-
2
-
-
78650825626
-
Silicon nanowires for photovoltaic solar energy conversion
-
10.1002/adma.v23.2
-
Peng K and Lee S 2011 Silicon nanowires for photovoltaic solar energy conversion Adv. Mater. 23 198-215
-
(2011)
Adv. Mater.
, vol.23
, pp. 198-215
-
-
Peng, K.1
Lee, S.2
-
3
-
-
84867096231
-
Silicon nanowires for photovoltaic applications: The progress and challenge
-
10.1016/j.nanoen.2012.07.023
-
Song T, Lee S and Sun B 2012 Silicon nanowires for photovoltaic applications: the progress and challenge Nano Energy 1 654-73
-
(2012)
Nano Energy
, vol.1
, pp. 654-673
-
-
Song, T.1
Lee, S.2
Sun, B.3
-
4
-
-
36849027567
-
Silicon nanowire solar cells
-
10.1063/1.2821113 233117
-
Tsakalakos L, Balch J, Fronheiser J, Korevaar B, Sulima O and Rand J 2007 Silicon nanowire solar cells Appl. Phys. Lett. 91 233117
-
(2007)
Appl. Phys. Lett.
, vol.91
-
-
Tsakalakos, L.1
Balch, J.2
Fronheiser, J.3
Korevaar, B.4
Sulima, O.5
Rand, J.6
-
5
-
-
33748634908
-
Nanowire-based one-dimensional electronics
-
10.1016/S1369-7021(06)71651-0 1369-7021
-
Thelander C et al 2006 Nanowire-based one-dimensional electronics Mater. Today 9 28-35
-
(2006)
Mater. Today
, vol.9
, pp. 28-35
-
-
Thelander, C.1
-
6
-
-
84862281022
-
Fabrication of flexible and vertical silicon nanowire electronics
-
10.1021/nl301659m
-
Weisse J M, Lee C H, Kim D R and Zheng X 2012 Fabrication of flexible and vertical silicon nanowire electronics Nano Lett. 12 3339-43
-
(2012)
Nano Lett.
, vol.12
, pp. 3339-3343
-
-
Weisse, J.M.1
Lee, C.H.2
Kim, D.R.3
Zheng, X.4
-
7
-
-
34248186650
-
Silicon nanowire arrays for label-free detection of DNA
-
10.1021/ac061808q
-
Gao Z et al 2007 Silicon nanowire arrays for label-free detection of DNA Anal. Chem. 79 3291-7
-
(2007)
Anal. Chem.
, vol.79
, pp. 3291-3297
-
-
Gao, Z.1
-
8
-
-
66949181440
-
Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes
-
10.1021/nn900086c
-
Ishikawa F N et al 2009 Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes ACS Nano 3 1219-24
-
(2009)
ACS Nano
, vol.3
, pp. 1219-1224
-
-
Ishikawa, F.N.1
-
9
-
-
84881450968
-
Silicon nanowires for li-based battery anodes: A review
-
10.1039/c3ta11714f A
-
Zamfir M R, Nguyen H T, Moyen E, Lee Y H and Pribat D 2013 Silicon nanowires for li-based battery anodes: a review J. Mater. Chem. A 1 9566-86
-
(2013)
J. Mater. Chem.
, vol.1
, pp. 9566-9586
-
-
Zamfir, M.R.1
Nguyen, H.T.2
Moyen, E.3
Lee, Y.H.4
Pribat, D.5
-
10
-
-
84860370113
-
Hierarchical micro/nano porous silicon li-ion battery anodes
-
10.1039/c2cc31476b
-
Zhao Y, Liu X, Li H, Zhai T and Zhou H 2012 Hierarchical micro/nano porous silicon li-ion battery anodes Chem. Commun. 48 5079-81
-
(2012)
Chem. Commun.
, vol.48
, pp. 5079-5081
-
-
Zhao, Y.1
Liu, X.2
Li, H.3
Zhai, T.4
Zhou, H.5
-
11
-
-
84866554188
-
Roll up nanowire battery from silicon chips
-
10.1073/pnas.1208638109 0027-8424
-
Vlad A et al 2012 Roll up nanowire battery from silicon chips Proc. Natl. Acad. Sci. USA 109 15168-73
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 15168-15173
-
-
Vlad, A.1
-
12
-
-
84899917568
-
Nanomaterials for electrochemical energy storage
-
10.1007/s11467-013-0408-7 2095-0462
-
Liu N, Li W, Pasta M and Cui Y 2014 Nanomaterials for electrochemical energy storage Front. Phys. 9 323-50
-
(2014)
Front. Phys.
, vol.9
, Issue.3
, pp. 323-350
-
-
Liu, N.1
Li, W.2
Pasta, M.3
Cui, Y.4
-
13
-
-
84862142352
-
Highly ordered vertical silicon nanowire array composite thin films for thermoelectric devices
-
10.1007/s11664-012-1904-1 0361-5235
-
Curtin B M, Fang E W and Bowers J E 2012 Highly ordered vertical silicon nanowire array composite thin films for thermoelectric devices J. Electron. Mater. 41 1-8
-
(2012)
J. Electron. Mater.
, vol.41
, Issue.5
, pp. 887-888
-
-
Curtin, B.M.1
Fang, E.W.2
Bowers, J.E.3
-
14
-
-
78650811764
-
Metal-assisted chemical etching of silicon: A review
-
10.1002/adma.v23.2
-
Huang Z, Geyer N, Werner P, De Boor J and Gösele U 2011 Metal-assisted chemical etching of silicon: a review Adv. Mater. 23 285-308
-
(2011)
Adv. Mater.
, vol.23
, pp. 285-308
-
-
Huang, Z.1
Geyer, N.2
Werner, P.3
De Boor, J.4
Gösele, U.5
-
15
-
-
84862822310
-
Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics
-
10.1016/j.cossms.2011.11.002 1359-0286
-
Li X 2012 Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltaics Curr. Opin. Solid State Mater. Sci. 16 71-81
-
(2012)
Curr. Opin. Solid State Mater. Sci.
, vol.16
, pp. 71-81
-
-
Li, X.1
-
16
-
-
84877776152
-
Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching
-
10.1088/0957-4484/24/22/225305 0957-4484 225305
-
Azeredo B et al 2013 Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching Nanotechnology 24 225305
-
(2013)
Nanotechnology
, vol.24
, Issue.22
-
-
Azeredo, B.1
-
17
-
-
84863696516
-
Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires
-
10.1088/0957-4484/23/30/305304 0957-4484 305304
-
Balasundaram K et al 2012 Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires Nanotechnology 23 305304
-
(2012)
Nanotechnology
, vol.23
, Issue.30
-
-
Balasundaram, K.1
-
18
-
-
72849152558
-
Single crystalline mesoporous silicon nanowires
-
10.1021/nl9017594
-
Hochbaum A I, Gargas D, Hwang Y J and Yang P 2009 Single crystalline mesoporous silicon nanowires Nano Lett. 9 3550-4
-
(2009)
Nano Lett.
, vol.9
, pp. 3550-3554
-
-
Hochbaum, A.I.1
Gargas, D.2
Hwang, Y.J.3
Yang, P.4
-
19
-
-
80053602599
-
Porous silicon nanowires
-
10.1039/c1nr10668f
-
Qu Y, Zhou H and Duan X 2011 Porous silicon nanowires Nanoscale 3 4060-8
-
(2011)
Nanoscale
, vol.3
, pp. 4060-4068
-
-
Qu, Y.1
Zhou, H.2
Duan, X.3
-
20
-
-
83555163728
-
Electrical contacts to one-and two-dimensional nanomaterials
-
10.1038/nnano.2011.196
-
Léonard F and Talin A A 2011 Electrical contacts to one-and two-dimensional nanomaterials Nat. Nanotechnol. 6 773-83
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 773-783
-
-
Léonard, F.1
Talin, A.A.2
-
21
-
-
84863522532
-
Modeling and theoretical efficiency of a silicon nanowire based thermoelectric junction with area enhancement
-
10.1063/1.4728189 124319
-
Seong M, Sadhu J, Ma J, Ghossoub M and Sinha S 2012 Modeling and theoretical efficiency of a silicon nanowire based thermoelectric junction with area enhancement J. Appl. Phys. 111 124319
-
(2012)
J. Appl. Phys.
, vol.111
-
-
Seong, M.1
Sadhu, J.2
Ma, J.3
Ghossoub, M.4
Sinha, S.5
-
22
-
-
84886880758
-
Contact resistivity and suppression of fermi level pinning in side-contacted germanium nanowires
-
10.1063/1.4821996 153101
-
Koleśnik-Gray M M, Lutz T, Collins G, Biswas S, Holmes J D and Krstić V 2013 Contact resistivity and suppression of fermi level pinning in side-contacted germanium nanowires Appl. Phys. Lett. 103 153101
-
(2013)
Appl. Phys. Lett.
, vol.103
-
-
Koleśnik-Gray, M.M.1
Lutz, T.2
Collins, G.3
Biswas, S.4
Holmes, J.D.5
Krstić, V.6
-
23
-
-
77955916251
-
Contact mechanisms and design principles for (Schottky and Ohmic) metal contacts to semiconductor nanowires
-
10.1063/1.3446845 034311
-
Mohammad S N 2010 Contact mechanisms and design principles for (Schottky and Ohmic) metal contacts to semiconductor nanowires J. Appl. Phys. 108 034311
-
(2010)
J. Appl. Phys.
, vol.108
-
-
Mohammad, S.N.1
-
24
-
-
49749123511
-
Nickel and nickel silicide schottky barrier contacts to n-type silicon nanowires
-
10.1116/1.2939256 0734-211X B
-
Woodruff S et al 2008 Nickel and nickel silicide schottky barrier contacts to n-type silicon nanowires J. Vac. Sci. Technol. B 26 1592-6
-
(2008)
J. Vac. Sci. Technol.
, vol.26
, pp. 1592-1596
-
-
Woodruff, S.1
-
25
-
-
84871189399
-
Thermal conductivity of silicon nanowire arrays with controlled roughness
-
10.1063/1.4767456 114306
-
Feser J P et al 2012 Thermal conductivity of silicon nanowire arrays with controlled roughness J. Appl. Phys. 112 114306
-
(2012)
J. Appl. Phys.
, vol.112
-
-
Feser, J.P.1
-
26
-
-
37649016574
-
Controlled nanoscale doping of semiconductors via molecular monolayers
-
10.1038/nmat2058
-
Ho J C, Yerushalmi R, Jacobson Z A, Fan Z, Alley R L and Javey A 2007 Controlled nanoscale doping of semiconductors via molecular monolayers Nat. Mater. 7 62-7
-
(2007)
Nat. Mater.
, vol.7
, pp. 62-67
-
-
Ho, J.C.1
Yerushalmi, R.2
Jacobson, Z.A.3
Fan, Z.4
Alley, R.L.5
Javey, A.6
-
27
-
-
84870437793
-
Contact doping of silicon wafers and nanostructures with phosphine oxide monolayers
-
10.1021/nn304199w
-
Hazut O et al 2012 Contact doping of silicon wafers and nanostructures with phosphine oxide monolayers ACS Nano 6 10311-8
-
(2012)
ACS Nano
, vol.6
, pp. 10311-10318
-
-
Hazut, O.1
-
28
-
-
9944261461
-
Fabrication of conducting si nanowire arrays
-
10.1063/1.1801155
-
Beckman R, Johnston-Halperin E, Melosh N, Luo Y, Green J and Heath J 2004 Fabrication of conducting si nanowire arrays J. Appl. Phys. 96 5921-3
-
(2004)
J. Appl. Phys.
, vol.96
, pp. 5921-5923
-
-
Beckman, R.1
Johnston-Halperin, E.2
Melosh, N.3
Luo, Y.4
Green, J.5
Heath, J.6
-
29
-
-
77958564528
-
Solid-state diffusion as an efficient doping method for silicon nanowires and nanowire field effect transistors
-
10.1088/0957-4484/21/43/435202 0957-4484 435202
-
Moselund K et al 2010 Solid-state diffusion as an efficient doping method for silicon nanowires and nanowire field effect transistors Nanotechnology 21 435202
-
(2010)
Nanotechnology
, vol.21
, Issue.43
-
-
Moselund, K.1
-
31
-
-
84864186982
-
Boron distribution in the core of si nanowire grown by chemical vapor deposition
-
10.1063/1.3693039 094909
-
Chen W et al 2012 Boron distribution in the core of si nanowire grown by chemical vapor deposition J. Appl. Phys. 111 094909
-
(2012)
J. Appl. Phys.
, vol.111
-
-
Chen, W.1
-
32
-
-
75649120744
-
Thermodynamics, and electrical properties of silicon nanowires
-
10.1021/cr900141g
-
Schmidt V, Wittemann J and Growth G U 2010 thermodynamics, and electrical properties of silicon nanowires Chem. Rev. 110 361
-
(2010)
Chem. Rev.
, vol.110
, pp. 361
-
-
Schmidt, V.1
Wittemann, J.2
Growth, G.U.3
-
33
-
-
61649122400
-
Doping limits of grown in situ doped silicon nanowires using phosphine
-
10.1021/nl802739v
-
Schmid H, Bjork M T, Knoch J, Karg S, Riel H and Riess W 2008 Doping limits of grown in situ doped silicon nanowires using phosphine Nano Lett. 9 173-1177
-
(2008)
Nano Lett.
, vol.9
, pp. 173-1177
-
-
Schmid, H.1
Bjork, M.T.2
Knoch, J.3
Karg, S.4
Riel, H.5
Riess, W.6
-
34
-
-
28144438699
-
Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires
-
10.1021/nl051442h
-
Wang Y et al 2005 Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires Nano Lett. 5 2139-43
-
(2005)
Nano Lett.
, vol.5
, pp. 2139-2143
-
-
Wang, Y.1
-
35
-
-
59849104225
-
Donor deactivation in silicon nanostructures
-
10.1038/nnano.2008.400
-
Björk M T, Schmid H, Knoch J, Riel H and Riess W 2009 Donor deactivation in silicon nanostructures Nat. Nanotechnol. 4 103-7
-
(2009)
Nat. Nanotechnol.
, vol.4
, pp. 103-107
-
-
Björk, M.T.1
Schmid, H.2
Knoch, J.3
Riel, H.4
Riess, W.5
-
36
-
-
79959498931
-
Kinetics of nickel silicide growth in silicon nanowires: From linear to square root growth
-
10.1063/1.3574650 094303
-
Yaish Y, Katsman A, Cohen G and Beregovsky M 2011 Kinetics of nickel silicide growth in silicon nanowires: from linear to square root growth J. Appl. Phys. 109 094303
-
(2011)
J. Appl. Phys.
, vol.109
-
-
Yaish, Y.1
Katsman, A.2
Cohen, G.3
Beregovsky, M.4
-
38
-
-
34948889945
-
Quantitative analysis of current-voltage characteristics of semiconducting nanowires: Decoupling of contact effects
-
10.1002/(ISSN)1616-3028
-
Zhang Z et al 2007 Quantitative analysis of current-voltage characteristics of semiconducting nanowires: decoupling of contact effects Adv. Funct. Mater. 17 2478-89
-
(2007)
Adv. Funct. Mater.
, vol.17
, pp. 2478-2489
-
-
Zhang, Z.1
|