-
1
-
-
0345861775
-
Adiponectin and metabolic syndrome
-
Matsuzawa Y, Funahashi T, Kihara S, Shimomura I, (2004) Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol 24: 29-33.
-
(2004)
Arterioscler Thromb Vasc Biol
, vol.24
, pp. 29-33
-
-
Matsuzawa, Y.1
Funahashi, T.2
Kihara, S.3
Shimomura, I.4
-
2
-
-
33745834319
-
Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome
-
Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, et al. (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. The Journal of Clinical Investigation 116: 1784-1792.
-
(2006)
The Journal of Clinical Investigation
, vol.116
, pp. 1784-1792
-
-
Kadowaki, T.1
Yamauchi, T.2
Kubota, N.3
Hara, K.4
Ueki, K.5
-
3
-
-
0037494960
-
Cloning of adiponectin receptors that mediate antidiabetic metabolic effects
-
Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, et al. (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423: 762-769.
-
(2003)
Nature
, vol.423
, pp. 762-769
-
-
Yamauchi, T.1
Kamon, J.2
Ito, Y.3
Tsuchida, A.4
Yokomizo, T.5
-
4
-
-
33847733103
-
Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions
-
Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, et al. (2007) Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 13: 332-339.
-
(2007)
Nat Med
, vol.13
, pp. 332-339
-
-
Yamauchi, T.1
Nio, Y.2
Maki, T.3
Kobayashi, M.4
Takazawa, T.5
-
5
-
-
33744972277
-
APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function
-
Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, et al. (2006) APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol 8: 516-523.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 516-523
-
-
Mao, X.1
Kikani, C.K.2
Riojas, R.A.3
Langlais, P.4
Wang, L.5
-
6
-
-
78651260799
-
Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin
-
Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, et al. (2011) Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med 17: 55-63.
-
(2011)
Nat Med
, vol.17
, pp. 55-63
-
-
Holland, W.L.1
Miller, R.A.2
Wang, Z.V.3
Sun, K.4
Barth, B.M.5
-
7
-
-
77958568034
-
Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion
-
Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, et al. (2010) Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. J Biol Chem 285: 33623-33631.
-
(2010)
J Biol Chem
, vol.285
, pp. 33623-33631
-
-
Wijesekara, N.1
Krishnamurthy, M.2
Bhattacharjee, A.3
Suhail, A.4
Sweeney, G.5
-
8
-
-
33847380119
-
Globular adiponectin augments insulin secretion from pancreatic islet beta cells at high glucose concentrations
-
Gu W, Li X, Liu C, Yang J, Ye L, et al. (2006) Globular adiponectin augments insulin secretion from pancreatic islet beta cells at high glucose concentrations. Endocrine 30: 217-221.
-
(2006)
Endocrine
, vol.30
, pp. 217-221
-
-
Gu, W.1
Li, X.2
Liu, C.3
Yang, J.4
Ye, L.5
-
9
-
-
0037135523
-
Disruption of Adiponectin Causes Insulin Resistance and Neointimal Formation
-
Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, et al. (2002) Disruption of Adiponectin Causes Insulin Resistance and Neointimal Formation. Journal of Biological Chemistry 277: 25863-25866.
-
(2002)
Journal of Biological Chemistry
, vol.277
, pp. 25863-25866
-
-
Kubota, N.1
Terauchi, Y.2
Yamauchi, T.3
Kubota, T.4
Moroi, M.5
-
10
-
-
41849100299
-
Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration
-
Okamoto M, Ohara-Imaizumi M, Kubota N, Hashimoto S, Eto K, et al. (2008) Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia 51: 827-835.
-
(2008)
Diabetologia
, vol.51
, pp. 827-835
-
-
Okamoto, M.1
Ohara-Imaizumi, M.2
Kubota, N.3
Hashimoto, S.4
Eto, K.5
-
11
-
-
0037052544
-
Ablation of Insulin producing Neurons in Flies: Growth and Diabetic Phenotypes
-
Rulifson EJ, Kim SK, Nusse R, (2002) Ablation of Insulin producing Neurons in Flies: Growth and Diabetic Phenotypes. Science 296: 1118-1120.
-
(2002)
Science
, vol.296
, pp. 1118-1120
-
-
Rulifson, E.J.1
Kim, S.K.2
Nusse, R.3
-
12
-
-
20044393471
-
Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands
-
Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, et al. (2005) Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A 102: 3105-3110.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 3105-3110
-
-
Broughton, S.J.1
Piper, M.D.2
Ikeya, T.3
Bass, T.M.4
Jacobson, J.5
-
13
-
-
77956821499
-
Partial ablation of adult Drosophila insulin producing neurons modulates glucose homeostasis and extends life span without insulin resistance
-
Haselton A, Sharmin E, Schrader J, Sah M, Poon P, et al. (2010) Partial ablation of adult Drosophila insulin producing neurons modulates glucose homeostasis and extends life span without insulin resistance. Cell Cycle 9: 3063-3071.
-
(2010)
Cell Cycle
, vol.9
, pp. 3063-3071
-
-
Haselton, A.1
Sharmin, E.2
Schrader, J.3
Sah, M.4
Poon, P.5
-
14
-
-
73349104451
-
Deletion of Drosophila insulin-like peptides causes growth defects and metabolic abnormalities
-
Zhang H, Liu J, Li CR, Momen B, Kohanski RA, et al. (2009) Deletion of Drosophila insulin-like peptides causes growth defects and metabolic abnormalities. Proceedings of the National Academy of Sciences 106: 19617-19622.
-
(2009)
Proceedings of the National Academy of Sciences
, vol.106
, pp. 19617-19622
-
-
Zhang, H.1
Liu, J.2
Li, C.R.3
Momen, B.4
Kohanski, R.A.5
-
15
-
-
77649195357
-
Molecular Evolution and Functional Characterization of Drosophila Insulin-Like Peptides
-
Grönke S, Clarke D-F, Broughton S, Andrews TD, Partridge L, (2010) Molecular Evolution and Functional Characterization of Drosophila Insulin-Like Peptides. PLoS Genet 6: e1000857.
-
(2010)
PLoS Genet
, vol.6
-
-
Grönke, S.1
Clarke, D.-F.2
Broughton, S.3
Andrews, T.D.4
Partridge, L.5
-
16
-
-
43149111605
-
Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling
-
Lee K-S, Kwon OY, Lee JH, Kwon K, Min K-J, et al. (2008) Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat Cell Biol 10: 468-475.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 468-475
-
-
Lee, K.-S.1
Kwon, O.Y.2
Lee, J.H.3
Kwon, K.4
Min, K.-J.5
-
17
-
-
83155172619
-
Regulation of insulin producing cells in the adult Drosophila brain via the tachykinin peptide receptor DTKR
-
Birse RT, Söderberg JAE, Luo J, Winther ÅME, Nässel DR, (2011) Regulation of insulin producing cells in the adult Drosophila brain via the tachykinin peptide receptor DTKR. The Journal of Experimental Biology 214: 4201-4208.
-
(2011)
The Journal of Experimental Biology
, vol.214
, pp. 4201-4208
-
-
Birse, R.T.1
Söderberg, J.A.E.2
Luo, J.3
Winther, Å.M.E.4
Nässel, D.R.5
-
18
-
-
78651233673
-
Insulin Signaling, Lifespan and Stress Resistance Are Modulated by Metabotropic GABA Receptors on Insulin Producing Cells in the Brain of Drosophila
-
Enell LE, Kapan N, Söderberg JAE, Kahsai L, Nässel DR, (2010) Insulin Signaling, Lifespan and Stress Resistance Are Modulated by Metabotropic GABA Receptors on Insulin Producing Cells in the Brain of Drosophila. PLoS One 5: e15780.
-
(2010)
PLoS One
, vol.5
-
-
Enell, L.E.1
Kapan, N.2
Söderberg, J.A.E.3
Kahsai, L.4
Nässel, D.R.5
-
19
-
-
47549108079
-
A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size
-
Kaplan DD, Zimmermann G, Suyama K, Meyer T, Scott MP, (2008) A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size. Genes Dev 22: 1877-1893.
-
(2008)
Genes Dev
, vol.22
, pp. 1877-1893
-
-
Kaplan, D.D.1
Zimmermann, G.2
Suyama, K.3
Meyer, T.4
Scott, M.P.5
-
20
-
-
84856211184
-
Insulin producing cells in the brain of adult Drosophila are regulated by the serotonin 5-HT1A receptor
-
Luo J, Becnel J, Nichols C, Nässel D, (2012) Insulin producing cells in the brain of adult Drosophila are regulated by the serotonin 5-HT1A receptor. Cellular and Molecular Life Sciences 69: 471-484.
-
(2012)
Cellular and Molecular Life Sciences
, vol.69
, pp. 471-484
-
-
Luo, J.1
Becnel, J.2
Nichols, C.3
Nässel, D.4
-
21
-
-
78649640325
-
Blocking O-Linked GlcNAc Cycling in Drosophila Insulin producing Cells Perturbs Glucose-Insulin Homeostasis
-
Sekine O, Love DC, Rubenstein DS, Hanover JA, (2010) Blocking O-Linked GlcNAc Cycling in Drosophila Insulin producing Cells Perturbs Glucose-Insulin Homeostasis. Journal of Biological Chemistry 285: 38684-38691.
-
(2010)
Journal of Biological Chemistry
, vol.285
, pp. 38684-38691
-
-
Sekine, O.1
Love, D.C.2
Rubenstein, D.S.3
Hanover, J.A.4
-
22
-
-
78650217627
-
Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe
-
Varghese J, Lim SF, Cohen SM, (2010) Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe. Genes Dev 24: 2748-2753.
-
(2010)
Genes Dev
, vol.24
, pp. 2748-2753
-
-
Varghese, J.1
Lim, S.F.2
Cohen, S.M.3
-
23
-
-
84869097636
-
Identified peptidergic neurons in the Drosophila brain regulate insulin producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin
-
Kapan N, Lushchak O, Luo J, Nässel D, (2012) Identified peptidergic neurons in the Drosophila brain regulate insulin producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cellular and Molecular Life Sciences 69: 4051-4066.
-
(2012)
Cellular and Molecular Life Sciences
, vol.69
, pp. 4051-4066
-
-
Kapan, N.1
Lushchak, O.2
Luo, J.3
Nässel, D.4
-
24
-
-
84866978180
-
Drosophila Cytokine Unpaired 2 Regulates Physiological Homeostasis by Remotely Controlling Insulin Secretion
-
Rajan A, Perrimon N, (2012) Drosophila Cytokine Unpaired 2 Regulates Physiological Homeostasis by Remotely Controlling Insulin Secretion. Cell 151: 123-137.
-
(2012)
Cell
, vol.151
, pp. 123-137
-
-
Rajan, A.1
Perrimon, N.2
-
25
-
-
69149110896
-
Remote control of insulin secretion by fat cells in Drosophila
-
Geminard C, Rulifson EJ, Leopold P, (2009) Remote control of insulin secretion by fat cells in Drosophila. Cell Metab 10: 199-207.
-
(2009)
Cell Metab
, vol.10
, pp. 199-207
-
-
Geminard, C.1
Rulifson, E.J.2
Leopold, P.3
-
26
-
-
56649121807
-
Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs
-
Broughton S, Alic N, Slack C, Bass T, Ikeya T, et al. (2008) Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PLoS One 3: e3721.
-
(2008)
PLoS One
, vol.3
-
-
Broughton, S.1
Alic, N.2
Slack, C.3
Bass, T.4
Ikeya, T.5
-
27
-
-
84860448541
-
High Sugar-Induced Insulin Resistance in Drosophila Relies on the Lipocalin Neural Lazarillo
-
Pasco MY, Léopold P, (2012) High Sugar-Induced Insulin Resistance in Drosophila Relies on the Lipocalin Neural Lazarillo. PLoS One 7: e36583.
-
(2012)
PLoS One
, vol.7
-
-
Pasco, M.Y.1
Léopold, P.2
-
28
-
-
78049425280
-
High-Fat-Diet-Induced Obesity and Heart Dysfunction Are Regulated by the TOR Pathway in Drosophila
-
Birse RT, Choi J, Reardon K, Rodriguez J, Graham S, et al. (2010) High-Fat-Diet-Induced Obesity and Heart Dysfunction Are Regulated by the TOR Pathway in Drosophila. Cell Metab 12: 533-544.
-
(2010)
Cell Metab
, vol.12
, pp. 533-544
-
-
Birse, R.T.1
Choi, J.2
Reardon, K.3
Rodriguez, J.4
Graham, S.5
-
29
-
-
10944268216
-
Drosophila short neuropeptide F regulates food intake and body size
-
Lee KS, You KH, Choo JK, Han YM, Yu K, (2004) Drosophila short neuropeptide F regulates food intake and body size. J Biol Chem 279: 50781-50789.
-
(2004)
J Biol Chem
, vol.279
, pp. 50781-50789
-
-
Lee, K.S.1
You, K.H.2
Choo, J.K.3
Han, Y.M.4
Yu, K.5
-
30
-
-
81455136679
-
A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila
-
Palanker Musselman L, Fink JL, Narzinski K, Ramachandran PV, Sukumar Hathiramani S, et al. (2011) A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Disease Models & Mechanisms 4: 842-849.
-
(2011)
Disease Models & Mechanisms
, vol.4
, pp. 842-849
-
-
Palanker Musselman, L.1
Fink, J.L.2
Narzinski, K.3
Ramachandran, P.V.4
Sukumar Hathiramani, S.5
-
31
-
-
79551644778
-
Structural and functional similarities between osmotin from Nicotiana tabacum seeds and human adiponectin
-
Miele M, Costantini S, Colonna G, (2011) Structural and functional similarities between osmotin from Nicotiana tabacum seeds and human adiponectin. PLoS One 6: e16690.
-
(2011)
PLoS One
, vol.6
-
-
Miele, M.1
Costantini, S.2
Colonna, G.3
-
32
-
-
19944430433
-
Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor
-
Narasimhan ML, Coca MA, Jin J, Yamauchi T, Ito Y, et al. (2005) Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 17: 171-180.
-
(2005)
Mol Cell
, vol.17
, pp. 171-180
-
-
Narasimhan, M.L.1
Coca, M.A.2
Jin, J.3
Yamauchi, T.4
Ito, Y.5
-
33
-
-
79959336949
-
The adiponectin receptor homologs in C. elegans promote energy utilization and homeostasis
-
Svensson E, Olsen L, Morck C, Brackmann C, Enejder A, et al. (2011) The adiponectin receptor homologs in C. elegans promote energy utilization and homeostasis. PLoS One 6: e21343.
-
(2011)
PLoS One
, vol.6
-
-
Svensson, E.1
Olsen, L.2
Morck, C.3
Brackmann, C.4
Enejder, A.5
-
34
-
-
44949193815
-
Adiponectin and adiponectin receptor genes are coexpressed during zebrafish embryogenesis and regulated by food deprivation
-
Nishio S-I, Gibert Y, Bernard L, Brunet F, Triqueneaux G, et al. (2008) Adiponectin and adiponectin receptor genes are coexpressed during zebrafish embryogenesis and regulated by food deprivation. Developmental Dynamics 237: 1682-1690.
-
(2008)
Developmental Dynamics
, vol.237
, pp. 1682-1690
-
-
Nishio, S.-I.1
Gibert, Y.2
Bernard, L.3
Brunet, F.4
Triqueneaux, G.5
-
35
-
-
81155137747
-
Effects of leptin and adiponectin on pancreatic β-cell function
-
Lee Y-h, Magkos F, Mantzoros CS, Kang ES, (2011) Effects of leptin and adiponectin on pancreatic β-cell function. Metabolism 60: 1664-1672.
-
(2011)
Metabolism
, vol.60
, pp. 1664-1672
-
-
Lee, Y.-h.1
Magkos, F.2
Mantzoros, C.S.3
Kang, E.S.4
-
36
-
-
77953642134
-
Increased uncoupling protein (UCP) activity in Drosophila insulin producing neurons attenuates insulin signaling and extends lifespan
-
Fridell YW, Hoh M, Kreneisz O, Hosier S, Chang C, et al. (2009) Increased uncoupling protein (UCP) activity in Drosophila insulin producing neurons attenuates insulin signaling and extends lifespan. Aging (Albany NY) 1: 699-713.
-
(2009)
Aging (Albany NY)
, vol.1
, pp. 699-713
-
-
Fridell, Y.W.1
Hoh, M.2
Kreneisz, O.3
Hosier, S.4
Chang, C.5
-
37
-
-
0037031147
-
Nutrient-Dependent Expression of Insulin-like Peptides from Neuroendocrine Cells in the CNS Contributes to Growth Regulation in Drosophila
-
Ikeya T, Galic M, Belawat P, Nairz K, Hafen E, (2002) Nutrient-Dependent Expression of Insulin-like Peptides from Neuroendocrine Cells in the CNS Contributes to Growth Regulation in Drosophila. Current Biology 12: 1293-1300.
-
(2002)
Current Biology
, vol.12
, pp. 1293-1300
-
-
Ikeya, T.1
Galic, M.2
Belawat, P.3
Nairz, K.4
Hafen, E.5
-
38
-
-
84856405632
-
Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling
-
Rideout EJ, Marshall L, Grewal SS, (2012) Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling. Proc Natl Acad Sci U S A 109: 1139-1144.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 1139-1144
-
-
Rideout, E.J.1
Marshall, L.2
Grewal, S.S.3
-
39
-
-
0141733277
-
A Nutrient Sensor Mechanism Controls Drosophila Growth
-
Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, et al. (2003) A Nutrient Sensor Mechanism Controls Drosophila Growth. Cell 114: 739-749.
-
(2003)
Cell
, vol.114
, pp. 739-749
-
-
Colombani, J.1
Raisin, S.2
Pantalacci, S.3
Radimerski, T.4
Montagne, J.5
-
40
-
-
79960217416
-
Drosophila as a Model for Interorgan Communication: Lessons from Studies on Energy Homeostasis
-
Rajan A, Perrimon N, (2011) Drosophila as a Model for Interorgan Communication: Lessons from Studies on Energy Homeostasis. Developmental Cell 21: 29-31.
-
(2011)
Developmental Cell
, vol.21
, pp. 29-31
-
-
Rajan, A.1
Perrimon, N.2
|