter, L.T.1
  • 36
    • 44449095056 scopus 로고    scopus 로고
    • Functional genomic screen reveals genes involved in lipid-droplet formation and utilization
    • Guo Y., et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 2008, 453:657-661.
    • (2008) Nature , vol.453 , pp. 657-661
    • Guo, Y.1
  • 37
    • 73349130440 scopus 로고    scopus 로고
    • Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate
    • Pospisilik J.A., et al. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 2010, 140:148-160.
    • (2010) Cell , vol.140 , pp. 148-160
    • Pospisilik, J.A.1
  • 38
    • 84875452685 scopus 로고    scopus 로고
    • Secretion and signaling activities of lipoprotein-associated hedgehog and non-sterol-modified hedgehog in flies and mammals
    • Palm W., et al. Secretion and signaling activities of lipoprotein-associated hedgehog and non-sterol-modified hedgehog in flies and mammals. PLoS Biol. 2013, 11:e1001505.
    • (2013) PLoS Biol. , vol.11 , pp. e1001505
    • Palm, W.1
  • 39
    • 84893508942 scopus 로고    scopus 로고
    • A Drosophila in vivo screen identifies store-operated calcium entry as a key regulator of adiposity
    • Baumbach J., et al. A Drosophila in vivo screen identifies store-operated calcium entry as a key regulator of adiposity. Cell Metab. 2014, 19:331-343.
    • (2014) Cell Metab. , vol.19 , pp. 331-343
    • Baumbach, J.1
  • 40
    • 80053927394 scopus 로고    scopus 로고
    • Genetics of type 2 diabetes: the GWAS era and future perspectives
    • Imamura M., Maeda S. Genetics of type 2 diabetes: the GWAS era and future perspectives. Endocr. J. 2011, 58:723-739.
    • (2011) Endocr. J. , vol.58 , pp. 723-739
    • Imamura, M.1    Maeda, S.2
  • 41
    • 84874255352 scopus 로고    scopus 로고
    • A Drosophila functional evaluation of candidates from human genome-wide association studies of type 2 diabetes and related metabolic traits identifies tissue-specific roles for dHHEX
    • Pendse J., et al. A Drosophila functional evaluation of candidates from human genome-wide association studies of type 2 diabetes and related metabolic traits identifies tissue-specific roles for dHHEX. BMC Genomics 2013, 14:136.
    • (2013) BMC Genomics , vol.14 , pp. 136
    • Pendse, J.1
  • 42
    • 84863012360 scopus 로고    scopus 로고
    • The Drosophila Melanogaster Genetic Reference Panel
    • Mackay T.F., et al. The Drosophila Melanogaster Genetic Reference Panel. Nature 2012, 482:173-178.
    • (2012) Nature , vol.482 , pp. 173-178
    • Mackay, T.F.1
  • 43
    • 84901323480 scopus 로고    scopus 로고
    • Effect of genetic variation in a Drosophila model of diabetes-associated misfolded human proinsulin
    • He B.Z., et al. Effect of genetic variation in a Drosophila model of diabetes-associated misfolded human proinsulin. Genetics 2014, 196:557-567.
    • (2014) Genetics , vol.196 , pp. 557-567
    • He, B.Z.1
  • 44
    • 0037031147 scopus 로고    scopus 로고
    • Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila
    • Ikeya T., et al. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 2002, 12:1293-1300.
    • (2002) Curr. Biol. , vol.12 , pp. 1293-1300
    • Ikeya, T.1
  • 45
    • 0035916357 scopus 로고    scopus 로고
    • An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control
    • Brogiolo W., et al. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 2001, 11:213-221.
    • (2001) Curr. Biol. , vol.11 , pp. 213-221
    • Brogiolo, W.1
  • 46
    • 2942590660 scopus 로고    scopus 로고
    • Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster
    • Lee G., Park J.H. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 2004, 167:311-323.
    • (2004) Genetics , vol.167 , pp. 311-323
    • Lee, G.1    Park, J.H.2
  • 47
    • 0036484062 scopus 로고    scopus 로고
    • Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions
    • Britton J.S., et al. Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev. Cell 2002, 2:239-249.
    • (2002) Dev. Cell , vol.2 , pp. 239-249
    • Britton, J.S.1
  • 48
    • 42249108516 scopus 로고    scopus 로고
    • Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance
    • Honegger B., et al. Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J. Biol. 2008, 7:10.
    • (2008) J. Biol. , vol.7 , pp. 10
    • Honegger, B.1
  • 49
    • 41549087580 scopus 로고    scopus 로고
    • Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides
    • Arquier N., et al. Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides. Cell Metab. 2008, 7:333-338.
    • (2008) Cell Metab. , vol.7 , pp. 333-338
    • Arquier, N.1
  • 50
    • 84872309064 scopus 로고    scopus 로고
    • A secreted decoy of InR antagonizes insulin/IGF signaling to restrict body growth in Drosophila
    • Okamoto N., et al. A secreted decoy of InR antagonizes insulin/IGF signaling to restrict body growth in Drosophila. Genes Dev. 2013, 27:87-97.
    • (2013) Genes Dev. , vol.27 , pp. 87-97
    • Okamoto, N.1
  • 51
    • 0031860687 scopus 로고    scopus 로고
    • Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms
    • Britton J.S., Edgar B.A. Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 1998, 125:2149-2158.
    • (1998) Development , vol.125 , pp. 2149-2158
    • Britton, J.S.1    Edgar, B.A.2
  • 52
    • 78650503295 scopus 로고    scopus 로고
    • Nutrition-responsive glia control exit of neural stem cells from quiescence
    • Chell J.M., Brand A.H. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 2010, 143:1161-1173.
    • (2010) Cell , vol.143 , pp. 1161-1173
    • Chell, J.M.1    Brand, A.H.2
  • 53
    • 79953044605 scopus 로고    scopus 로고
    • Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila
    • Sousa-Nunes R., et al. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 2011, 471:508-512.
    • (2011) Nature , vol.471 , pp. 508-512
    • Sousa-Nunes, R.1
  • 54
    • 84866978180 scopus 로고    scopus 로고
    • Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion
    • Rajan A., Perrimon N. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 2012, 151:123-137.
    • (2012) Cell , vol.151 , pp. 123-137
    • Rajan, A.1    Perrimon, N.2
  • 55
    • 15944408369 scopus 로고    scopus 로고
    • Nuclear receptors - a perspective from Drosophila
    • King-Jones K., Thummel C.S. Nuclear receptors - a perspective from Drosophila. Nat. Rev. Genet. 2005, 6:311-323.
    • (2005) Nat. Rev. Genet. , vol.6 , pp. 311-323
    • King-Jones, K.1    Thummel, C.S.2
  • 56
    • 0842263981 scopus 로고    scopus 로고
    • The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity
    • Ferre P. The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes 2004, 53(Suppl. 1):S43-S50.
    • (2004) Diabetes , vol.53 , pp. S43-S50
    • Ferre, P.1
  • 57
    • 80053315762 scopus 로고    scopus 로고
    • Coordinating growth and maturation - insights from Drosophila
    • Tennessen J.M., Thummel C.S. Coordinating growth and maturation - insights from Drosophila. Curr. Biol. 2011, 21:R750-R757.
    • (2011) Curr. Biol. , vol.21 , pp. R750-R757
    • Tennessen, J.M.1    Thummel, C.S.2
  • 58
    • 77955945353 scopus 로고    scopus 로고
    • The steroid hormone ecdysone controls systemic growth by repressing dMyc function in Drosophila fat cells
    • Delanoue R., et al. The steroid hormone ecdysone controls systemic growth by repressing dMyc function in Drosophila fat cells. Dev. Cell 2010, 18:1012-1021.
    • (2010) Dev. Cell , vol.18 , pp. 1012-1021
    • Delanoue, R.1
  • 59
    • 27144524370 scopus 로고    scopus 로고
    • Antagonistic actions of ecdysone and insulins determine final size in Drosophila
    • Colombani J., et al. Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science 2005, 310:667-670.
    • (2005) Science , vol.310 , pp. 667-670
    • Colombani, J.1
  • 60
    • 78049317163 scopus 로고    scopus 로고
    • DDOR is an EcR coactivator that forms a feed-forward loop connecting insulin and ecdysone signaling
    • Francis V.A., et al. dDOR is an EcR coactivator that forms a feed-forward loop connecting insulin and ecdysone signaling. Curr. Biol. 2010, 20:1799-1808.
    • (2010) Curr. Biol. , vol.20 , pp. 1799-1808
    • Francis, V.A.1
  • 61
    • 84855422546 scopus 로고    scopus 로고
    • Coordination of triacylglycerol and cholesterol homeostasis by DHR96 and the Drosophila LipA homolog magro
    • Sieber M.H., Thummel C.S. Coordination of triacylglycerol and cholesterol homeostasis by DHR96 and the Drosophila LipA homolog magro. Cell Metab. 2012, 15:122-127.
    • (2012) Cell Metab. , vol.15 , pp. 122-127
    • Sieber, M.H.1    Thummel, C.S.2
  • 62
    • 0035064152 scopus 로고    scopus 로고
    • Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span
    • Du H., et al. Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span. J. Lipid Res. 2001, 42:489-500.
    • (2001) J. Lipid Res. , vol.42 , pp. 489-500
    • Du, H.1
  • 63
    • 0015518311 scopus 로고
    • Deficient activity of hepatic acid lipase in cholesterol ester storage disease
    • Burke J.A., Schubert W.K. Deficient activity of hepatic acid lipase in cholesterol ester storage disease. Science 1972, 176:309-310.
    • (1972) Science , vol.176 , pp. 309-310
    • Burke, J.A.1    Schubert, W.K.2
  • 64
    • 67749110331 scopus 로고    scopus 로고
    • Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol
    • van der Veen J.N., et al. Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J. Biol. Chem. 2009, 284:19211-19219.
    • (2009) J. Biol. Chem. , vol.284 , pp. 19211-19219
    • van der Veen, J.N.1
  • 65
    • 79551539873 scopus 로고    scopus 로고
    • The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth
    • Tennessen J.M., et al. The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metab. 2011, 13:139-148.
    • (2011) Cell Metab. , vol.13 , pp. 139-148
    • Tennessen, J.M.1
  • 66
    • 84873515115 scopus 로고    scopus 로고
    • HIF- and non-HIF-regulated hypoxic responses require the estrogen-related receptor in Drosophila melanogaster
    • Li Y., et al. HIF- and non-HIF-regulated hypoxic responses require the estrogen-related receptor in Drosophila melanogaster. PLoS Genet. 2013, 9:e1003230.
    • (2013) PLoS Genet. , vol.9 , pp. e1003230
    • Li, Y.1
  • 67
    • 77949417984 scopus 로고    scopus 로고
    • The homeobox protein Prox1 is a negative modulator of ERRα/PGC-1α bioenergetic functions
    • Charest-Marcotte A., et al. The homeobox protein Prox1 is a negative modulator of ERRα/PGC-1α bioenergetic functions. Genes Dev. 2010, 24:537-542.
    • (2010) Genes Dev. , vol.24 , pp. 537-542
    • Charest-Marcotte, A.1
  • 68
    • 45549104823 scopus 로고    scopus 로고
    • Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors
    • Ao A., et al. Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:7821-7826.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 7821-7826
    • Ao, A.1
  • 69
    • 39749140405 scopus 로고    scopus 로고
    • HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha
    • Arany Z., et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 2008, 451:1008-1012.
    • (2008) Nature , vol.451 , pp. 1008-1012
    • Arany, Z.1
  • 70
    • 77953356804 scopus 로고    scopus 로고
    • Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity
    • Unger R.H., Scherer P.E. Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol. Metab. 2010, 21:345-352.
    • (2010) Trends Endocrinol. Metab. , vol.21 , pp. 345-352
    • Unger, R.H.1    Scherer, P.E.2
  • 71
    • 84875441811 scopus 로고    scopus 로고
    • Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila
    • Musselman L.P., et al. Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila. J. Biol. Chem. 2013, 288:8028-8042.
    • (2013) J. Biol. Chem. , vol.288 , pp. 8028-8042
    • Musselman, L.P.1
  • 72
    • 79953329970 scopus 로고    scopus 로고
    • Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans
    • Rhee E.P., et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J. Clin. Invest. 2011, 121:1402-1411.
    • (2011) J. Clin. Invest. , vol.121 , pp. 1402-1411
    • Rhee, E.P.1
  • 73
    • 81455136679 scopus 로고    scopus 로고
    • A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila
    • Musselman L.P., et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model. Mech. 2011, 4:842-849.
    • (2011) Dis. Model. Mech. , vol.4 , pp. 842-849
    • Musselman, L.P.1
  • 74
    • 84860448541 scopus 로고    scopus 로고
    • High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo
    • Pasco M.Y., Leopold P. High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo. PLoS ONE 2012, 7:e36583.
    • (2012) PLoS ONE , vol.7 , pp. e36583
    • Pasco, M.Y.1    Leopold, P.2
  • 75
    • 22944434929 scopus 로고    scopus 로고
    • Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes
    • Yang Q., et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005, 436:356-362.
    • (2005) Nature , vol.436 , pp. 356-362
    • Yang, Q.1
  • 76
    • 33745095399 scopus 로고    scopus 로고
    • Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects
    • Graham T.E., et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N. Engl. J. Med. 2006, 354:2552-2563.
    • (2006) N. Engl. J. Med. , vol.354 , pp. 2552-2563
    • Graham, T.E.1
  • 77
    • 84873486964 scopus 로고    scopus 로고
    • A Drosophila model of high sugar diet-induced cardiomyopathy
    • Na J., et al. A Drosophila model of high sugar diet-induced cardiomyopathy. PLoS Genet. 2013, 9:e1003175.
    • (2013) PLoS Genet. , vol.9 , pp. e1003175
    • Na, J.1
  • 78
    • 78049279413 scopus 로고    scopus 로고
    • O-linked beta-N-acetylglucosamine transferase is indispensable in the failing heart
    • Watson L.J., et al. O-linked beta-N-acetylglucosamine transferase is indispensable in the failing heart. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:17797-17802.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 17797-17802
    • Watson, L.J.1
  • 79
    • 78049425280 scopus 로고    scopus 로고
    • High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila
    • Birse R.T., et al. High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab. 2010, 12:533-544.
    • (2010) Cell Metab. , vol.12 , pp. 533-544
    • Birse, R.T.1
  • 80
    • 84884693719 scopus 로고    scopus 로고
    • Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons
    • Masek P., Keene A.C. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons. PLoS Genet. 2013, 9:e1003710.
    • (2013) PLoS Genet. , vol.9 , pp. e1003710
    • Masek, P.1    Keene, A.C.2
  • 81
    • 84864780292 scopus 로고    scopus 로고
    • Role of high-fat diet in stress response of Drosophila
    • Heinrichsen E.T., Haddad G.G. Role of high-fat diet in stress response of Drosophila. PLoS ONE 2012, 7:e42587.
    • (2012) PLoS ONE , vol.7 , pp. e42587
    • Heinrichsen, E.T.1    Haddad, G.G.2
  • 82
    • 20044393471 scopus 로고    scopus 로고
    • Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands
    • Broughton S.J., et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:3105-3110.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 3105-3110
    • Broughton, S.J.1
  • 83
    • 56649121807 scopus 로고    scopus 로고
    • Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs
    • Broughton S., et al. Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PLoS ONE 2008, 3:e3721.
    • (2008) PLoS ONE , vol.3 , pp. e3721
    • Broughton, S.1
  • 84
    • 77649195357 scopus 로고    scopus 로고
    • Molecular evolution and functional characterization of Drosophila insulin-like peptides
    • Gronke S., et al. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 2010, 6:e1000857.
    • (2010) PLoS Genet. , vol.6 , pp. e1000857
    • Gronke, S.1
  • 85
    • 84869209803 scopus 로고    scopus 로고
    • Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain
    • Bai H., et al. Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell 2012, 11:978-985.
    • (2012) Aging Cell , vol.11 , pp. 978-985
    • Bai, H.1
  • 86
    • 84860491077 scopus 로고    scopus 로고
    • Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing
    • Colombani J., et al. Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 2012, 336:582-585.
    • (2012) Science , vol.336 , pp. 582-585
    • Colombani, J.1
  • 87
    • 55549143025 scopus 로고    scopus 로고
    • A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis
    • Bharucha K.N., et al. A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J. Exp. Biol. 2008, 211:3103-3110.
    • (2008) J. Exp. Biol. , vol.211 , pp. 3103-3110
    • Bharucha, K.N.1
  • 88
    • 43149111605 scopus 로고    scopus 로고
    • Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling
    • Lee K.S., et al. Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat. Cell Biol. 2008, 10:468-475.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 468-475
    • Lee, K.S.1
  • 89
    • 79953276547 scopus 로고    scopus 로고
    • Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search
    • Root C.M., et al. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 2011, 145:133-144.
    • (2011) Cell , vol.145 , pp. 133-144
    • Root, C.M.1
  • 90
    • 70349992332 scopus 로고    scopus 로고
    • A neural circuit mechanism integrating motivational state with memory expression in Drosophila
    • Krashes M.J., et al. A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell 2009, 139:416-427.
    • (2009) Cell , vol.139 , pp. 416-427
    • Krashes, M.J.1
  • 91
    • 84879795740 scopus 로고    scopus 로고
    • Regulation of circadian locomotor rhythm by neuropeptide Y-like system in Drosophila melanogaster
    • He C., et al. Regulation of circadian locomotor rhythm by neuropeptide Y-like system in Drosophila melanogaster. Insect. Mol. Biol. 2013, 22:376-388.
    • (2013) Insect. Mol. Biol. , vol.22 , pp. 376-388
    • He, C.1
  • 92
    • 84884758352 scopus 로고    scopus 로고
    • Short neuropeptide F is a sleep-promoting inhibitory modulator
    • Shang Y., et al. Short neuropeptide F is a sleep-promoting inhibitory modulator. Neuron 2013, 80:171-183.
    • (2013) Neuron , vol.80 , pp. 171-183
    • Shang, Y.1
  • 93
    • 79955891894 scopus 로고    scopus 로고
    • Insulin production and signaling in renal tubules of Drosophila is under control of tachykinin-related peptide and regulates stress resistance
    • Soderberg J.A., et al. Insulin production and signaling in renal tubules of Drosophila is under control of tachykinin-related peptide and regulates stress resistance. PLoS ONE 2011, 6:e19866.
    • (2011) PLoS ONE , vol.6 , pp. e19866
    • Soderberg, J.A.1
  • 94
    • 83155172619 scopus 로고    scopus 로고
    • Regulation of insulin-producing cells in the adult Drosophila brain via the tachykinin peptide receptor DTKR
    • Birse R.T., et al. Regulation of insulin-producing cells in the adult Drosophila brain via the tachykinin peptide receptor DTKR. J. Exp. Biol. 2011, 214:4201-4208.
    • (2011) J. Exp. Biol. , vol.214 , pp. 4201-4208
    • Birse, R.T.1
  • 95
    • 39149139300 scopus 로고    scopus 로고
    • Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster
    • Lee G., et al. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster. Cell Tissue Res. 2008, 331:659-673.
    • (2008) Cell Tissue Res. , vol.331 , pp. 659-673
    • Lee, G.1
  • 96
    • 84869097636 scopus 로고    scopus 로고
    • Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin
    • Kapan N., et al. Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cell. Mol. Life Sci. 2012, 10.1007/s00018-012-1097-z.
    • (2012) Cell. Mol. Life Sci.
    • Kapan, N.1
  • 97
    • 84863399603 scopus 로고    scopus 로고
    • Allatostatin-A neurons inhibit feeding behavior in adult Drosophila
    • Hergarden A.C., et al. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:3967-3972.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 3967-3972
    • Hergarden, A.C.1
  • 98
    • 34249003365 scopus 로고    scopus 로고
    • Single-cell peptidomics of Drosophila melanogaster neurons identified by Gal4-driven fluorescence
    • Neupert S., et al. Single-cell peptidomics of Drosophila melanogaster neurons identified by Gal4-driven fluorescence. Anal. Chem. 2007, 79:3690-3694.
    • (2007) Anal. Chem. , vol.79 , pp. 3690-3694
    • Neupert, S.1
  • 99
    • 0036768850 scopus 로고    scopus 로고
    • The Drosophila hugin gene codes for myostimulatory and ecdysis-modifying neuropeptides
    • Meng X., et al. The Drosophila hugin gene codes for myostimulatory and ecdysis-modifying neuropeptides. Mech. Dev. 2002, 117:5-13.
    • (2002) Mech. Dev. , vol.117 , pp. 5-13
    • Meng, X.1
  • 100
    • 52249099979 scopus 로고    scopus 로고
    • Comparative neuroanatomy and genomics of hugin and pheromone biosynthesis activating neuropeptide (PBAN)
    • Bader R., et al. Comparative neuroanatomy and genomics of hugin and pheromone biosynthesis activating neuropeptide (PBAN). Fly 2007, 1:228-231.
    • (2007) Fly , vol.1 , pp. 228-231
    • Bader, R.1
  • 101
    • 77955662751 scopus 로고    scopus 로고
    • The leucokinin pathway and its neurons regulate meal size in Drosophila
    • Al-Anzi B., et al. The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr. Biol. 2010, 20:969-978.
    • (2010) Curr. Biol. , vol.20 , pp. 969-978
    • Al-Anzi, B.1
  • 102
    • 0024299504 scopus 로고
    • A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster
    • Chen P.S., et al. A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 1988, 54:291-298.
    • (1988) Cell , vol.54 , pp. 291-298
    • Chen, P.S.1
  • 103
    • 0041886884 scopus 로고    scopus 로고
    • Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster
    • Liu H., Kubli E. Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:9929-9933.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 9929-9933
    • Liu, H.1    Kubli, E.2
  • 104
    • 33645860490 scopus 로고    scopus 로고
    • Allocrine modulation of feeding behavior by the Sex Peptide of Drosophila
    • Carvalho G.B., et al. Allocrine modulation of feeding behavior by the Sex Peptide of Drosophila. Curr. Biol. 2006, 16:692-696.
    • (2006) Curr. Biol. , vol.16 , pp. 692-696
    • Carvalho, G.B.1
  • 105
    • 44949153451 scopus 로고    scopus 로고
    • Feeding, fecundity and lifespan in female Drosophila melanogaster
    • Barnes A.I., et al. Feeding, fecundity and lifespan in female Drosophila melanogaster. Proc. Biol. Sci. 2008, 275:1675-1683.
    • (2008) Proc. Biol. Sci. , vol.275 , pp. 1675-1683
    • Barnes, A.I.1
  • 106
    • 84880075596 scopus 로고    scopus 로고
    • Drosophila adiponectin receptor in insulin producing cells regulates glucose and lipid metabolism by controlling insulin secretion
    • Kwak S.J., et al. Drosophila adiponectin receptor in insulin producing cells regulates glucose and lipid metabolism by controlling insulin secretion. PLoS ONE 2013, 8:e68641.
    • (2013) PLoS ONE , vol.8 , pp. e68641
    • Kwak, S.J.1
  • 107
    • 84874345720 scopus 로고    scopus 로고
    • Insulin-producing cells in the Drosophila brain also express satiety-inducing cholecystokinin-like peptide, drosulfakinin
    • Soderberg J.A., et al. Insulin-producing cells in the Drosophila brain also express satiety-inducing cholecystokinin-like peptide, drosulfakinin. Front. Endocrinol. (Lausanne) 2012, 3:109.
    • (2012) Front. Endocrinol. (Lausanne) , vol.3 , pp. 109
    • Soderberg, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.