메뉴 건너뛰기




Volumn 8, Issue 7, 2013, Pages

Drosophila Adiponectin Receptor in Insulin Producing Cells Regulates Glucose and Lipid Metabolism by Controlling Insulin Secretion

Author keywords

[No Author keywords available]

Indexed keywords

ADIPONECTIN RECEPTOR; ADIPONECTIN RECEPTOR 2; DROSOPHILA PROTEIN; TRIACYLGLYCEROL;

EID: 84880075596     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0068641     Document Type: Article
Times cited : (44)

References (40)
  • 2
    • 33745834319 scopus 로고    scopus 로고
    • Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome
    • Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, et al. (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. The Journal of Clinical Investigation 116: 1784-1792.
    • (2006) The Journal of Clinical Investigation , vol.116 , pp. 1784-1792
    • Kadowaki, T.1    Yamauchi, T.2    Kubota, N.3    Hara, K.4    Ueki, K.5
  • 3
    • 0037494960 scopus 로고    scopus 로고
    • Cloning of adiponectin receptors that mediate antidiabetic metabolic effects
    • Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, et al. (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423: 762-769.
    • (2003) Nature , vol.423 , pp. 762-769
    • Yamauchi, T.1    Kamon, J.2    Ito, Y.3    Tsuchida, A.4    Yokomizo, T.5
  • 4
    • 33847733103 scopus 로고    scopus 로고
    • Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions
    • Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, et al. (2007) Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 13: 332-339.
    • (2007) Nat Med , vol.13 , pp. 332-339
    • Yamauchi, T.1    Nio, Y.2    Maki, T.3    Kobayashi, M.4    Takazawa, T.5
  • 5
    • 33744972277 scopus 로고    scopus 로고
    • APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function
    • Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, et al. (2006) APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol 8: 516-523.
    • (2006) Nat Cell Biol , vol.8 , pp. 516-523
    • Mao, X.1    Kikani, C.K.2    Riojas, R.A.3    Langlais, P.4    Wang, L.5
  • 6
    • 78651260799 scopus 로고    scopus 로고
    • Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin
    • Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, et al. (2011) Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med 17: 55-63.
    • (2011) Nat Med , vol.17 , pp. 55-63
    • Holland, W.L.1    Miller, R.A.2    Wang, Z.V.3    Sun, K.4    Barth, B.M.5
  • 7
    • 77958568034 scopus 로고    scopus 로고
    • Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion
    • Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, et al. (2010) Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. J Biol Chem 285: 33623-33631.
    • (2010) J Biol Chem , vol.285 , pp. 33623-33631
    • Wijesekara, N.1    Krishnamurthy, M.2    Bhattacharjee, A.3    Suhail, A.4    Sweeney, G.5
  • 8
    • 33847380119 scopus 로고    scopus 로고
    • Globular adiponectin augments insulin secretion from pancreatic islet beta cells at high glucose concentrations
    • Gu W, Li X, Liu C, Yang J, Ye L, et al. (2006) Globular adiponectin augments insulin secretion from pancreatic islet beta cells at high glucose concentrations. Endocrine 30: 217-221.
    • (2006) Endocrine , vol.30 , pp. 217-221
    • Gu, W.1    Li, X.2    Liu, C.3    Yang, J.4    Ye, L.5
  • 10
    • 41849100299 scopus 로고    scopus 로고
    • Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration
    • Okamoto M, Ohara-Imaizumi M, Kubota N, Hashimoto S, Eto K, et al. (2008) Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia 51: 827-835.
    • (2008) Diabetologia , vol.51 , pp. 827-835
    • Okamoto, M.1    Ohara-Imaizumi, M.2    Kubota, N.3    Hashimoto, S.4    Eto, K.5
  • 11
    • 0037052544 scopus 로고    scopus 로고
    • Ablation of Insulin producing Neurons in Flies: Growth and Diabetic Phenotypes
    • Rulifson EJ, Kim SK, Nusse R, (2002) Ablation of Insulin producing Neurons in Flies: Growth and Diabetic Phenotypes. Science 296: 1118-1120.
    • (2002) Science , vol.296 , pp. 1118-1120
    • Rulifson, E.J.1    Kim, S.K.2    Nusse, R.3
  • 12
    • 20044393471 scopus 로고    scopus 로고
    • Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands
    • Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, et al. (2005) Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A 102: 3105-3110.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 3105-3110
    • Broughton, S.J.1    Piper, M.D.2    Ikeya, T.3    Bass, T.M.4    Jacobson, J.5
  • 13
    • 77956821499 scopus 로고    scopus 로고
    • Partial ablation of adult Drosophila insulin producing neurons modulates glucose homeostasis and extends life span without insulin resistance
    • Haselton A, Sharmin E, Schrader J, Sah M, Poon P, et al. (2010) Partial ablation of adult Drosophila insulin producing neurons modulates glucose homeostasis and extends life span without insulin resistance. Cell Cycle 9: 3063-3071.
    • (2010) Cell Cycle , vol.9 , pp. 3063-3071
    • Haselton, A.1    Sharmin, E.2    Schrader, J.3    Sah, M.4    Poon, P.5
  • 15
    • 77649195357 scopus 로고    scopus 로고
    • Molecular Evolution and Functional Characterization of Drosophila Insulin-Like Peptides
    • Grönke S, Clarke D-F, Broughton S, Andrews TD, Partridge L, (2010) Molecular Evolution and Functional Characterization of Drosophila Insulin-Like Peptides. PLoS Genet 6: e1000857.
    • (2010) PLoS Genet , vol.6
    • Grönke, S.1    Clarke, D.-F.2    Broughton, S.3    Andrews, T.D.4    Partridge, L.5
  • 16
    • 43149111605 scopus 로고    scopus 로고
    • Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling
    • Lee K-S, Kwon OY, Lee JH, Kwon K, Min K-J, et al. (2008) Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat Cell Biol 10: 468-475.
    • (2008) Nat Cell Biol , vol.10 , pp. 468-475
    • Lee, K.-S.1    Kwon, O.Y.2    Lee, J.H.3    Kwon, K.4    Min, K.-J.5
  • 18
    • 78651233673 scopus 로고    scopus 로고
    • Insulin Signaling, Lifespan and Stress Resistance Are Modulated by Metabotropic GABA Receptors on Insulin Producing Cells in the Brain of Drosophila
    • Enell LE, Kapan N, Söderberg JAE, Kahsai L, Nässel DR, (2010) Insulin Signaling, Lifespan and Stress Resistance Are Modulated by Metabotropic GABA Receptors on Insulin Producing Cells in the Brain of Drosophila. PLoS One 5: e15780.
    • (2010) PLoS One , vol.5
    • Enell, L.E.1    Kapan, N.2    Söderberg, J.A.E.3    Kahsai, L.4    Nässel, D.R.5
  • 19
    • 47549108079 scopus 로고    scopus 로고
    • A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size
    • Kaplan DD, Zimmermann G, Suyama K, Meyer T, Scott MP, (2008) A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size. Genes Dev 22: 1877-1893.
    • (2008) Genes Dev , vol.22 , pp. 1877-1893
    • Kaplan, D.D.1    Zimmermann, G.2    Suyama, K.3    Meyer, T.4    Scott, M.P.5
  • 20
    • 84856211184 scopus 로고    scopus 로고
    • Insulin producing cells in the brain of adult Drosophila are regulated by the serotonin 5-HT1A receptor
    • Luo J, Becnel J, Nichols C, Nässel D, (2012) Insulin producing cells in the brain of adult Drosophila are regulated by the serotonin 5-HT1A receptor. Cellular and Molecular Life Sciences 69: 471-484.
    • (2012) Cellular and Molecular Life Sciences , vol.69 , pp. 471-484
    • Luo, J.1    Becnel, J.2    Nichols, C.3    Nässel, D.4
  • 21
    • 78649640325 scopus 로고    scopus 로고
    • Blocking O-Linked GlcNAc Cycling in Drosophila Insulin producing Cells Perturbs Glucose-Insulin Homeostasis
    • Sekine O, Love DC, Rubenstein DS, Hanover JA, (2010) Blocking O-Linked GlcNAc Cycling in Drosophila Insulin producing Cells Perturbs Glucose-Insulin Homeostasis. Journal of Biological Chemistry 285: 38684-38691.
    • (2010) Journal of Biological Chemistry , vol.285 , pp. 38684-38691
    • Sekine, O.1    Love, D.C.2    Rubenstein, D.S.3    Hanover, J.A.4
  • 22
    • 78650217627 scopus 로고    scopus 로고
    • Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe
    • Varghese J, Lim SF, Cohen SM, (2010) Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe. Genes Dev 24: 2748-2753.
    • (2010) Genes Dev , vol.24 , pp. 2748-2753
    • Varghese, J.1    Lim, S.F.2    Cohen, S.M.3
  • 23
    • 84869097636 scopus 로고    scopus 로고
    • Identified peptidergic neurons in the Drosophila brain regulate insulin producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin
    • Kapan N, Lushchak O, Luo J, Nässel D, (2012) Identified peptidergic neurons in the Drosophila brain regulate insulin producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cellular and Molecular Life Sciences 69: 4051-4066.
    • (2012) Cellular and Molecular Life Sciences , vol.69 , pp. 4051-4066
    • Kapan, N.1    Lushchak, O.2    Luo, J.3    Nässel, D.4
  • 24
    • 84866978180 scopus 로고    scopus 로고
    • Drosophila Cytokine Unpaired 2 Regulates Physiological Homeostasis by Remotely Controlling Insulin Secretion
    • Rajan A, Perrimon N, (2012) Drosophila Cytokine Unpaired 2 Regulates Physiological Homeostasis by Remotely Controlling Insulin Secretion. Cell 151: 123-137.
    • (2012) Cell , vol.151 , pp. 123-137
    • Rajan, A.1    Perrimon, N.2
  • 25
    • 69149110896 scopus 로고    scopus 로고
    • Remote control of insulin secretion by fat cells in Drosophila
    • Geminard C, Rulifson EJ, Leopold P, (2009) Remote control of insulin secretion by fat cells in Drosophila. Cell Metab 10: 199-207.
    • (2009) Cell Metab , vol.10 , pp. 199-207
    • Geminard, C.1    Rulifson, E.J.2    Leopold, P.3
  • 26
    • 56649121807 scopus 로고    scopus 로고
    • Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs
    • Broughton S, Alic N, Slack C, Bass T, Ikeya T, et al. (2008) Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PLoS One 3: e3721.
    • (2008) PLoS One , vol.3
    • Broughton, S.1    Alic, N.2    Slack, C.3    Bass, T.4    Ikeya, T.5
  • 27
    • 84860448541 scopus 로고    scopus 로고
    • High Sugar-Induced Insulin Resistance in Drosophila Relies on the Lipocalin Neural Lazarillo
    • Pasco MY, Léopold P, (2012) High Sugar-Induced Insulin Resistance in Drosophila Relies on the Lipocalin Neural Lazarillo. PLoS One 7: e36583.
    • (2012) PLoS One , vol.7
    • Pasco, M.Y.1    Léopold, P.2
  • 28
    • 78049425280 scopus 로고    scopus 로고
    • High-Fat-Diet-Induced Obesity and Heart Dysfunction Are Regulated by the TOR Pathway in Drosophila
    • Birse RT, Choi J, Reardon K, Rodriguez J, Graham S, et al. (2010) High-Fat-Diet-Induced Obesity and Heart Dysfunction Are Regulated by the TOR Pathway in Drosophila. Cell Metab 12: 533-544.
    • (2010) Cell Metab , vol.12 , pp. 533-544
    • Birse, R.T.1    Choi, J.2    Reardon, K.3    Rodriguez, J.4    Graham, S.5
  • 29
    • 10944268216 scopus 로고    scopus 로고
    • Drosophila short neuropeptide F regulates food intake and body size
    • Lee KS, You KH, Choo JK, Han YM, Yu K, (2004) Drosophila short neuropeptide F regulates food intake and body size. J Biol Chem 279: 50781-50789.
    • (2004) J Biol Chem , vol.279 , pp. 50781-50789
    • Lee, K.S.1    You, K.H.2    Choo, J.K.3    Han, Y.M.4    Yu, K.5
  • 31
    • 79551644778 scopus 로고    scopus 로고
    • Structural and functional similarities between osmotin from Nicotiana tabacum seeds and human adiponectin
    • Miele M, Costantini S, Colonna G, (2011) Structural and functional similarities between osmotin from Nicotiana tabacum seeds and human adiponectin. PLoS One 6: e16690.
    • (2011) PLoS One , vol.6
    • Miele, M.1    Costantini, S.2    Colonna, G.3
  • 32
    • 19944430433 scopus 로고    scopus 로고
    • Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor
    • Narasimhan ML, Coca MA, Jin J, Yamauchi T, Ito Y, et al. (2005) Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 17: 171-180.
    • (2005) Mol Cell , vol.17 , pp. 171-180
    • Narasimhan, M.L.1    Coca, M.A.2    Jin, J.3    Yamauchi, T.4    Ito, Y.5
  • 33
    • 79959336949 scopus 로고    scopus 로고
    • The adiponectin receptor homologs in C. elegans promote energy utilization and homeostasis
    • Svensson E, Olsen L, Morck C, Brackmann C, Enejder A, et al. (2011) The adiponectin receptor homologs in C. elegans promote energy utilization and homeostasis. PLoS One 6: e21343.
    • (2011) PLoS One , vol.6
    • Svensson, E.1    Olsen, L.2    Morck, C.3    Brackmann, C.4    Enejder, A.5
  • 34
    • 44949193815 scopus 로고    scopus 로고
    • Adiponectin and adiponectin receptor genes are coexpressed during zebrafish embryogenesis and regulated by food deprivation
    • Nishio S-I, Gibert Y, Bernard L, Brunet F, Triqueneaux G, et al. (2008) Adiponectin and adiponectin receptor genes are coexpressed during zebrafish embryogenesis and regulated by food deprivation. Developmental Dynamics 237: 1682-1690.
    • (2008) Developmental Dynamics , vol.237 , pp. 1682-1690
    • Nishio, S.-I.1    Gibert, Y.2    Bernard, L.3    Brunet, F.4    Triqueneaux, G.5
  • 35
    • 81155137747 scopus 로고    scopus 로고
    • Effects of leptin and adiponectin on pancreatic β-cell function
    • Lee Y-h, Magkos F, Mantzoros CS, Kang ES, (2011) Effects of leptin and adiponectin on pancreatic β-cell function. Metabolism 60: 1664-1672.
    • (2011) Metabolism , vol.60 , pp. 1664-1672
    • Lee, Y.-h.1    Magkos, F.2    Mantzoros, C.S.3    Kang, E.S.4
  • 36
    • 77953642134 scopus 로고    scopus 로고
    • Increased uncoupling protein (UCP) activity in Drosophila insulin producing neurons attenuates insulin signaling and extends lifespan
    • Fridell YW, Hoh M, Kreneisz O, Hosier S, Chang C, et al. (2009) Increased uncoupling protein (UCP) activity in Drosophila insulin producing neurons attenuates insulin signaling and extends lifespan. Aging (Albany NY) 1: 699-713.
    • (2009) Aging (Albany NY) , vol.1 , pp. 699-713
    • Fridell, Y.W.1    Hoh, M.2    Kreneisz, O.3    Hosier, S.4    Chang, C.5
  • 37
    • 0037031147 scopus 로고    scopus 로고
    • Nutrient-Dependent Expression of Insulin-like Peptides from Neuroendocrine Cells in the CNS Contributes to Growth Regulation in Drosophila
    • Ikeya T, Galic M, Belawat P, Nairz K, Hafen E, (2002) Nutrient-Dependent Expression of Insulin-like Peptides from Neuroendocrine Cells in the CNS Contributes to Growth Regulation in Drosophila. Current Biology 12: 1293-1300.
    • (2002) Current Biology , vol.12 , pp. 1293-1300
    • Ikeya, T.1    Galic, M.2    Belawat, P.3    Nairz, K.4    Hafen, E.5
  • 38
    • 84856405632 scopus 로고    scopus 로고
    • Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling
    • Rideout EJ, Marshall L, Grewal SS, (2012) Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling. Proc Natl Acad Sci U S A 109: 1139-1144.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 1139-1144
    • Rideout, E.J.1    Marshall, L.2    Grewal, S.S.3
  • 40
    • 79960217416 scopus 로고    scopus 로고
    • Drosophila as a Model for Interorgan Communication: Lessons from Studies on Energy Homeostasis
    • Rajan A, Perrimon N, (2011) Drosophila as a Model for Interorgan Communication: Lessons from Studies on Energy Homeostasis. Developmental Cell 21: 29-31.
    • (2011) Developmental Cell , vol.21 , pp. 29-31
    • Rajan, A.1    Perrimon, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.