메뉴 건너뛰기




Volumn 12, Issue 9, 2014, Pages 1087-1098

Epigenetic regulation and heart failure

Author keywords

DNA methylation; epigenetic; heart failure; histone modification; metabolic; mitochondria

Indexed keywords

CARDIOMYOPATHY; DIABETIC CARDIOMYOPATHY; DNA METHYLATION; DNA MODIFICATION; DNA SEQUENCE; DNA TRANSCRIPTION; EPIGENETICS; GENOMICS; HEART FAILURE; HISTONE ACETYLATION; HISTONE DEMETHYLATION; HISTONE METHYLATION; HISTONE MODIFICATION; HOMEOSTASIS; HUMAN; NON INSULIN DEPENDENT DIABETES MELLITUS; NONHUMAN; PATHOGENESIS; REVIEW; ACETYLATION; ANIMAL; GENETIC EPIGENESIS; GENETICS; METABOLISM; PATHOPHYSIOLOGY;

EID: 84906775466     PISSN: 14779072     EISSN: 17448344     Source Type: Journal    
DOI: 10.1586/14779072.2014.942285     Document Type: Review
Times cited : (8)

References (119)
  • 1
    • 84875987216 scopus 로고    scopus 로고
    • Heart failure
    • Braunwald E. Heart failure. JCHF 2013; 1(1):1-20
    • (2013) JCHF , vol.1 , Issue.1 , pp. 1-20
    • Braunwald, E.1
  • 2
    • 0037058826 scopus 로고    scopus 로고
    • Lifetime risk for developing congestive heart failure: The Framingham Heart Study
    • Lloyd-Jones DM, Larson MG, Leip EP, et al. Lifetime risk for developing congestive heart failure: The Framingham Heart Study. Circulation 2002;106(24):3068-72
    • (2002) Circulation , vol.106 , Issue.24 , pp. 3068-3072
    • Lloyd-Jones, D.M.1    Larson, M.G.2    Leip, E.P.3
  • 3
    • 84855353573 scopus 로고    scopus 로고
    • Heart disease and stroke statistics-2012 update: A report from the American Heart Association
    • Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics-2012 update: A report from the American Heart Association. Circulation 2012;125(1): E2-e220
    • (2012) Circulation , vol.125 , Issue.1
    • Roger, V.L.1    Go, A.S.2    Lloyd-Jones, D.M.3
  • 4
    • 0021211669 scopus 로고
    • The neurohumoral axis in congestive heart failure
    • Francis GS, Goldsmith SR, Levine TB, et al. The neurohumoral axis in congestive heart failure. Ann Intern Med 1984;101(3): 370-7
    • (1984) Ann Intern Med , vol.101 , Issue.3 , pp. 370-377
    • Francis, G.S.1    Goldsmith, S.R.2    Levine, T.B.3
  • 5
    • 0041408234 scopus 로고    scopus 로고
    • Effects of candesartan. Patients with chronic heart failure and preserved left-ventricular ejection fraction: The CHARM-Preserved Trial
    • Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan. patients with chronic heart failure and preserved left-ventricular ejection fraction: The CHARM-Preserved Trial. Lancet 2003;362(9386):777-81
    • (2003) Lancet , vol.362 , Issue.9386 , pp. 777-781
    • Yusuf, S.1    Pfeffer, M.A.2    Swedberg, K.3
  • 6
    • 57349142933 scopus 로고    scopus 로고
    • Irbesartan in patients with heart failure and preserved ejection fraction
    • Massie BM, Carson PE, McMurray JJ, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med 2008;359(23):2456-67
    • (2008) N Engl J Med , vol.359 , Issue.23 , pp. 2456-2467
    • Massie, B.M.1    Carson, P.E.2    McMurray, J.J.3
  • 7
    • 84858662288 scopus 로고    scopus 로고
    • Commentary: The epigenotype' by C.H. Waddington
    • Gilbert SF. Commentary: 'The epigenotype' by C.H. Waddington. Int J Epidemiol 2012;41(1):20-3
    • (2012) Int J Epidemiol , vol.41 , Issue.1 , pp. 20-23
    • Gilbert, S.F.1
  • 8
    • 78049404487 scopus 로고    scopus 로고
    • Epigenetics What is epigenetics?
    • Riddihough G, Zahn LM. Epigenetics. What is epigenetics?. Introduction. Science 2010;330(6004):611
    • (2010) Introduction. Science , vol.330 , Issue.6004 , pp. 611
    • Riddihough, G.1    Zahn, L.M.2
  • 10
    • 84863621527 scopus 로고    scopus 로고
    • Cancer epigenetics: From mechanism to therapy
    • Dawson MA, Kouzarides T. Cancer epigenetics: From mechanism to therapy. Cell 2012;150(1):12-27
    • (2012) Cell , vol.150 , Issue.1 , pp. 12-27
    • Dawson, M.A.1    Kouzarides, T.2
  • 11
    • 33847047461 scopus 로고    scopus 로고
    • Epigenetics: A landscape takes shape
    • Goldberg AD, Allis CD, Bernstein E. Epigenetics: A landscape takes shape. Cell 2007;128(4):635-8
    • (2007) Cell , vol.128 , Issue.4 , pp. 635-638
    • Goldberg, A.D.1    Allis, C.D.2    Bernstein, E.3
  • 12
    • 84864700183 scopus 로고    scopus 로고
    • Epigenetic mechanisms in neurological disease
    • Jakovcevski M, Akbarian S. Epigenetic mechanisms in neurological disease. Nat Med 2012;18(8):1194-204
    • (2012) Nat Med , vol.18 , Issue.8 , pp. 1194-1204
    • Jakovcevski, M.1    Akbarian, S.2
  • 13
  • 14
    • 84863453769 scopus 로고    scopus 로고
    • SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
    • Barber MF, Michishita-Kioi E, Xi Y, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 2012;487(7405):114-18
    • (2012) Nature , vol.487 , Issue.7405 , pp. 114-118
    • Barber, M.F.1    Michishita-Kioi, E.2    Xi, Y.3
  • 15
    • 82955207588 scopus 로고    scopus 로고
    • Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation
    • Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 2011; 25(23):2436-52
    • (2011) Genes Dev , vol.25 , Issue.23 , pp. 2436-2452
    • Wu, H.1    Zhang, Y.2
  • 16
    • 80052942443 scopus 로고    scopus 로고
    • Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification
    • Tan M, Luo H, Lee S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 2011;146(6):1016-28
    • (2011) Cell , vol.146 , Issue.6 , pp. 1016-1028
    • Tan, M.1    Luo, H.2    Lee, S.3
  • 17
    • 34249299791 scopus 로고    scopus 로고
    • The complex language of chromatin regulation during transcription
    • Berger SL. The complex language of chromatin regulation during transcription. Nature 2007;447(7143):407-12
    • (2007) Nature , vol.447 , Issue.7143 , pp. 407-412
    • Berger, S.L.1
  • 18
    • 33845968873 scopus 로고    scopus 로고
    • Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions
    • Govind CK, Zhang F, Qiu H, et al. Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions. Mol Cell 2007;25(1):31-42
    • (2007) Mol Cell , vol.25 , Issue.1 , pp. 31-42
    • Govind, C.K.1    Zhang, F.2    Qiu, H.3
  • 19
    • 0034707037 scopus 로고    scopus 로고
    • Global histone acetylation and deacetylation in yeast
    • Vogelauer M, Wu J, Suka N, Grunstein M. Global histone acetylation and deacetylation in yeast. Nature 2000;408(6811):495-8
    • (2000) Nature , vol.408 , Issue.6811 , pp. 495-498
    • Vogelauer, M.1    Wu, J.2    Suka, N.3    Grunstein, M.4
  • 20
    • 84880864749 scopus 로고    scopus 로고
    • Histone modifications for human epigenome analysis
    • Kimura H. Histone modifications for human epigenome analysis. J Human Genet 2013;58(7):439-45
    • (2013) J Human Genet , vol.58 , Issue.7 , pp. 439-445
    • Kimura, H.1
  • 21
    • 39749145198 scopus 로고    scopus 로고
    • Dynamic regulation of nucleosome positioning in the human genome
    • Schones DE, Cui K, Cuddapah S, et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 2008;132(5):887-98
    • (2008) Cell , vol.132 , Issue.5 , pp. 887-898
    • Schones, D.E.1    Cui, K.2    Cuddapah, S.3
  • 22
    • 0034597816 scopus 로고    scopus 로고
    • Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation
    • McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 2000;408(6808):106-11
    • (2000) Nature , vol.408 , Issue.6808 , pp. 106-111
    • McKinsey, T.A.1    Zhang, C.L.2    Lu, J.3    Olson, E.N.4
  • 23
    • 52049099175 scopus 로고    scopus 로고
    • Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300
    • Wei JQ, Shehadeh LA, Mitrani JM, et al. Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 2008;118(9):934-46
    • (2008) Circulation , vol.118 , Issue.9 , pp. 934-946
    • Wei, J.Q.1    Shehadeh, L.A.2    Mitrani, J.M.3
  • 24
    • 0037162697 scopus 로고    scopus 로고
    • Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy
    • Zhang CL, McKinsey TA, Chang S, et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 2002;110(4):479-88
    • (2002) Cell , vol.110 , Issue.4 , pp. 479-488
    • Zhang, C.L.1    McKinsey, T.A.2    Chang, S.3
  • 25
    • 79952775153 scopus 로고    scopus 로고
    • Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy
    • Cao DJ, Wang ZV, Battiprolu PK, et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci USA 2011;108(10):4123-8
    • (2011) Proc Natl Acad Sci USA , vol.108 , Issue.10 , pp. 4123-4128
    • Cao, D.J.1    Wang, Z.V.2    Battiprolu, P.K.3
  • 26
    • 40549117477 scopus 로고    scopus 로고
    • Curcumin prevents and reverses murine cardiac hypertrophy
    • Li HL, Liu C, De Couto G, et al. Curcumin prevents and reverses murine cardiac hypertrophy. J Clin Invest 2008; 118(3):879-93
    • (2008) J Clin Invest , vol.118 , Issue.3 , pp. 879-893
    • Li, H.L.1    Liu, C.2    De Couto, G.3
  • 27
    • 17644445419 scopus 로고    scopus 로고
    • Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300
    • Yao TP, Oh SP, Fuchs M, et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 1998; 93(3):361-72
    • (1998) Cell , vol.93 , Issue.3 , pp. 361-372
    • Yao, T.P.1    Oh, S.P.2    Fuchs, M.3
  • 28
    • 0037470133 scopus 로고    scopus 로고
    • The transcriptional co-Activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity
    • Gusterson RJ, Jazrawi E, Adcock IM, Latchman DS. The transcriptional co-Activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J Biol Chem 2003;278(9):6838-47
    • (2003) J Biol Chem , vol.278 , Issue.9 , pp. 6838-6847
    • Gusterson, R.J.1    Jazrawi, E.2    Adcock, I.M.3    Latchman, D.S.4
  • 29
    • 33644849325 scopus 로고    scopus 로고
    • Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo
    • Miyamoto S, Kawamura T, Morimoto T, et al. Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation 2006;113(5):679-90
    • (2006) Circulation , vol.113 , Issue.5 , pp. 679-690
    • Miyamoto, S.1    Kawamura, T.2    Morimoto, T.3
  • 30
    • 33644837326 scopus 로고    scopus 로고
    • Control of cardiac growth by histone acetylation/deacetylation
    • Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res 2006;98(1):15-24
    • (2006) Circ Res , vol.98 , Issue.1 , pp. 15-24
    • Backs, J.1    Olson, E.N.2
  • 31
    • 26244436281 scopus 로고    scopus 로고
    • Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
    • Michishita E, Park JY, Burneskis JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005; 16(10):4623-35
    • (2005) Mol Biol Cell , vol.16 , Issue.10 , pp. 4623-4635
    • Michishita, E.1    Park, J.Y.2    Burneskis, J.M.3
  • 32
    • 31044445366 scopus 로고    scopus 로고
    • Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
    • Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006;124(2):315-29
    • (2006) Cell , vol.124 , Issue.2 , pp. 315-329
    • Mostoslavsky, R.1    Chua, K.F.2    Lombard, D.B.3
  • 33
    • 34447511648 scopus 로고    scopus 로고
    • Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility
    • Montgomery RL, Davis CA, Potthoff MJ, et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 2007;21(14):1790-802
    • (2007) Genes Dev , vol.21 , Issue.14 , pp. 1790-1802
    • Montgomery, R.L.1    Davis, C.A.2    Potthoff, M.J.3
  • 34
    • 33847695362 scopus 로고    scopus 로고
    • Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity
    • Trivedi CM, Luo Y, Yin Z, et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 2007;13(3):324-31
    • (2007) Nat Med , vol.13 , Issue.3 , pp. 324-331
    • Trivedi, C.M.1    Luo, Y.2    Yin, Z.3
  • 36
    • 4544358659 scopus 로고    scopus 로고
    • Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development
    • Chang S, McKinsey TA, Zhang CL, et al. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 2004; 24(19):8467-76
    • (2004) Mol Cell Biol , vol.24 , Issue.19 , pp. 8467-8476
    • Chang, S.1    McKinsey, T.A.2    Zhang, C.L.3
  • 37
    • 33746228132 scopus 로고    scopus 로고
    • Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10
    • Chang S, Young BD, Li S, et al. Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 2006;126(2):321-34
    • (2006) Cell , vol.126 , Issue.2 , pp. 321-334
    • Chang, S.1    Young, B.D.2    Li, S.3
  • 38
    • 8344261349 scopus 로고    scopus 로고
    • Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis
    • Vega RB, Matsuda K, Oh J, et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 2004;119(4):555-66
    • (2004) Cell , vol.119 , Issue.4 , pp. 555-566
    • Vega, R.B.1    Matsuda, K.2    Oh, J.3
  • 39
    • 58149090925 scopus 로고    scopus 로고
    • SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
    • Kawahara TL, Michishita E, Adler AS, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009;136(1):62-74
    • (2009) Cell , vol.136 , Issue.1 , pp. 62-74
    • Kawahara, T.L.1    Michishita, E.2    Adler, A.S.3
  • 40
    • 78650724968 scopus 로고    scopus 로고
    • Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity
    • Schwer B, Schumacher B, Lombard DB, et al. Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proc Natl Acad Sci USA 2010; 107(50):21790-4
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.50 , pp. 21790-21794
    • Schwer, B.1    Schumacher, B.2    Lombard, D.B.3
  • 41
    • 84869201195 scopus 로고    scopus 로고
    • The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun
    • Sundaresan NR, Vasudevan P, Zhong L, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 2012;18(11):1643-50
    • (2012) Nat Med , vol.18 , Issue.11 , pp. 1643-1650
    • Sundaresan, N.R.1    Vasudevan, P.2    Zhong, L.3
  • 42
    • 41449083867 scopus 로고    scopus 로고
    • Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
    • Vakhrusheva O, Smolka C, Gajawada P, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 2008;102(6):703-10
    • (2008) Circ Res , vol.102 , Issue.6 , pp. 703-710
    • Vakhrusheva, O.1    Smolka, C.2    Gajawada, P.3
  • 43
    • 79952266729 scopus 로고    scopus 로고
    • Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
    • Hafner AV, Dai J, Gomes AP, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging 2010;2(12):914-23
    • (2010) Aging , vol.2 , Issue.12 , pp. 914-923
    • Hafner, A.V.1    Dai, J.2    Gomes, A.P.3
  • 44
    • 0041530268 scopus 로고    scopus 로고
    • Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors
    • Antos CL, McKinsey TA, Dreitz M, et al. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem 2003;278(31): 28930-7
    • (2003) J Biol Chem , vol.278 , Issue.31 , pp. 28930-28937
    • Antos, C.L.1    McKinsey, T.A.2    Dreitz, M.3
  • 45
    • 84878991183 scopus 로고    scopus 로고
    • Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy
    • Ferguson BS, Harrison BC, Jeong MY, et al. Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy. Proc Natl Acad Sci USA 2013;110(24):9806-11
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.24 , pp. 9806-9811
    • Ferguson, B.S.1    Harrison, B.C.2    Jeong, M.Y.3
  • 46
    • 33644861578 scopus 로고    scopus 로고
    • Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding
    • Kee HJ, Sohn IS, Nam KI, et al. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 2006;113(1):51-9
    • (2006) Circulation , vol.113 , Issue.1 , pp. 51-59
    • Kee, H.J.1    Sohn, I.S.2    Nam, K.I.3
  • 47
    • 33745173485 scopus 로고    scopus 로고
    • Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy
    • Kong Y, Tannous P, Lu G, et al. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 2006;113(22): 2579-88
    • (2006) Circulation , vol.113 , Issue.22 , pp. 2579-2588
    • Kong, Y.1    Tannous, P.2    Lu, G.3
  • 48
    • 84890255267 scopus 로고    scopus 로고
    • Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy
    • Papait R, Cattaneo P, Kunderfranco P, et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci USA 2013;110(50):20164-9
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.50 , pp. 20164-20169
    • Papait, R.1    Cattaneo, P.2    Kunderfranco, P.3
  • 49
    • 14844307097 scopus 로고    scopus 로고
    • Epigenetic regulation by histone methylation and histone variants
    • Cheung P, Lau P. Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol 2005;19(3):563-73
    • (2005) Mol Endocrinol , vol.19 , Issue.3 , pp. 563-573
    • Cheung, P.1    Lau, P.2
  • 50
    • 0034632829 scopus 로고    scopus 로고
    • Regulation of chromatin structure by site-specific histone H3 methyltransferases
    • Rea S, Eisenhaber F, O'Carroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000;406(6796):593-9
    • (2000) Nature , vol.406 , Issue.6796 , pp. 593-599
    • Rea, S.1    Eisenhaber, F.2    O'Carroll, D.3
  • 51
    • 84859893371 scopus 로고    scopus 로고
    • Histone methylation: A dynamic mark in health disease and inheritance
    • Greer EL, Shi Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat Rev Genet 2012;13(5): 343-57
    • (2012) Nat Rev Genet , vol.13 , Issue.5 , pp. 343-357
    • Greer, E.L.1    Shi, Y.2
  • 52
    • 11144332565 scopus 로고    scopus 로고
    • Histone demethylation mediated by the nuclear amine oxidase homolog LSD1
    • Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119(7):941-53
    • (2004) Cell , vol.119 , Issue.7 , pp. 941-953
    • Shi, Y.1    Lan, F.2    Matson, C.3
  • 53
    • 84860215207 scopus 로고    scopus 로고
    • Molecular mechanisms and potential functions of histone demethylases
    • Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 2012;13(5):297-311
    • (2012) Nat Rev Mol Cell Biol , vol.13 , Issue.5 , pp. 297-311
    • Kooistra, S.M.1    Helin, K.2
  • 54
    • 1042300237 scopus 로고    scopus 로고
    • Histone methylation: Recognizing the methyl mark
    • Bannister AJ, Kouzarides T. Histone methylation: Recognizing the methyl mark. Methods Enzymol 2004;376:269-88
    • (2004) Methods Enzymol , vol.376 , pp. 269-288
    • Bannister, A.J.1    Kouzarides, T.2
  • 55
    • 34848911602 scopus 로고    scopus 로고
    • Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4
    • Vermeulen M, Mulder KW, Denissov S, et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 2007;131(1):58-69
    • (2007) Cell , vol.131 , Issue.1 , pp. 58-69
    • Vermeulen, M.1    Mulder, K.W.2    Denissov, S.3
  • 56
    • 41549115095 scopus 로고    scopus 로고
    • The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription
    • LeRoy G, Rickards B, Flint SJ. The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol cell 2008;30(1):51-60
    • (2008) Mol cell , vol.30 , Issue.1 , pp. 51-60
    • LeRoy, G.1    Rickards, B.2    Flint, S.J.3
  • 57
    • 79955084061 scopus 로고    scopus 로고
    • Heterochromatin establishment in the context of genome-wide epigenetic reprogramming
    • Probst AV, Almouzni G. Heterochromatin establishment in the context of genome-wide epigenetic reprogramming. Trends Genet 2011;27(5):177-85
    • (2011) Trends Genet , vol.27 , Issue.5 , pp. 177-185
    • Probst, A.V.1    Almouzni, G.2
  • 58
    • 77954244593 scopus 로고    scopus 로고
    • Human POGZ modulates dissociation of HP1a from mitotic chromosome arms through Aurora B activation
    • Nozawa RS, Nagao K, Masuda HT, et al. Human POGZ modulates dissociation of HP1a from mitotic chromosome arms through Aurora B activation. Nat Cell Biol 2010;12(7):719-27
    • (2010) Nat Cell Biol , vol.12 , Issue.7 , pp. 719-727
    • Nozawa, R.S.1    Nagao, K.2    Masuda, H.T.3
  • 59
    • 58049145427 scopus 로고    scopus 로고
    • Genome-wide histone methylation profile for heart failure
    • Kaneda R, Takada S, Yamashita Y, et al. Genome-wide histone methylation profile for heart failure. Genes Cells 2009;14(1): 69-77
    • (2009) Genes Cells , vol.14 , Issue.1 , pp. 69-77
    • Kaneda, R.1    Takada, S.2    Yamashita, Y.3
  • 60
    • 79951903268 scopus 로고    scopus 로고
    • Genome-wide DNA methylation in human heart failure
    • Movassagh M, Vujic A, Foo R. Genome-wide DNA methylation in human heart failure. Epigenomics 2011;3(1):103-9
    • (2011) Epigenomics , vol.3 , Issue.1 , pp. 103-109
    • Movassagh, M.1    Vujic, A.2    Foo, R.3
  • 61
    • 82355180985 scopus 로고    scopus 로고
    • Distinct epigenomic features in end-stage failing human hearts
    • Movassagh M, Choy MK, Knowles DA, et al. Distinct epigenomic features in end-stage failing human hearts. Circulation 2011;124(22):2411-22
    • (2011) Circulation , vol.124 , Issue.22 , pp. 2411-2422
    • Movassagh, M.1    Choy, M.K.2    Knowles, D.A.3
  • 62
    • 33845877732 scopus 로고    scopus 로고
    • Defining an epigenetic code
    • Turner BM. Defining an epigenetic code. Nat Cell Biol 2007;9(1):2-6
    • (2007) Nat Cell Biol , vol.9 , Issue.1 , pp. 2-6
    • Turner, B.M.1
  • 63
    • 33846019277 scopus 로고    scopus 로고
    • Methylation of lysine 4 on histone H3: Intricacy of writing and reading a single epigenetic mark
    • Ruthenburg AJ, Allis CD, Wysocka J. Methylation of lysine 4 on histone H3: Intricacy of writing and reading a single epigenetic mark. Mol Cell 2007;25(1):15-30
    • (2007) Mol Cell , vol.25 , Issue.1 , pp. 15-30
    • Ruthenburg, A.J.1    Allis, C.D.2    Wysocka, J.3
  • 64
    • 79959980701 scopus 로고    scopus 로고
    • Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes
    • Stein AB, Jones TA, Herron TJ, et al. Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest 2011;121(7):2641-50
    • (2011) J Clin Invest , vol.121 , Issue.7 , pp. 2641-2650
    • Stein, A.B.1    Jones, T.A.2    Herron, T.J.3
  • 65
    • 18244408825 scopus 로고    scopus 로고
    • A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia
    • Kuo HC, Cheng CF, Clark RB, et al. A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia. Cell 2001;107(6):801-13
    • (2001) Cell , vol.107 , Issue.6 , pp. 801-813
    • Kuo, H.C.1    Cheng, C.F.2    Clark, R.B.3
  • 66
    • 33751569719 scopus 로고    scopus 로고
    • Functional modulation of the transient outward current Ito by KCNE beta-subunits and regional distribution in human non-failing and failing hearts
    • Radicke S, Cotella D, Graf EM, et al. Functional modulation of the transient outward current Ito by KCNE beta-subunits and regional distribution in human non-failing and failing hearts. Cardiovasc Res 2006;71(4):695-703
    • (2006) Cardiovasc Res , vol.71 , Issue.4 , pp. 695-703
    • Radicke, S.1    Cotella, D.2    Graf, E.M.3
  • 67
    • 84863083797 scopus 로고    scopus 로고
    • Distribution of histone3 lysine 4 trimethylation at T3-responsive loci in the heart during reversible changes in gene expression
    • Pandya K, Kohro T, Mimura I, et al. Distribution of histone3 lysine 4 trimethylation at T3-responsive loci in the heart during reversible changes in gene expression. Gene Expr 2012;15(4):183-98
    • (2012) Gene Expr , vol.15 , Issue.4 , pp. 183-198
    • Pandya, K.1    Kohro, T.2    Mimura, I.3
  • 68
    • 79957892087 scopus 로고    scopus 로고
    • The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice
    • Zhang QJ, Chen HZ, Wang L, et al. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest 2011;121(6):2447-56
    • (2011) J Clin Invest , vol.121 , Issue.6 , pp. 2447-2456
    • Zhang, Q.J.1    Chen, H.Z.2    Wang, L.3
  • 69
    • 33646798121 scopus 로고    scopus 로고
    • Myocardin induces cardiomyocyte hypertrophy
    • Xing W, Zhang TC, Cao D, et al. Myocardin induces cardiomyocyte hypertrophy. Circ Res 2006;98(8):1089-97
    • (2006) Circ Res , vol.98 , Issue.8 , pp. 1089-1097
    • Xing, W.1    Zhang, T.C.2    Cao, D.3
  • 70
    • 0037172665 scopus 로고    scopus 로고
    • Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain
    • Feng Q, Wang H, Ng HH, et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 2002;12(12):1052-8
    • (2002) Curr Biol , vol.12 , Issue.12 , pp. 1052-1058
    • Feng, Q.1    Wang, H.2    Ng, H.H.3
  • 71
    • 0037098044 scopus 로고    scopus 로고
    • Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association
    • Ng HH, Feng Q, Wang H, et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 2002;16(12): 1518-27
    • (2002) Genes Dev , vol.16 , Issue.12 , pp. 1518-1527
    • Ng, H.H.1    Feng, Q.2    Wang, H.3
  • 72
    • 34249026300 scopus 로고    scopus 로고
    • High-resolution profiling of histone methylations in the human genome
    • Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell 2007;129(4):823-37
    • (2007) Cell , vol.129 , Issue.4 , pp. 823-837
    • Barski, A.1    Cuddapah, S.2    Cui, K.3
  • 73
    • 2642570305 scopus 로고    scopus 로고
    • The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote
    • Schubeler D, MacAlpine DM, Scalzo D, et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 2004;18(11):1263-71
    • (2004) Genes Dev , vol.18 , Issue.11 , pp. 1263-1271
    • Schubeler, D.1    MacAlpine, D.M.2    Scalzo, D.3
  • 74
    • 42149146774 scopus 로고    scopus 로고
    • DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells
    • Steger DJ, Lefterova MI, Ying L, et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 2008;28(8): 2825-39
    • (2008) Mol Cell Biol , vol.28 , Issue.8 , pp. 2825-2839
    • Steger, D.J.1    Lefterova, M.I.2    Ying, L.3
  • 75
    • 52949107241 scopus 로고    scopus 로고
    • The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure
    • Jones B, Su H, Bhat A, et al. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 2008;4(9):e1000190
    • (2008) PLoS Genet , vol.4 , Issue.9
    • Jones, B.1    Su, H.2    Bhat, A.3
  • 76
    • 79551607266 scopus 로고    scopus 로고
    • DOT1L regulates dystrophin expression and is critical for cardiac function
    • Nguyen AT, Xiao B, Neppl RL, et al. DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev 2011;25(3):263-74
    • (2011) Genes Dev , vol.25 , Issue.3 , pp. 263-274
    • Nguyen, A.T.1    Xiao, B.2    Neppl, R.L.3
  • 77
    • 0035936792 scopus 로고    scopus 로고
    • The genetic basis for cardiomyopathy: From mutation identification to mechanistic paradigms
    • Seidman JG, Seidman C. The genetic basis for cardiomyopathy: From mutation identification to mechanistic paradigms. Cell 2001;104(4):557-67
    • (2001) Cell , vol.104 , Issue.4 , pp. 557-567
    • Seidman, J.G.1    Seidman, C.2
  • 78
    • 34249279527 scopus 로고    scopus 로고
    • Stability and flexibility of epigenetic gene regulation in mammalian development
    • Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007;447(7143): 425-32
    • (2007) Nature , vol.447 , Issue.7143 , pp. 425-432
    • Reik, W.1
  • 79
    • 70450217879 scopus 로고    scopus 로고
    • Human DNA methylomes at base resolution show widespread epigenomic differences
    • Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009;462(7271):315-22
    • (2009) Nature , vol.462 , Issue.7271 , pp. 315-322
    • Lister, R.1    Pelizzola, M.2    Dowen, R.H.3
  • 80
    • 84882884517 scopus 로고    scopus 로고
    • Charting a dynamic DNA methylation landscape of the human genome
    • Ziller MJ, Gu H, Muller F, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 2013; 500(7463):477-81
    • (2013) Nature , vol.500 , Issue.7463 , pp. 477-481
    • Ziller, M.J.1    Gu, H.2    Muller, F.3
  • 81
    • 84874194072 scopus 로고    scopus 로고
    • DNA methylation: Roles in mammalian development
    • Smith ZD, Meissner A. DNA methylation: Roles in mammalian development. Nat Rev Genet 2013;14(3):204-20
    • (2013) Nat Rev Genet , vol.14 , Issue.3 , pp. 204-220
    • Smith, Z.D.1    Meissner, A.2
  • 82
    • 59149084538 scopus 로고    scopus 로고
    • The human colon cancer methylome shows similar hypo-And hypermethylation at conserved tissue-specific CpG island shores
    • Irizarry RA, Ladd-Acosta C, Wen B, et al. The human colon cancer methylome shows similar hypo-And hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009;41(2):178-86
    • (2009) Nat Genet , vol.41 , Issue.2 , pp. 178-186
    • Irizarry, R.A.1    Ladd-Acosta, C.2    Wen, B.3
  • 83
    • 84892919442 scopus 로고    scopus 로고
    • Cancer epigenetics drug discovery and development: The challenge of hitting the mark
    • Campbell RM, Tummino PJ. Cancer epigenetics drug discovery and development: The challenge of hitting the mark. J Clin Invest 2014;124(3):1419
    • (2014) J Clin Invest , vol.124 , Issue.3 , pp. 1419
    • Campbell, R.M.1    Tummino, P.J.2
  • 84
    • 0036144048 scopus 로고    scopus 로고
    • DNA methylation patterns and epigenetic memory
    • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002;16(1): 6-21
    • (2002) Genes Dev , vol.16 , Issue.1 , pp. 6-21
    • Bird, A.1
  • 85
    • 84875129831 scopus 로고    scopus 로고
    • DNA methylation dynamics in health and disease
    • Bergman Y, Cedar H. DNA methylation dynamics in health and disease. Nat Struct Mol Biol 2013;20(3):274-81
    • (2013) Nat Struct Mol Biol , vol.20 , Issue.3 , pp. 274-281
    • Bergman, Y.1    Cedar, H.2
  • 86
    • 79956330964 scopus 로고    scopus 로고
    • CpG islands and the regulation of transcription
    • Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev 2011;25(10):1010-22
    • (2011) Genes Dev , vol.25 , Issue.10 , pp. 1010-1022
    • Deaton, A.M.1    Bird, A.2
  • 87
    • 0029001154 scopus 로고
    • Suppression of intestinal neoplasia by DNA hypomethylation
    • Laird PW, Jackson-Grusby L, Fazeli A, et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 1995;81(2): 197-205
    • (1995) Cell , vol.81 , Issue.2 , pp. 197-205
    • Laird, P.W.1    Jackson-Grusby, L.2    Fazeli, A.3
  • 88
    • 26444473234 scopus 로고    scopus 로고
    • Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis
    • Yamada Y, Jackson-Grusby L, Linhart H, et al. Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci USA 2005;102(38):13580-5
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.38 , pp. 13580-13585
    • Yamada, Y.1    Jackson-Grusby, L.2    Linhart, H.3
  • 89
    • 77649197044 scopus 로고    scopus 로고
    • Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure
    • Movassagh M, Choy MK, Goddard M, et al. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS One 2010;5(1):e8564
    • (2010) PLoS One , vol.5 , Issue.1
    • Movassagh, M.1    Choy, M.K.2    Goddard, M.3
  • 90
    • 84874746425 scopus 로고    scopus 로고
    • Alterations in cardiac DNA methylation in human dilated cardiomyopathy
    • Haas J, Frese KS, Park YJ, et al. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med 2013;5(3):413-29
    • (2013) EMBO Mol Med , vol.5 , Issue.3 , pp. 413-429
    • Haas, J.1    Frese, K.S.2    Park, Y.J.3
  • 91
    • 84866599586 scopus 로고    scopus 로고
    • Diabetic cardiomyopathy: Bench to bedside
    • Schilling JD, Mann DL. Diabetic cardiomyopathy: Bench to bedside. Heart Fail Clin 2012;8(4):619-31
    • (2012) Heart Fail Clin , vol.8 , Issue.4 , pp. 619-631
    • Schilling, J.D.1    Mann, D.L.2
  • 92
    • 84866605658 scopus 로고    scopus 로고
    • Diabetes mellitus and myocardial mitochondrial dysfunction: Bench to bedside
    • Konig A, Bode C, Bugger H. Diabetes mellitus and myocardial mitochondrial dysfunction: Bench to bedside. Heart Fail Clin 2012;8(4):551-61
    • (2012) Heart Fail Clin , vol.8 , Issue.4 , pp. 551-561
    • Konig, A.1    Bode, C.2    Bugger, H.3
  • 94
    • 84862008999 scopus 로고    scopus 로고
    • Lipid metabolism and toxicity in the heart
    • Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab 2012;15(6):805-12
    • (2012) Cell Metab , vol.15 , Issue.6 , pp. 805-812
    • Goldberg, I.J.1    Trent, C.M.2    Schulze, P.C.3
  • 95
    • 39749124232 scopus 로고    scopus 로고
    • What causes mitochondrial DNA deletions in human cells?
    • Krishnan KJ, Reeve AK, Samuels DC, et al What causes mitochondrial DNA deletions in human cells?. Nat Genet 2008;40(3): 275-9
    • (2008) Nat Genet , vol.40 , Issue.3 , pp. 275-279
    • Krishnan, K.J.1    Reeve, A.K.2    Samuels, D.C.3
  • 96
    • 84871762432 scopus 로고    scopus 로고
    • Mitochondrial dynamics in heart disease
    • Dorn GW 2nd. Mitochondrial dynamics in heart disease. Biochim Biophys Acta 2013; 1833(1):233-41
    • (2013) Biochim Biophys Acta , vol.1833 , Issue.1 , pp. 233-241
    • Dorn II, G.W.1
  • 97
    • 5444228319 scopus 로고    scopus 로고
    • Regulation of mitochondrial proliferation in the heart: Power-plant failure contributes to cardiac failure in hypertrophy
    • Goffart S, von Kleist-Retzow JC, Wiesner RJ. Regulation of mitochondrial proliferation in the heart: Power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc Res 2004;64(2): 198-207
    • (2004) Cardiovasc Res , vol.64 , Issue.2 , pp. 198-207
    • Goffart, S.1    Von Kleist-Retzow, J.C.2    Wiesner, R.J.3
  • 98
    • 79953186142 scopus 로고    scopus 로고
    • PGC-1 coactivators in the control of energy metabolism
    • Liu C, Lin JD. PGC-1 coactivators in the control of energy metabolism. Acta Biochim Biophys Sin (Shanghai) 2011;43(4):248-57
    • (2011) Acta Biochim Biophys Sin (Shanghai , vol.43 , Issue.4 , pp. 248-257
    • Liu, C.1    Lin, J.D.2
  • 99
    • 80555127460 scopus 로고    scopus 로고
    • TFAM forces mtDNA to make a U-Turn
    • Hallberg BM, Larsson NG. TFAM forces mtDNA to make a U-Turn. Nat Struct Mol Biol 2011;18(11):1179-81
    • (2011) Nat Struct Mol Biol , vol.18 , Issue.11 , pp. 1179-1181
    • Hallberg, B.M.1    Larsson, N.G.2
  • 100
    • 84873413349 scopus 로고    scopus 로고
    • Mitochondria as a therapeutic target in heart failure
    • Bayeva M, Gheorghiade M, Ardehali H. Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol 2013;61(6): 599-610
    • (2013) J Am Coll Cardiol , vol.61 , Issue.6 , pp. 599-610
    • Bayeva, M.1    Gheorghiade, M.2    Ardehali, H.3
  • 101
    • 0037477855 scopus 로고    scopus 로고
    • Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1
    • Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 2003;100(14):8466-71
    • (2003) Proc Natl Acad Sci USA , vol.100 , Issue.14 , pp. 8466-8471
    • Patti, M.E.1    Butte, A.J.2    Crunkhorn, S.3
  • 102
  • 103
    • 34347391646 scopus 로고    scopus 로고
    • Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone
    • Rong JX, Qiu Y, Hansen MK, et al. Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes 2007;56(7):1751-60
    • (2007) Diabetes , vol.56 , Issue.7 , pp. 1751-1760
    • Rong, J.X.1    Qiu, Y.2    Hansen, M.K.3
  • 104
    • 33847110733 scopus 로고    scopus 로고
    • Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-Activated receptor-Alpha/PGC-1alpha gene regulatory pathway
    • Duncan JG, Fong JL, Medeiros DM, et al. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator- Activated receptor-Alpha/PGC-1alpha gene regulatory pathway. Circulation 2007;115(7):909-17
    • (2007) Circulation , vol.115 , Issue.7 , pp. 909-917
    • Duncan, J.G.1    Fong, J.L.2    Medeiros, D.M.3
  • 105
    • 27444441492 scopus 로고    scopus 로고
    • Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity
    • Boudina S, Sena S, O'Neill BT, et al. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 2005;112(17):2686-95
    • (2005) Circulation , vol.112 , Issue.17 , pp. 2686-2695
    • Boudina, S.1    Sena, S.2    O'Neill, B.T.3
  • 106
    • 77956572071 scopus 로고    scopus 로고
    • Mitochondria in the diabetic heart
    • Bugger H, Abel ED. Mitochondria in the diabetic heart. Cardiovasc Res 2010;88(2): 229-40
    • (2010) Cardiovasc Res , vol.88 , Issue.2 , pp. 229-240
    • Bugger, H.1    Abel, E.D.2
  • 107
    • 84889099226 scopus 로고    scopus 로고
    • Genetic and epigenetic control of metabolic health
    • Schwenk RW, Vogel H, Schurmann A. Genetic and epigenetic control of metabolic health. Mol Metab 2013;2(4):337-47
    • (2013) Mol Metab , vol.2 , Issue.4 , pp. 337-347
    • Schwenk, R.W.1    Vogel, H.2    Schurmann, A.3
  • 108
    • 84876784115 scopus 로고    scopus 로고
    • Epigenetic flexibility in metabolic regulation: Disease cause and prevention?
    • Kirchner H, Osler ME, Krook A, Zierath JR. Epigenetic flexibility in metabolic regulation: Disease cause and prevention?. Trends Cell Biol 2013;23(5): 203-9
    • (2013) Trends Cell Biol , vol.23 , Issue.5 , pp. 203-209
    • Kirchner, H.1    Osler, M.E.2    Krook, A.3    Zierath, J.R.4
  • 109
    • 77958596171 scopus 로고    scopus 로고
    • Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring
    • Ng SF, Lin RC, Laybutt DR, et al. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 2010;467(7318):963-6
    • (2010) Nature , vol.467 , Issue.7318 , pp. 963-966
    • Ng, S.F.1    Lin, R.C.2    Laybutt, D.R.3
  • 110
    • 33645028038 scopus 로고    scopus 로고
    • Exercise and skeletal muscle glucose transporter 4 expression: Molecular mechanisms
    • McGee SL, Hargreaves M. Exercise and skeletal muscle glucose transporter 4 expression: Molecular mechanisms. Clin Exp Pharmacol Physiol 2006;33(4):395-9
    • (2006) Clin Exp Pharmacol Physiol , vol.33 , Issue.4 , pp. 395-399
    • McGee, S.L.1    Hargreaves, M.2
  • 111
    • 64749111074 scopus 로고    scopus 로고
    • Role of Jhdm2a in regulating metabolic gene expression and obesity resistance
    • Tateishi K, Okada Y, Kallin EM, Zhang Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 2009;458(7239):757-61
    • (2009) Nature , vol.458 , Issue.7239 , pp. 757-761
    • Tateishi, K.1    Okada, Y.2    Kallin, E.M.3    Zhang, Y.4
  • 112
    • 84858055958 scopus 로고    scopus 로고
    • Acute exercise remodels promoter methylation in human skeletal muscle
    • Barres R, Yan J, Egan B, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 2012; 15(3):405-11
    • (2012) Cell Metab , vol.15 , Issue.3 , pp. 405-411
    • Barres, R.1    Yan, J.2    Egan, B.3
  • 113
    • 69149087790 scopus 로고    scopus 로고
    • Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density
    • Barres R, Osler ME, Yan J, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 2009;10(3):189-98
    • (2009) Cell Metab , vol.10 , Issue.3 , pp. 189-198
    • Barres, R.1    Osler, M.E.2    Yan, J.3
  • 114
    • 77953860649 scopus 로고    scopus 로고
    • The role of epigenetics in the pathology of diabetic complications
    • Villeneuve LM, Natarajan R. The role of epigenetics in the pathology of diabetic complications. Am J Physiol Renal Physiol 2010;299(1):F14-25
    • (2010) Am J Physiol Renal Physiol , vol.299 , Issue.1
    • Villeneuve, L.M.1    Natarajan, R.2
  • 115
    • 84872166360 scopus 로고    scopus 로고
    • Suppression of oxidative stress by beta-hydroxybutyrate an endogenous histone deacetylase inhibitor
    • Shimazu T, Hirschey MD, Newman J, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013; 339(6116):211-14
    • (2013) Science , vol.339 , Issue.6116 , pp. 211-214
    • Shimazu, T.1    Hirschey, M.D.2    Newman, J.3
  • 116
    • 84872160110 scopus 로고    scopus 로고
    • Influence of threonine metabolism on S-Adenosylmethionine and histone methylation
    • Shyh-Chang N, Locasale JW, Lyssiotis CA, et al. Influence of threonine metabolism on S-Adenosylmethionine and histone methylation. Science 2013;339(6116):222-6
    • (2013) Science , vol.339 , Issue.6116 , pp. 222-226
    • Shyh-Chang, N.1    Locasale, J.W.2    Lyssiotis, C.A.3
  • 117
    • 84869106554 scopus 로고    scopus 로고
    • Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue
    • Galmozzi A, Mitro N, Ferrari A, et al. Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 2013; 62(3):732-42
    • (2013) Diabetes , vol.62 , Issue.3 , pp. 732-742
    • Galmozzi, A.1    Mitro, N.2    Ferrari, A.3
  • 118
    • 84891944202 scopus 로고    scopus 로고
    • Interplay of chromatin modifications and non-coding RNAs in the heart
    • Mathiyalagan P, Keating ST, Du XJ, El-Osta A. Interplay of chromatin modifications and non-coding RNAs in the heart. Epigenetics 2013;9(1):101-12
    • (2013) Epigenetics , vol.9 , Issue.1 , pp. 101-112
    • Mathiyalagan, P.1    Keating, S.T.2    Du, X.J.3    El-Osta, A.4
  • 119
    • 84887987876 scopus 로고    scopus 로고
    • Roles of microRNAs in pressure overload-And ischemia-related myocardial remodeling
    • Zhou S, Liu Y, Prater K, et al. Roles of microRNAs in pressure overload-And ischemia-related myocardial remodeling. Life Sci 2013;93(23):855-62.
    • (2013) Life Sci , vol.93 , Issue.23 , pp. 855-862
    • Zhou, S.1    Liu, Y.2    Prater, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.