-
1
-
-
84865120266
-
Opportunities and challenges for a sustainable energy future
-
S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 2012, 488(7411): 294.
-
(2012)
Nature
, vol.488
, Issue.7411
, pp. 294
-
-
Chu, S.1
Majumdar, A.2
-
2
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414(6861): 359.
-
(2001)
Nature
, vol.414
, Issue.6861
, pp. 359
-
-
Tarascon, J.M.1
Armand, M.2
-
3
-
-
38949102073
-
Building better batteries
-
M. Armand and J. M. Tarascon, Building better batteries, Nature, 2008, 451(7179): 652.
-
(2008)
Nature
, vol.451
, Issue.7179
, pp. 652
-
-
Armand, M.1
Tarascon, J.M.2
-
4
-
-
79955898882
-
Electrochemical energy storage for green grid
-
Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Electrochemical energy storage for green grid, Chem. Rev., 2011, 111(5): 3577.
-
(2011)
Chem. Rev.
, vol.111
, Issue.5
, pp. 3577
-
-
Yang, Z.1
Zhang, J.2
Kintner-Meyer, M.C.W.3
Lu, X.4
Choi, D.5
Lemmon, J.P.6
Liu, J.7
-
5
-
-
81555207951
-
Electrical energy storage for the grid: A battery of choices
-
B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 2011, 334(6058): 928.
-
(2011)
Science
, vol.334
, Issue.6058
, pp. 928
-
-
Dunn, B.1
Kamath, H.2
Tarascon, J.M.3
-
6
-
-
17644387736
-
Nanostructured materials for advanced energy conversion and storage devices
-
A. S. Aric'o, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 2005, 4(5): 366.
-
(2005)
Nat. Mater.
, vol.4
, Issue.5
, pp. 366
-
-
Aric'o, A.S.1
Bruce, P.2
Scrosati, B.3
Tarascon, J.M.4
Schalkwijk, W.5
-
7
-
-
56249109824
-
Nanostructured materials for electrochemical energy conversion and storage devices
-
Y. G. Guo, J. S. Hu, and L. J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices, Adv. Mater., 2008, 20(15): 2878.
-
(2008)
Adv. Mater.
, vol.20
, Issue.15
, pp. 2878
-
-
Guo, Y.G.1
Hu, J.S.2
Wan, L.J.3
-
8
-
-
77956345139
-
A review of the electrochemical performance of alloy anodes for lithium-ion batteries
-
W. J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 2011, 196(1): 13.
-
(2011)
J. Power Sources
, vol.196
, Issue.1
, pp. 13
-
-
Zhang, W.J.1
-
9
-
-
83655183076
-
2 and Li-S batteries with high energy storage
-
2 and Li-S batteries with high energy storage, Nat. Mater., 2012, 11(1): 19.
-
(2012)
Nat. Mater.
, vol.11
, Issue.1
, pp. 19
-
-
Bruce, P.G.1
Freunberger, S.A.2
Hardwick, L.J.3
Tarascon, J.M.4
-
10
-
-
0347186519
-
Electrochemical alloying of lithium in organic electrolytes
-
A. N. Dey, Electrochemical alloying of lithium in organic electrolytes, J. Electrochem. Soc., 1971, 118(10): 1547.
-
(1971)
J. Electrochem. Soc.
, vol.118
, Issue.10
, pp. 1547
-
-
Dey, A.N.1
-
11
-
-
0019554556
-
All-solid lithium electrodes with mixedconductor matrix
-
B. A. Boukamp, All-solid lithium electrodes with mixedconductor matrix, J. Electrochem. Soc., 1981, 128(4): 725.
-
(1981)
J. Electrochem. Soc.
, vol.128
, Issue.4
, pp. 725
-
-
Boukamp, B.A.1
-
12
-
-
2942642549
-
In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon
-
T. D. Hatchard and J. R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 2004, 151(6): A838.
-
(2004)
J. Electrochem. Soc.
, vol.151
, Issue.6
-
-
Hatchard, T.D.1
Dahn, J.R.2
-
13
-
-
2342577530
-
Structural changes in silicon anodes during lithium insertion/extraction
-
M. N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid-State Lett., 2004, 7(5): A93.
-
(2004)
Electrochem. Solid-State Lett.
, vol.7
, Issue.5
-
-
Obrovac, M.N.1
Christensen, L.2
-
14
-
-
84884907143
-
25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries
-
M. T. McDowell, S. W. Lee, W. D. Nix, and Y. Cui, 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv. Mater., 2013, 25(36): 4966.
-
(2013)
Adv. Mater.
, vol.25
, Issue.36
, pp. 4966
-
-
McDowell, M.T.1
Lee, S.W.2
Nix, W.D.3
Cui, Y.4
-
15
-
-
0035469714
-
Colossal reversible volume changes in lithium alloys
-
L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, and J. R. Dahn, Colossal reversible volume changes in lithium alloys, Electrochem. Solid-State Lett., 2001, 4(9): A137.
-
(2001)
Electrochem. Solid-State Lett.
, vol.4
, Issue.9
-
-
Beaulieu, L.Y.1
Eberman, K.W.2
Turner, R.L.3
Krause, L.J.4
Dahn, J.R.5
-
16
-
-
84863229332
-
Fracture of crystalline silicon nanopillars during electrochemical lithium insertion
-
S. W. Lee, M. T. McDowell, L. A. Berla, W. D. Nix, and Y. Cui, Fracture of crystalline silicon nanopillars during electrochemical lithium insertion, Proc. Natl. Acad. Sci. USA, 2012, 109(11): 4080.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, Issue.11
, pp. 4080
-
-
Lee, S.W.1
McDowell, M.T.2
Berla, L.A.3
Nix, W.D.4
Cui, Y.5
-
17
-
-
8344245433
-
Failure modes of silicon powder negative electrode in lithium secondary batteries
-
J. H. Ryu, J. W. Kim, Y. E. Sung, and S. M. Oh, Failure modes of silicon powder negative electrode in lithium secondary batteries, Electrochem. Solid-State Lett., 2004, 7(10): A306.
-
(2004)
Electrochem. Solid-State Lett.
, vol.7
, Issue.10
-
-
Ryu, J.H.1
Kim, J.W.2
Sung, Y.E.3
Oh, S.M.4
-
18
-
-
0031222006
-
Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?
-
J. O. Besenhard, J. Yang, and M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources, 1997, 68(1): 87.
-
(1997)
J. Power Sources
, vol.68
, Issue.1
, pp. 87
-
-
Besenhard, J.O.1
Yang, J.2
Winter, M.3
-
19
-
-
84862805736
-
Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control
-
H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol., 2012, 7(5): 310.
-
(2012)
Nat. Nanotechnol.
, vol.7
, Issue.5
, pp. 310
-
-
Wu, H.1
Chan, G.2
Choi, J.W.3
Ryu, I.4
Yao, Y.5
McDowell, M.T.6
Lee, S.W.7
Jackson, A.8
Yang, Y.9
Hu, L.10
Cui, Y.11
-
20
-
-
37849002504
-
High-performance lithium battery anodes using silicon nanowires
-
C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 2008, 3(1): 31.
-
(2008)
Nat. Nanotechnol.
, vol.3
, Issue.1
, pp. 31
-
-
Chan, C.K.1
Peng, H.2
Liu, G.3
McIlwrath, K.4
Zhang, X.F.5
Huggins, R.A.6
Cui, Y.7
-
21
-
-
84867672114
-
Designing nanostructured Si anodes for high energy lithium ion batteries
-
H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 2012, 7(5): 414.
-
(2012)
Nano Today
, vol.7
, Issue.5
, pp. 414
-
-
Wu, H.1
Cui, Y.2
-
22
-
-
77950175313
-
Solution-grown silicon nanowires for lithium-ion battery anodes
-
C. K. Chan, R. N. Patel, M. J. O'Connell, B. A. Korgel, and Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes, ACS Nano, 2010, 4(3): 1443.
-
(2010)
ACS Nano
, vol.4
, Issue.3
, pp. 1443
-
-
Chan, C.K.1
Patel, R.N.2
O'Connell, M.J.3
Korgel, B.A.4
Cui, Y.5
-
23
-
-
38749129063
-
High capacity Li ion battery anodes using Ge nanowires
-
C. K. Chan, X. F. Zhang, and Y. Cui, High capacity Li ion battery anodes using Ge nanowires, Nano Lett., 2008, 8(1): 307.
-
(2008)
Nano Lett.
, vol.8
, Issue.1
, pp. 307
-
-
Chan, C.K.1
Zhang, X.F.2
Cui, Y.3
-
24
-
-
65249186693
-
Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries
-
P. Meduri, C. Pendyala, V. Kumar, G. U. Sumanasekera, and M. K. Sunkara, Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries, Nano Lett., 2009, 9(2): 612.
-
(2009)
Nano Lett.
, vol.9
, Issue.2
, pp. 612
-
-
Meduri, P.1
Pendyala, C.2
Kumar, V.3
Sumanasekera, G.U.4
Sunkara, M.K.5
-
25
-
-
62649108802
-
Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes
-
C. K. Chan, R. Ruffo, S. S. Hong, and Y. Cui, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes, J. Power Sources, 2009, 189(2): 1132.
-
(2009)
J. Power Sources
, vol.189
, Issue.2
, pp. 1132
-
-
Chan, C.K.1
Ruffo, R.2
Hong, S.S.3
Cui, Y.4
-
26
-
-
67649862246
-
Impedance analysis of silicon nanowire lithium ion battery anodes
-
R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, and Y. Cui, Impedance analysis of silicon nanowire lithium ion battery anodes, J. Phys. Chem. C, 2009, 113(26): 11390.
-
(2009)
J. Phys. Chem. C
, vol.113
, Issue.26
, pp. 11390
-
-
Ruffo, R.1
Hong, S.S.2
Chan, C.K.3
Huggins, R.A.4
Cui, Y.5
-
27
-
-
62349107104
-
Structural and electrochemical study of the reaction of lithium with silicon nanowires
-
C. K. Chan, R. Ruffo, S. S. Hong, R. A. Huggins, and Y. Cui, Structural and electrochemical study of the reaction of lithium with silicon nanowires, J. Power Sources, 2009, 189(1): 34.
-
(2009)
J. Power Sources
, vol.189
, Issue.1
, pp. 34
-
-
Chan, C.K.1
Ruffo, R.2
Hong, S.S.3
Huggins, R.A.4
Cui, Y.5
-
28
-
-
84862896128
-
In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes
-
S. Misra, N. Liu, J. Nelson, S. S. Hong, Y. Cui, and M. F. Toney, In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes, ACS Nano, 2012, 6(6): 5465.
-
(2012)
ACS Nano
, vol.6
, Issue.6
, pp. 5465
-
-
Misra, S.1
Liu, N.2
Nelson, J.3
Hong, S.S.4
Cui, Y.5
Toney, M.F.6
-
29
-
-
77951080098
-
Stepwise nanopore evolution in one-dimensional nanostructures
-
J. W. Choi, J. McDonough, S. Jeong, J. S. Yoo, C. K. Chan, and Y. Cui, Stepwise nanopore evolution in one-dimensional nanostructures, Nano Lett., 2010, 10(4): 1409.
-
(2010)
Nano Lett.
, vol.10
, Issue.4
, pp. 1409
-
-
Choi, J.W.1
McDonough, J.2
Jeong, S.3
Yoo, J.S.4
Chan, C.K.5
Cui, Y.6
-
30
-
-
70349961704
-
Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries
-
L. F. Cui, Y. Yang, C. M. Hsu, and Y. Cui, Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries, Nano Lett., 2009, 9(9): 3370.
-
(2009)
Nano Lett.
, vol.9
, Issue.9
, pp. 3370
-
-
Cui, L.F.1
Yang, Y.2
Hsu, C.M.3
Cui, Y.4
-
31
-
-
61649106325
-
Crystalline-amorphous coretshell silicon nanowires for high capacity and high current battery electrodes
-
L. F. Cui, R. Ruffo, C. K. Chan, H. Peng, and Y. Cui, Crystalline-amorphous coretshell silicon nanowires for high capacity and high current battery electrodes, Nano Lett., 2009, 9(1): 491.
-
(2009)
Nano Lett.
, vol.9
, Issue.1
, pp. 491
-
-
Cui, L.F.1
Ruffo, R.2
Chan, C.K.3
Peng, H.4
Cui, Y.5
-
32
-
-
77957309356
-
Virus-enabled silicon anode for lithium-ion batteries
-
X. Chen, K. Gerasopoulos, J. Guo, A. Brown, C. Wang, R. Ghodssi, and J. N. Culver, Virus-enabled silicon anode for lithium-ion batteries, ACS Nano, 2010, 4(9): 5366.
-
(2010)
ACS Nano
, vol.4
, Issue.9
, pp. 5366
-
-
Chen, X.1
Gerasopoulos, K.2
Guo, J.3
Brown, A.4
Wang, C.5
Ghodssi, R.6
Culver, J.N.7
-
33
-
-
77949451542
-
2 Heteronanostructures as high-capacity anode material for li ion batteries
-
2 Heteronanostructures as high-capacity anode material for li ion batteries, Nano Lett., 2010, 10(3): 860.
-
(2010)
Nano Lett.
, vol.10
, Issue.3
, pp. 860
-
-
Zhou, S.1
Liu, X.2
Wang, D.3
-
34
-
-
80054996081
-
Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries
-
Y. Yao, K. Huo, L. Hu, N. Liu, J. J. Cha, M. T. McDowell, P. K. Chu, and Y. Cui, Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries, ACS Nano, 2011, 5(10): 8346.
-
(2011)
ACS Nano
, vol.5
, Issue.10
, pp. 8346
-
-
Yao, Y.1
Huo, K.2
Hu, L.3
Liu, N.4
Cha, J.J.5
McDowell, M.T.6
Chu, P.K.7
Cui, Y.8
-
35
-
-
84862289269
-
Three-dimensional metal scaffold supported bicontinuous silicon battery anodes
-
H. Zhang and P. V. Braun, Three-dimensional metal scaffold supported bicontinuous silicon battery anodes, Nano Lett., 2012, 12(6): 2778.
-
(2012)
Nano Lett.
, vol.12
, Issue.6
, pp. 2778
-
-
Zhang, H.1
Braun, P.V.2
-
36
-
-
70349662178
-
Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes
-
R. Huang, X. Fan, W. Shen, and J. Zhu, Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes, Appl. Phys. Lett., 2009, 95(13): 133119.
-
(2009)
Appl. Phys. Lett.
, vol.95
, Issue.13
, pp. 133119
-
-
Huang, R.1
Fan, X.2
Shen, W.3
Zhu, J.4
-
37
-
-
77950349866
-
2@C nanocomposites as anode materials for Li-ion batteries
-
2@C nanocomposites as anode materials for Li-ion batteries, Chem. Commun., 2010, 46(15): 2590.
-
(2010)
Chem. Commun.
, vol.46
, Issue.15
, pp. 2590
-
-
Su, L.1
Zhou, Z.2
Ren, M.3
-
38
-
-
84866554188
-
Roll up nanowire battery from silicon chips
-
A. Vlad, A. L. M. Reddy, A. Ajayan, N. Singh, J. F. Gohy, S. Melinte, and P. M. Ajayan, Roll up nanowire battery from silicon chips, Proc. Natl. Acad. Sci. USA, 2012, 109(38): 15168.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, Issue.38
, pp. 15168
-
-
Vlad, A.1
Reddy, A.L.M.2
Ajayan, A.3
Singh, N.4
Gohy, J.F.5
Melinte, S.6
Ajayan, P.M.7
-
39
-
-
84885157580
-
Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance
-
A. Kohandehghan, P. Kalisvaart, K. Cui, M. Kupsta, E. Memarzadeh, and D. Mitlin, Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance, J. Mater. Chem. A, 2013, 1: 12850.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 12850
-
-
Kohandehghan, A.1
Kalisvaart, P.2
Cui, K.3
Kupsta, M.4
Memarzadeh, E.5
Mitlin, D.6
-
40
-
-
84863110396
-
Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings
-
Y. Yao, N. Liu, M. T. McDowell, M. Pasta, and Y. Cui, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings, Energy Environ. Sci., 2012, 5: 7927.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 7927
-
-
Yao, Y.1
Liu, N.2
McDowell, M.T.3
Pasta, M.4
Cui, Y.5
-
41
-
-
80053581128
-
Li ion battery materials with core-shell nanostructures
-
L. Su, Y. Jing, and Z. Zhou, Li ion battery materials with core-shell nanostructures, Nanoscale, 2011, 3(10): 3967.
-
(2011)
Nanoscale
, vol.3
, Issue.10
, pp. 3967
-
-
Su, L.1
Jing, Y.2
Zhou, Z.3
-
42
-
-
79953204976
-
Inorganic glue enabling high performance of silicon particles as lithium ion battery anode
-
L. F. Cui, L. Hu, H. Wu, J. W. Choi, and Y. Cui, Inorganic glue enabling high performance of silicon particles as lithium ion battery anode, J. Electrochem. Soc., 2011, 158(5): A592.
-
(2011)
J. Electrochem. Soc.
, vol.158
, Issue.5
-
-
Cui, L.F.1
Hu, L.2
Wu, H.3
Choi, J.W.4
Cui, Y.5
-
43
-
-
78649894110
-
Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes
-
L. Hu, H. Wu, S. S. Hong, L. Cui, J. R. McDonough, S. Bohy, and Y. Cui, Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes, Chem. Commun., 2011, 47(1): 367.
-
(2011)
Chem. Commun.
, vol.47
, Issue.1
, pp. 367
-
-
Hu, L.1
Wu, H.2
Hong, S.S.3
Cui, L.4
McDonough, J.R.5
Bohy, S.6
Cui, Y.7
-
44
-
-
77950021498
-
High-performance lithium-ion anodes using a hierarchical bottom-up approach
-
A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 2010, 9(4): 353.
-
(2010)
Nat. Mater.
, vol.9
, Issue.4
, pp. 353
-
-
Magasinski, A.1
Dixon, P.2
Hertzberg, B.3
Kvit, A.4
Ayala, J.5
Yushin, G.6
-
45
-
-
84877257015
-
Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries
-
D. S. Jung, T. H. Hwang, S. B. Park, and J. W. Choi, Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries, Nano Lett., 2013, 13(5): 2092.
-
(2013)
Nano Lett.
, vol.13
, Issue.5
, pp. 2092
-
-
Jung, D.S.1
Hwang, T.H.2
Park, S.B.3
Choi, J.W.4
-
46
-
-
79151484378
-
Toward efficient binders for Li-ion battery Sibased anodes: Polyacrylic acid
-
A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, Toward efficient binders for Li-ion battery Sibased anodes: Polyacrylic acid, ACS Appl. Mater. Interfaces, 2010, 2(11): 3004.
-
(2010)
ACS Appl. Mater. Interfaces
, vol.2
, Issue.11
, pp. 3004
-
-
Magasinski, A.1
Zdyrko, B.2
Kovalenko, I.3
Hertzberg, B.4
Burtovyy, R.5
Huebner, C.F.6
Fuller, T.F.7
Luzinov, I.8
Yushin, G.9
-
47
-
-
80053579364
-
A major constituent of brown algae for use in high-capacity Li-ion batteries
-
I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries, Science, 2011, 334(6052): 75.
-
(2011)
Science
, vol.334
, Issue.6052
, pp. 75
-
-
Kovalenko, I.1
Zdyrko, B.2
Magasinski, A.3
Hertzberg, B.4
Milicev, Z.5
Burtovyy, R.6
Luzinov, I.7
Yushin, G.8
-
48
-
-
80054810677
-
Polymers with tailored electronic structure for high capacity lithium battery electrodes
-
G. Liu, S. Xun, N. Vukmirovic, X. Song, P. Olalde-Velasco, H. Zheng, V. S. Battaglia, L. Wang, and W. Yang, Polymers with tailored electronic structure for high capacity lithium battery electrodes, Adv. Mater., 2011, 23(40): 4679.
-
(2011)
Adv. Mater.
, vol.23
, Issue.40
, pp. 4679
-
-
Liu, G.1
Xun, S.2
Vukmirovic, N.3
Song, X.4
Olalde-Velasco, P.5
Zheng, H.6
Battaglia, V.S.7
Wang, L.8
Yang, W.9
-
49
-
-
84901467517
-
Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
-
H. Wu, G. Yu, L. Pan, N. Liu, M. T. McDowell, Z. Bao, and Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat. Commun., 2013, 4: 1943.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1943
-
-
Wu, H.1
Yu, G.2
Pan, L.3
Liu, N.4
McDowell, M.T.5
Bao, Z.6
Cui, Y.7
-
50
-
-
72849145531
-
Silicon nanotube battery anodes
-
M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, Silicon nanotube battery anodes, Nano Lett., 2009, 9(11): 3844.
-
(2009)
Nano Lett.
, vol.9
, Issue.11
, pp. 3844
-
-
Park, M.H.1
Kim, M.G.2
Joo, J.3
Kim, K.4
Kim, J.5
Ahn, S.6
Cui, Y.7
Cho, J.8
-
51
-
-
77952372071
-
Arrays of sealed silicon nanotubes as anodes for lithium ion batteries
-
T. Song, J. Xia, J. H. Lee, D. H. Lee, M. S. Kwon, J. M. Choi, J. Wu, S. K. Doo, H. Chang, W. I. Park, D. S. Zang, H. Kim, Y. Huang, K. C. Hwang, J. A. Rogers, and U. Paik, Arrays of sealed silicon nanotubes as anodes for lithium ion batteries, Nano Lett., 2010, 10(5): 1710.
-
(2010)
Nano Lett.
, vol.10
, Issue.5
, pp. 1710
-
-
Song, T.1
Xia, J.2
Lee, J.H.3
Lee, D.H.4
Kwon, M.S.5
Choi, J.M.6
Wu, J.7
Doo, S.K.8
Chang, H.9
Park, W.I.10
Zang, D.S.11
Kim, H.12
Huang, Y.13
Hwang, K.C.14
Rogers, J.A.15
Paik, U.16
-
52
-
-
79960213953
-
Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life
-
Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, and Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett., 2011, 11(7): 2949.
-
(2011)
Nano Lett.
, vol.11
, Issue.7
, pp. 2949
-
-
Yao, Y.1
McDowell, M.T.2
Ryu, I.3
Wu, H.4
Liu, N.5
Hu, L.6
Nix, W.D.7
Cui, Y.8
-
53
-
-
84856722728
-
Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries
-
M. H. Park, Y. Cho, K. Kim, J. Kim, M. Liu, and J. Cho, Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries, Angew. Chem. Int. Ed., 2011, 123(41): 9821.
-
(2011)
Angew. Chem. Int. Ed.
, vol.123
, Issue.41
, pp. 9821
-
-
Park, M.H.1
Cho, Y.2
Kim, K.3
Kim, J.4
Liu, M.5
Cho, J.6
-
54
-
-
27744525848
-
Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes
-
S. Han, B. Jang, T. Kim, S. M. Oh, and T. Hyeon, Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes, Adv. Funct. Mater., 2005, 15(11): 1845.
-
(2005)
Adv. Funct. Mater.
, vol.15
, Issue.11
, pp. 1845
-
-
Han, S.1
Jang, B.2
Kim, T.3
Oh, S.M.4
Hyeon, T.5
-
55
-
-
33748925360
-
2 hollow nanostructures with high lithium storage capacity
-
2 hollow nanostructures with high lithium storage capacity, Adv. Mater., 2006, 18(17): 2325.
-
(2006)
Adv. Mater.
, vol.18
, Issue.17
, pp. 2325
-
-
Lou, X.W.1
Wang, Y.2
Yuan, C.3
Lee, J.Y.4
Archer, L.A.5
-
56
-
-
57749088573
-
Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries
-
H. Kim, B. Han, J. Choo, and J. Cho, Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries, Angew. Chem. Int. Ed., 2008, 120(52): 10305.
-
(2008)
Angew. Chem. Int. Ed.
, vol.120
, Issue.52
, pp. 10305
-
-
Kim, H.1
Han, B.2
Choo, J.3
Cho, J.4
-
57
-
-
77953141927
-
Reversible storage of lithium in silver-coated threedimensional macroporous silicon
-
Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. van Aken, and J. Maier, Reversible storage of lithium in silver-coated threedimensional macroporous silicon, Adv. Mater., 2010, 22(20): 2247.
-
(2010)
Adv. Mater.
, vol.22
, Issue.20
, pp. 2247
-
-
Yu, Y.1
Gu, L.2
Zhu, C.3
Tsukimoto, S.4
van Aken, P.A.5
Maier, J.6
-
58
-
-
77952344844
-
Porous Si anode materials for lithium rechargeable batteries
-
J. Cho, Porous Si anode materials for lithium rechargeable batteries, J. Mater. Chem., 2010, 20(20): 4009.
-
(2010)
J. Mater. Chem.
, vol.20
, Issue.20
, pp. 4009
-
-
Cho, J.1
-
59
-
-
84856483134
-
Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material
-
H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, and Z. Yang, Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material, Adv. Energy Mater., 2011, 1(6): 1036.
-
(2011)
Adv. Energy Mater.
, vol.1
, Issue.6
, pp. 1036
-
-
Jia, H.1
Gao, P.2
Yang, J.3
Wang, J.4
Nuli, Y.5
Yang, Z.6
-
60
-
-
84863298766
-
Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles
-
D. Chen, X. Mei, G. Ji, M. Lu, J. Xie, J. Lu, and J. Y. Lee, Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles, Angew. Chem. Int. Ed., 2012, 51(10): 2409.
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, Issue.10
, pp. 2409
-
-
Chen, D.1
Mei, X.2
Ji, G.3
Lu, M.4
Xie, J.5
Lu, J.6
Lee, J.Y.7
-
61
-
-
84870888274
-
Nanoporous silicon networks as anodes for lithium ion batteries
-
J. Zhu, C. Gladden, N. Liu, Y. Cui, and X. Zhang, Nanoporous silicon networks as anodes for lithium ion batteries, Phys. Chem. Chem. Phys., 2013, 15(2): 440.
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, Issue.2
, pp. 440
-
-
Zhu, J.1
Gladden, C.2
Liu, N.3
Cui, Y.4
Zhang, X.5
-
62
-
-
84861091085
-
Porous doped silicon nanowires for lithium ion battery anode with long cycle life
-
M. Ge, J. Rong, X. Fang, and C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life, Nano Lett., 2012, 12(5): 2318.
-
(2012)
Nano Lett.
, vol.12
, Issue.5
, pp. 2318
-
-
Ge, M.1
Rong, J.2
Fang, X.3
Zhou, C.4
-
63
-
-
33947099047
-
Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas
-
Z. Bao, M. R. Weatherspoon, S. Shian, Y. Cai, P. D. Graham, S. M. Allan, G. Ahmad, M. B. Dickerson, B. C. Church, Z. Kang, H. W. III Abernathy, C. J. Summers, M. Liu, and K. H. Sandhage, Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas, Nature, 2007, 446(7132): 172.
-
(2007)
Nature
, vol.446
, Issue.7132
, pp. 172
-
-
Bao, Z.1
Weatherspoon, M.R.2
Shian, S.3
Cai, Y.4
Graham, P.D.5
Allan, S.M.6
Ahmad, G.7
Dickerson, M.B.8
Church, B.C.9
Kang, Z.10
Abernathy, H.W.I.11
Summers, C.J.12
Liu, M.13
Sandhage, K.H.14
-
64
-
-
20444406055
-
Controlled growth of monodisperse silica spheres in the micron size range
-
W. Stöber, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 1968, 26(1): 62.
-
(1968)
J. Colloid Interface Sci.
, vol.26
, Issue.1
, pp. 62
-
-
Stöber, W.1
Fink, A.2
Bohn, E.3
-
65
-
-
0032559316
-
Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores
-
D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279(5350): 548.
-
(1998)
Science
, vol.279
, Issue.5350
, pp. 548
-
-
Zhao, D.1
Feng, J.2
Huo, Q.3
Melosh, N.4
Fredrickson, G.H.5
Chmelka, B.F.6
Stucky, G.D.7
-
66
-
-
84864848299
-
Valorization of biomass: Deriving more value from waste
-
C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, and M. Poliakoff, Valorization of biomass: Deriving more value from waste, Science, 2012, 337(6095): 695.
-
(2012)
Science
, vol.337
, Issue.6095
, pp. 695
-
-
Tuck, C.O.1
Pérez, E.2
Horváth, I.T.3
Sheldon, R.A.4
Poliakoff, M.5
-
67
-
-
84878718267
-
Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes
-
N. Liu, K. Huo, M. T. McDowell, J. Zhao, and Y. Cui, Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes, Sci. Rep., 2013, 3: 1919.
-
(2013)
Sci. Rep.
, vol.3
, pp. 1919
-
-
Liu, N.1
Huo, K.2
McDowell, M.T.3
Zhao, J.4
Cui, Y.5
-
68
-
-
84881414692
-
Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high-performance anode for lithium-ion batteries
-
A. Xing, S. Tian, H. Tang, D. Losic, and Z. Bao, Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high-performance anode for lithium-ion batteries, RSC Adv., 2013, 3(26): 10145.
-
(2013)
RSC Adv.
, vol.3
, Issue.26
, pp. 10145
-
-
Xing, A.1
Tian, S.2
Tang, H.3
Losic, D.4
Bao, Z.5
-
69
-
-
84880670215
-
Recycling rice husks for high-capacity lithium battery anodes
-
D. S. Jung, M. H. Ryou, Y. J. Sung, S. B. Park, and J. W. Choi, Recycling rice husks for high-capacity lithium battery anodes, Proc. Natl. Acad. Sci. USA, 2013, 110(30): 12229.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, Issue.30
, pp. 12229
-
-
Jung, D.S.1
Ryou, M.H.2
Sung, Y.J.3
Park, S.B.4
Choi, J.W.5
-
70
-
-
84876714588
-
Microsized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries
-
R. Yi, F. Dai, M. L. Gordin, S. Chen, and D. Wang, Microsized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries, Adv. Energy Mater., 2013, 3(3): 295.
-
(2013)
Adv. Energy Mater.
, vol.3
, Issue.3
, pp. 295
-
-
Yi, R.1
Dai, F.2
Gordin, M.L.3
Chen, S.4
Wang, D.5
-
71
-
-
7644227934
-
Nonaqueous liquid electrolytes for lithium-based rechargeable batteries
-
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004, 104(10): 4303.
-
(2004)
Chem. Rev.
, vol.104
, Issue.10
, pp. 4303
-
-
Xu, K.1
-
72
-
-
77955716717
-
A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
-
P. Verma, P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochim. Acta, 2010, 55(22): 6332.
-
(2010)
Electrochim. Acta
, vol.55
, Issue.22
, pp. 6332
-
-
Verma, P.1
Maire, P.2
Novák, P.3
-
73
-
-
0033703783
-
Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries
-
D. Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources, 2000, 89(2): 206.
-
(2000)
J. Power Sources
, vol.89
, Issue.2
, pp. 206
-
-
Aurbach, D.1
-
74
-
-
80052063686
-
Prelithiated silicon nanowires as an anode for lithium ion batteries
-
N. Liu, L. Hu, M. T. McDowell, A. Jackson, and Y. Cui, Prelithiated silicon nanowires as an anode for lithium ion batteries, ACS Nano, 2011, 5(8): 6487.
-
(2011)
ACS Nano
, vol.5
, Issue.8
, pp. 6487
-
-
Liu, N.1
Hu, L.2
McDowell, M.T.3
Jackson, A.4
Cui, Y.5
-
75
-
-
84855715719
-
Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes
-
V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes, Langmuir, 2012, 28(1): 965.
-
(2012)
Langmuir
, vol.28
, Issue.1
, pp. 965
-
-
Etacheri, V.1
Haik, O.2
Goffer, Y.3
Roberts, G.A.4
Stefan, I.C.5
Fasching, R.6
Aurbach, D.7
-
76
-
-
84859578088
-
Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: A surface chemical investigation
-
V. Etacheri, U. Geiger, Y. Gofer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, Exceptional electrochemical performance of Si-nanowires in 1, 3-dioxolane solutions: A surface chemical investigation, Langmuir, 2012, 28(14): 6175.
-
(2012)
Langmuir
, vol.28
, Issue.14
, pp. 6175
-
-
Etacheri, V.1
Geiger, U.2
Gofer, Y.3
Roberts, G.A.4
Stefan, I.C.5
Fasching, R.6
Aurbach, D.7
-
77
-
-
84862281347
-
A yolk-shell design for stabilized and scalable li-ion battery alloy anodes
-
N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang, and Y. Cui, A yolk-shell design for stabilized and scalable li-ion battery alloy anodes, Nano Lett., 2012, 12(6): 3315.
-
(2012)
Nano Lett.
, vol.12
, Issue.6
, pp. 3315
-
-
Liu, N.1
Wu, H.2
McDowell, M.T.3
Yao, Y.4
Wang, C.5
Cui, Y.6
-
78
-
-
77953892395
-
Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space
-
B. Hertzberg, A. Alexeev, and G. Yushin, Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space, J. Am. Chem. Soc., 2010, 132(25): 8548.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, Issue.25
, pp. 8548
-
-
Hertzberg, B.1
Alexeev, A.2
Yushin, G.3
-
79
-
-
84856976715
-
Engineering empty space between Si nanoparticles for lithium-ion battery anodes
-
H. Wu, G. Zheng, N. Liu, T. J. Carney, Y. Yang, and Y. Cui, Engineering empty space between Si nanoparticles for lithium-ion battery anodes, Nano Lett., 2012, 12(2): 904.
-
(2012)
Nano Lett.
, vol.12
, Issue.2
, pp. 904
-
-
Wu, H.1
Zheng, G.2
Liu, N.3
Carney, T.J.4
Yang, Y.5
Cui, Y.6
-
80
-
-
84861321990
-
Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes
-
X. Li, P. Meduri, X. Chen, W. Qi, M. H. Engelhard, W. Xu, F. Ding, J. Xiao, W. Wang, C. Wang, J. G. Zhang, and J. Liu, Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes, J. Mater. Chem., 2012, 22(22): 11014.
-
(2012)
J. Mater. Chem.
, vol.22
, Issue.22
, pp. 11014
-
-
Li, X.1
Meduri, P.2
Chen, X.3
Qi, W.4
Engelhard, M.H.5
Xu, W.6
Ding, F.7
Xiao, J.8
Wang, W.9
Wang, C.10
Zhang, J.G.11
Liu, J.12
-
81
-
-
84879908569
-
Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes
-
B. Wang, X. Li, X. Zhang, B. Luo, Y. Zhang, and L. Zhi, Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes, Adv. Mater., 2013, 25(26): 3560.
-
(2013)
Adv. Mater.
, vol.25
, Issue.26
, pp. 3560
-
-
Wang, B.1
Li, X.2
Zhang, X.3
Luo, B.4
Zhang, Y.5
Zhi, L.6
-
82
-
-
84884949396
-
Hoop-strong nanotubes for battery electrodes
-
K. Karki, Y. Zhu, Y. Liu, C. F. Sun, L. Hu, Y. Wang, C. Wang, and J. Cumings, Hoop-strong nanotubes for battery electrodes, ACS Nano, 2013, 7(9): 8295.
-
(2013)
ACS Nano
, vol.7
, Issue.9
, pp. 8295
-
-
Karki, K.1
Zhu, Y.2
Liu, Y.3
Sun, C.F.4
Hu, L.5
Wang, Y.6
Wang, C.7
Cumings, J.8
-
83
-
-
67649295059
-
2@carbon hollow nanospheres for highly reversible lithium storage
-
2@carbon hollow nanospheres for highly reversible lithium storage, Adv. Mater., 2009, 21(24): 2536.
-
(2009)
Adv. Mater.
, vol.21
, Issue.24
, pp. 2536
-
-
Lou, X.W.1
Li, C.M.2
Archer, L.A.3
-
84
-
-
78650103818
-
2 nanowire electrode
-
2 nanowire electrode, Science, 2010, 330(6010): 1515.
-
(2010)
Science
, vol.330
, Issue.6010
, pp. 1515
-
-
Huang, J.Y.1
Zhong, L.2
Wang, C.M.3
Sullivan, J.P.4
Xu, W.5
Zhang, L.Q.6
Mao, S.X.7
Hudak, N.S.8
Liu, X.H.9
Subramanian, A.10
Fan, H.11
Qi, L.12
Kushima, A.13
Li, J.14
-
85
-
-
84869463671
-
Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy
-
M. T. McDowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix, and Y. Cui, Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy, Adv. Mater., 2012, 24(45): 6034.
-
(2012)
Adv. Mater.
, vol.24
, Issue.45
, pp. 6034
-
-
McDowell, M.T.1
Ryu, I.2
Lee, S.W.3
Wang, C.4
Nix, W.D.5
Cui, Y.6
-
86
-
-
84878047893
-
Nanostructured sulfur cathodes
-
Y. Yang, G. Zheng, and Y. Cui, Nanostructured sulfur cathodes, Chem. Soc. Rev., 2013, 42(7): 3018.
-
(2013)
Chem. Soc. Rev.
, vol.42
, Issue.7
, pp. 3018
-
-
Yang, Y.1
Zheng, G.2
Cui, Y.3
-
87
-
-
84874118004
-
Challenges and prospects of lithium-sulfur batteries
-
A. Manthiram, Y. Fu, and Y. S. Su, Challenges and prospects of lithium-sulfur batteries, Acc. Chem. Res., 2013, 46(5): 1125.
-
(2013)
Acc. Chem. Res.
, vol.46
, Issue.5
, pp. 1125
-
-
Manthiram, A.1
Fu, Y.2
Su, Y.S.3
-
88
-
-
10944234873
-
Polysulfide shuttle study in the Li/S battery system
-
Y. V. Mikhaylik and J. R. Akridge, Polysulfide shuttle study in the Li/S battery system, J. Electrochem. Soc., 2004, 151(11): A1969.
-
(2004)
J. Electrochem. Soc.
, vol.151
, Issue.11
-
-
Mikhaylik, Y.V.1
Akridge, J.R.2
-
89
-
-
78049377906
-
Advances in Li-S batteries
-
X. L. Ji and L. F. Nazar, Advances in Li-S batteries, J. Mater. Chem., 2010, 20(44): 9821.
-
(2010)
J. Mater. Chem.
, vol.20
, Issue.44
, pp. 9821
-
-
Ji, X.L.1
Nazar, L.F.2
-
90
-
-
80054015473
-
New insights into the limiting parameters of the Li/S rechargeable cell
-
C. Barchasz, J. C. Lepretre, F. Alloin, and S. Patoux, New insights into the limiting parameters of the Li/S rechargeable cell, J. Power Sources, 2012, 199: 322.
-
(2012)
J. Power Sources
, vol.199
, pp. 322
-
-
Barchasz, C.1
Lepretre, J.C.2
Alloin, F.3
Patoux, S.4
-
91
-
-
0036804851
-
The lithium/sulfur rechargeable cell
-
J. Shim, K. A. Striebel, and E. J. Cairns, The lithium/sulfur rechargeable cell, J. Electrochem. Soc., 2002, 149(10): A1321.
-
(2002)
J. Electrochem. Soc.
, vol.149
, Issue.10
-
-
Shim, J.1
Striebel, K.A.2
Cairns, E.J.3
-
92
-
-
67349275043
-
A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries
-
X. Ji, K. T. Lee, and L. F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater., 2009, 8(6): 500.
-
(2009)
Nat. Mater.
, vol.8
, Issue.6
, pp. 500
-
-
Ji, X.1
Lee, K.T.2
Nazar, L.F.3
-
93
-
-
79959209197
-
Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries
-
N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, and L. A. Archer, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries, Angew. Chem. Int. Ed., 2011, 50(26): 5904.
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, Issue.26
, pp. 5904
-
-
Jayaprakash, N.1
Shen, J.2
Moganty, S.S.3
Corona, A.4
Archer, L.A.5
-
94
-
-
84874095578
-
An advanced lithium-sulfur battery
-
J. Kim, D. J. Lee, H. G. Jung, Y. K. Sun, J. Hassoun, and B. Scrosati, An advanced lithium-sulfur battery, Adv. Funct. Mater., 2013, 23(8): 1076.
-
(2013)
Adv. Funct. Mater.
, vol.23
, Issue.8
, pp. 1076
-
-
Kim, J.1
Lee, D.J.2
Jung, H.G.3
Sun, Y.K.4
Hassoun, J.5
Scrosati, B.6
-
95
-
-
80054036547
-
Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries
-
J. Guo, Y. Xu, and C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries, Nano Lett., 2011, 11(10): 4288.
-
(2011)
Nano Lett.
, vol.11
, Issue.10
, pp. 4288
-
-
Guo, J.1
Xu, Y.2
Wang, C.3
-
96
-
-
82555193758
-
Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfurcells
-
L. Ji, M. Rao, S. Aloni, L. Wang, E. J. Cairns, and Y. Zhang, Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfurcells, Energy Environ. Sci., 2011, 4: 5053.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 5053
-
-
Ji, L.1
Rao, M.2
Aloni, S.3
Wang, L.4
Cairns, E.J.5
Zhang, Y.6
-
97
-
-
84881657222
-
Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes
-
C. Zu, Y. Fu, and A. Manthiram, Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes, J. Mater. Chem. A, 2013, 1(35): 10362.
-
(2013)
J. Mater. Chem. A
, vol.1
, Issue.35
, pp. 10362
-
-
Zu, C.1
Fu, Y.2
Manthiram, A.3
-
98
-
-
83455228419
-
Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries
-
R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, and D. Aurbach, Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries, Adv. Mater., 2011, 23(47): 5641.
-
(2011)
Adv. Mater.
, vol.23
, Issue.47
, pp. 5641
-
-
Elazari, R.1
Salitra, G.2
Garsuch, A.3
Panchenko, A.4
Aurbach, D.5
-
99
-
-
84869450805
-
Lithium-sulfur batteries with a microporous carbon paper as a bifunctional interlayer
-
Y. S. Su and A. Manthiram, Lithium-sulfur batteries with a microporous carbon paper as a bifunctional interlayer, Nat. Commun., 2012, 3: 1166.
-
(2012)
Nat. Commun.
, vol.3
, pp. 1166
-
-
Su, Y.S.1
Manthiram, A.2
-
100
-
-
64049092070
-
Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials
-
B. Zhang, C. Lai, Z. Zhou, and X. P. Gao, Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials, Electrochim. Acta, 2009, 54(14): 3708.
-
(2009)
Electrochim. Acta
, vol.54
, Issue.14
, pp. 3708
-
-
Zhang, B.1
Lai, C.2
Zhou, Z.3
Gao, X.P.4
-
101
-
-
65249170838
-
Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites
-
C. Lai, X. P. Gao, B. Zhang, T. Y. Yan, and Z. Zhou, Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites, J. Phys. Chem. C, 2009, 113(11): 4712.
-
(2009)
J. Phys. Chem. C
, vol.113
, Issue.11
, pp. 4712
-
-
Lai, C.1
Gao, X.P.2
Zhang, B.3
Yan, T.Y.4
Zhou, Z.5
-
102
-
-
83055161614
-
Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells
-
L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E. J. Cairns, and Y. Zhang, Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells, J. Am. Chem. Soc., 2011, 133(46): 18522.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, Issue.46
, pp. 18522
-
-
Ji, L.1
Rao, M.2
Zheng, H.3
Zhang, L.4
Li, Y.5
Duan, W.6
Guo, J.7
Cairns, E.J.8
Zhang, Y.9
-
103
-
-
79960237024
-
Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability
-
H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability, Nano Lett., 2011, 11(7): 2644.
-
(2011)
Nano Lett.
, vol.11
, Issue.7
, pp. 2644
-
-
Wang, H.1
Yang, Y.2
Liang, Y.3
Robinson, J.T.4
Li, Y.5
Jackson, A.6
Cui, Y.7
Dai, H.8
-
104
-
-
80054030179
-
Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries
-
G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, and Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries, Nano Lett., 2011, 11(10): 4462.
-
(2011)
Nano Lett.
, vol.11
, Issue.10
, pp. 4462
-
-
Zheng, G.1
Yang, Y.2
Cha, J.J.3
Hong, S.S.4
Cui, Y.5
-
105
-
-
84874966187
-
Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries
-
G. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z. W. Seh, and Y. Cui, Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries, Nano Lett., 2013, 13(3): 1265.
-
(2013)
Nano Lett.
, vol.13
, Issue.3
, pp. 1265
-
-
Zheng, G.1
Zhang, Q.2
Cha, J.J.3
Yang, Y.4
Li, W.5
Seh, Z.W.6
Cui, Y.7
-
106
-
-
84880146586
-
Crab shells as sustainable templates from nature for nanostructured battery electrodes
-
H. Yao, G. Zheng, W. Li, M. T. McDowell, Z. W. Seh, N. Liu, Z. Lu, and Y. Cui, Crab shells as sustainable templates from nature for nanostructured battery electrodes, Nano Lett., 2013, 13(7): 3385.
-
(2013)
Nano Lett.
, vol.13
, Issue.7
, pp. 3385
-
-
Yao, H.1
Zheng, G.2
Li, W.3
McDowell, M.T.4
Seh, Z.W.5
Liu, N.6
Lu, Z.7
Cui, Y.8
-
107
-
-
81855177332
-
Improving the performance of lithium-sulfur batteries by conductive polymer coating
-
Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao, and Y. Cui, Improving the performance of lithium-sulfur batteries by conductive polymer coating, ACS Nano, 2011, 5(11): 9187.
-
(2011)
ACS Nano
, vol.5
, Issue.11
, pp. 9187
-
-
Yang, Y.1
Yu, G.2
Cha, J.J.3
Wu, H.4
Vosgueritchian, M.5
Yao, Y.6
Bao, Z.7
Cui, Y.8
-
108
-
-
79957554842
-
Stabilizing lithium-sulphur cathodes using polysulphide reservoirs
-
X. Ji, S. Evers, R. Black, and L. F. Nazar, Stabilizing lithium-sulphur cathodes using polysulphide reservoirs, Nat. Commun., 2011, 2: 325.
-
(2011)
Nat. Commun.
, vol.2
, pp. 325
-
-
Ji, X.1
Evers, S.2
Black, R.3
Nazar, L.F.4
-
109
-
-
84866721087
-
Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery
-
S. Evers, T. Yim, and L. F. Nazar, Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery, J. Phys. Chem. C, 2012, 116(37): 19653.
-
(2012)
J. Phys. Chem. C
, vol.116
, Issue.37
, pp. 19653
-
-
Evers, S.1
Yim, T.2
Nazar, L.F.3
-
110
-
-
84859545734
-
Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries
-
J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, and L. F. Nazar, Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries, Angew. Chem. Int. Ed., 2012, 51(15): 3591.
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, Issue.15
, pp. 3591
-
-
Schuster, J.1
He, G.2
Mandlmeier, B.3
Yim, T.4
Lee, K.T.5
Bein, T.6
Nazar, L.F.7
-
111
-
-
84859570852
-
In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries
-
J. Nelson, S. Misra, Y. Yang, A. Jackson, Y. Liu, H. Wang, H. Dai, J. C. Andrews, Y. Cui, and M. F. Toney, In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries, J. Am. Chem. Soc., 2012, 134(14): 6337.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, Issue.14
, pp. 6337
-
-
Nelson, J.1
Misra, S.2
Yang, Y.3
Jackson, A.4
Liu, Y.5
Wang, H.6
Dai, H.7
Andrews, J.C.8
Cui, Y.9
Toney, M.F.10
-
112
-
-
84886012072
-
2 yolkshell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries
-
2 yolkshell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries, Nat. Commun., 2013, 4: 1331.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1331
-
-
Seh, Z.W.1
Li, W.2
Cha, J.J.3
Zheng, G.4
Yang, Y.5
McDowell, M.T.6
Hsu, P.C.7
Cui, Y.8
-
113
-
-
84876920052
-
High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach
-
W. Li, G. Zheng, Y. Yang, Z. W. Seh, N. Liu, and Y. Cui, High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach, Proc. Natl. Acad. Sci. USA, 2013, 110(18): 7148.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, Issue.18
, pp. 7148
-
-
Li, W.1
Zheng, G.2
Yang, Y.3
Seh, Z.W.4
Liu, N.5
Cui, Y.6
-
114
-
-
80053496361
-
Cathode composites for Li-S batteries via the use of oxygenated porous architectures
-
R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic, D. Gonbeau, R. Dominko, C. Serre, G. Férey, and J. M. Tarascon, Cathode composites for Li-S batteries via the use of oxygenated porous architectures, J. Am. Chem. Soc., 2011, 133(40): 16154.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, Issue.40
, pp. 16154
-
-
Demir-Cakan, R.1
Morcrette, M.2
Nouar, F.3
Davoisne, C.4
Devic, T.5
Gonbeau, D.6
Dominko, R.7
Serre, C.8
Férey, G.9
Tarascon, J.M.10
-
115
-
-
84863116204
-
A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithiumsulfur batteries with long cycle life
-
L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, and J. Liu, A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithiumsulfur batteries with long cycle life, Adv. Mater., 2012, 24(9): 1176.
-
(2012)
Adv. Mater.
, vol.24
, Issue.9
, pp. 1176
-
-
Xiao, L.1
Cao, Y.2
Xiao, J.3
Schwenzer, B.4
Engelhard, M.H.5
Saraf, L.V.6
Nie, Z.7
Exarhos, G.J.8
Liu, J.9
-
116
-
-
84862998457
-
Core-shell structured sulfurpolypyrrole composite cathodes for lithium-sulfur batteries
-
Y. Fu and A. Manthiram, Core-shell structured sulfurpolypyrrole composite cathodes for lithium-sulfur batteries, RSC Adv., 2012, 2: 5927.
-
(2012)
RSC Adv.
, vol.2
, pp. 5927
-
-
Fu, Y.1
Manthiram, A.2
-
117
-
-
84878705891
-
Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries
-
H. Chen, W. Dong, J. Ge, C. Wang, X. Wu, W. Lu, and L. Chen, Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries, Sci. Rep., 2013, 3: 1910.
-
(2013)
Sci. Rep.
, vol.3
, pp. 1910
-
-
Chen, H.1
Dong, W.2
Ge, J.3
Wang, C.4
Wu, X.5
Lu, W.6
Chen, L.7
-
118
-
-
0015477715
-
Twisted fibrous arrangements in biological materials and cholesteric mesophases
-
Y. Bouligand, Twisted fibrous arrangements in biological materials and cholesteric mesophases, Tissue Cell, 1972, 4(2): 189.
-
(1972)
Tissue Cell
, vol.4
, Issue.2
, pp. 189
-
-
Bouligand, Y.1
-
119
-
-
77957216061
-
The structure and calcification of the crustacean cuticle
-
R. Roer and R. Dillaman, The structure and calcification of the crustacean cuticle, Am. Zool., 1984, 24: 893.
-
(1984)
Am. Zool.
, vol.24
, pp. 893
-
-
Roer, R.1
Dillaman, R.2
-
121
-
-
41549108386
-
Structure and mechanical properties of crab exoskeletons
-
P. Y. Chen, A. Y. M. Lin, J. McKittrick, and M. A. Meyers, Structure and mechanical properties of crab exoskeletons, Acta Biomater., 2008, 4(3): 587.
-
(2008)
Acta Biomater.
, vol.4
, Issue.3
, pp. 587
-
-
Chen, P.Y.1
Lin, A.Y.M.2
McKittrick, J.3
Meyers, M.A.4
-
122
-
-
4043164079
-
Solgel transcription of silica-based hybrid nanostructures using poly(N-vinylpyrrolidone)-coated [60]fullerene, single-walled carbon nanotube and block copolymer templates
-
N. Fujita, M. Asai, T. Yamashita, and S. Shinkai, Solgel transcription of silica-based hybrid nanostructures using poly(N-vinylpyrrolidone)-coated [60]fullerene, single-walled carbon nanotube and block copolymer templates, J. Mater. Chem., 2004, 14(14): 2106.
-
(2004)
J. Mater. Chem.
, vol.14
, Issue.14
, pp. 2106
-
-
Fujita, N.1
Asai, M.2
Yamashita, T.3
Shinkai, S.4
-
123
-
-
0003381070
-
Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping
-
M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, and R. E. Smalley, Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chem. Phys. Lett., 2001, 342(3-4): 265.
-
(2001)
Chem. Phys. Lett.
, vol.342
, Issue.3-4
, pp. 265
-
-
O'Connell, M.J.1
Boul, P.2
Ericson, L.M.3
Huffman, C.4
Wang, Y.5
Haroz, E.6
Kuper, C.7
Tour, J.8
Ausman, K.D.9
Smalley, R.E.10
-
124
-
-
77953529924
-
A high-performance polymer tin sulfur lithium ion battery
-
J. Hassoun and B. Scrosati, A high-performance polymer tin sulfur lithium ion battery, Angew. Chem. Int. Ed., 2010, 49(13): 2371.
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, Issue.13
, pp. 2371
-
-
Hassoun, J.1
Scrosati, B.2
-
125
-
-
84860354794
-
2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries
-
2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries, J. Mater. Chem., 2012, 22(19): 10015.
-
(2012)
J. Mater. Chem.
, vol.22
, Issue.19
, pp. 10015
-
-
Nagao, M.1
Hayashi, A.2
Tatsumisago, M.3
-
126
-
-
84870917023
-
2S-C composites as cathode material for high-energy lithium/sulfur batteries
-
2S-C composites as cathode material for high-energy lithium/sulfur batteries, Nano Lett., 2012, 12(12): 6474.
-
(2012)
Nano Lett.
, vol.12
, Issue.12
, pp. 6474
-
-
Cai, K.1
Song, M.K.2
Cairns, E.J.3
Zhang, Y.4
-
127
-
-
84872519373
-
Lithium-sulfur battery cathode enabled by lithium-nitrile interaction
-
J. Guo, Z. Yang, Y. Yu, H. D. Abruña, and L. A. Archer, Lithium-sulfur battery cathode enabled by lithium-nitrile interaction, J. Am. Chem. Soc., 2013, 135(2): 763.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, Issue.2
, pp. 763
-
-
Guo, J.1
Yang, Z.2
Yu, Y.3
Abruña, H.D.4
Archer, L.A.5
-
128
-
-
84875651186
-
Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries
-
Z. Lin, Z. Liu, N. J. Dudney, and C. Liang, Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries, ACS Nano, 2013, 7(3): 2829.
-
(2013)
ACS Nano
, vol.7
, Issue.3
, pp. 2829
-
-
Lin, Z.1
Liu, Z.2
Dudney, N.J.3
Liang, C.4
-
129
-
-
77951070489
-
2S/silicon rechargeable battery with high specific energy
-
2S/silicon rechargeable battery with high specific energy, Nano Lett., 2010, 10(4): 1486.
-
(2010)
Nano Lett.
, vol.10
, Issue.4
, pp. 1486
-
-
Yang, Y.1
McDowell, M.T.2
Jackson, A.3
Cha, J.J.4
Hong, S.S.5
Cui, Y.6
-
130
-
-
84866478555
-
2S particles as cathode materials for advanced rechargeable lithium-ion batteries
-
2S particles as cathode materials for advanced rechargeable lithium-ion batteries, J. Am. Chem. Soc., 2012, 134(37): 15387.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, Issue.37
, pp. 15387
-
-
Yang, Y.1
Zheng, G.2
Misra, S.3
Nelson, J.4
Toney, M.F.5
Cui, Y.6
-
131
-
-
84886369938
-
Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder
-
Z. W. Seh, Q. Zhang, W. Li, G. Zheng, H. Yao, and Y. Cui, Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder, Chem. Sci., 2013, 4(9): 3673.
-
(2013)
Chem. Sci.
, vol.4
, Issue.9
, pp. 3673
-
-
Seh, Z.W.1
Zhang, Q.2
Li, W.3
Zheng, G.4
Yao, H.5
Cui, Y.6
-
132
-
-
70349767815
-
On the discovery and history of prussian blue
-
A. Kraft, On the discovery and history of prussian blue, Bull. Hist. Chem., 2008, 33(2): 61.
-
(2008)
Bull. Hist. Chem.
, vol.33
, Issue.2
, pp. 61
-
-
Kraft, A.1
-
133
-
-
10044234188
-
Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly
-
S. I. Ohkoshi, K. I. Arai, Y. Sato, and K. Hashimoto, Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly, Nat. Mater., 2004, 3(12): 857.
-
(2004)
Nat. Mater.
, vol.3
, Issue.12
, pp. 857
-
-
Ohkoshi, S.I.1
Arai, K.I.2
Sato, Y.3
Hashimoto, K.4
-
134
-
-
77956235629
-
Symmetry switch of cobalt ferrocyanide framework by alkaline cation exchange
-
T. Matsuda, J. Kim, and Y. Moritomo, Symmetry switch of cobalt ferrocyanide framework by alkaline cation exchange, J. Am. Chem. Soc., 2010, 132(35): 12206.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, Issue.35
, pp. 12206
-
-
Matsuda, T.1
Kim, J.2
Moritomo, Y.3
-
135
-
-
16844372522
-
Pressure-tuning of magnetism and linkage isomerism in iron(II) hexacyanochromate
-
E. Coronado, M. C. Giménez-López, G. Levchenko, F. M. Romero, V. García-Baonza, A. Milner, and M. PazPasternak, Pressure-tuning of magnetism and linkage isomerism in iron(II) hexacyanochromate, J. Am. Chem. Soc., 2005, 127(13): 45.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, Issue.13
, pp. 45
-
-
Coronado, E.1
Giménez-López, M.C.2
Levchenko, G.3
Romero, F.M.4
García-Baonza, V.5
Milner, A.6
PazPasternak, M.7
-
136
-
-
9644254044
-
Zero thermal expansion in a Prussian Blue analogue
-
S. Margadonna, K. Prassides, and A. N. Fitch, Zero thermal expansion in a Prussian Blue analogue, J. Am. Chem. Soc., 2004, 126(47): 15390.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, Issue.47
, pp. 15390
-
-
Margadonna, S.1
Prassides, K.2
Fitch, A.N.3
-
137
-
-
18644366670
-
2 (M = Mn, Fe, Co, Ni, Cu, Zn)
-
2 (M = Mn, Fe, Co, Ni, Cu, Zn), J. Am. Chem. Soc., 2005, 127(18): 6506.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, Issue.18
, pp. 6506
-
-
Kaye, S.S.1
Long, J.R.2
-
138
-
-
0346509236
-
Design of novel magnets using Prussian blue analogues
-
K. Hashimoto and H. Ohkoshi, Design of novel magnets using Prussian blue analogues, Phil. Trans. R. Soc. Lond. A, 1999, 357(1762): 2977.
-
(1999)
Phil. Trans. R. Soc. Lond. A
, vol.357
, Issue.1762
, pp. 2977
-
-
Hashimoto, K.1
Ohkoshi, H.2
-
139
-
-
0346509228
-
From ferromagnets to high-spin molecules: The role of the organic ligands
-
T. Mallah, A. Marvilliers, and E. Rivière, From ferromagnets to high-spin molecules: The role of the organic ligands, Phil. Trans. R. Soc. Lond. A, 1999, 357(1762): 3139.
-
(1999)
Phil. Trans. R. Soc. Lond. A
, vol.357
, Issue.1762
, pp. 3139
-
-
Mallah, T.1
Marvilliers, A.2
Rivière, E.3
-
140
-
-
0033303216
-
c moleculebased magnets by design and recent revival of cyano complexes chemistry
-
c moleculebased magnets by design and recent revival of cyano complexes chemistry, Coord. Chem. Rev., 1999, 190-192: 1023.
-
(1999)
Coord. Chem. Rev.
, vol.190-192
, pp. 1023
-
-
Verdaguer, M.1
Bleuzen, A.2
Marvaud, V.3
Vaissermann, J.4
Seuleiman, M.5
Desplanches, C.6
Scuiller, A.7
Train, C.8
Garde, R.9
Gelly, G.10
Lomenech, C.11
Rosenman, I.12
Veillet, P.13
Cartier, C.14
Villain, F.15
-
141
-
-
0034922653
-
Prussian blue and its analogues: Electrochemistry and analytical applications
-
A. A. Karyakin, Prussian blue and its analogues: Electrochemistry and analytical applications, Electroanalysis, 2001, 13(10): 813.
-
(2001)
Electroanalysis
, vol.13
, Issue.10
, pp. 813
-
-
Karyakin, A.A.1
-
142
-
-
67649403622
-
Universal thermal response of the Prussian blue lattice
-
T. Matsuda, J. Kim, K. Ohoyama, and Y. Moritomo, Universal thermal response of the Prussian blue lattice, Phys. Rev. B, 2009, 79(17): 172302.
-
(2009)
Phys. Rev. B
, vol.79
, Issue.17
, pp. 172302
-
-
Matsuda, T.1
Kim, J.2
Ohoyama, K.3
Moritomo, Y.4
-
144
-
-
30244492727
-
2O
-
2O, Inorg. Chem., 1977, 16(11): 2704.
-
(1977)
Inorg. Chem.
, vol.16
, Issue.11
, pp. 2704
-
-
Buser, H.J.1
Schwarzenbach, D.2
Petter, W.3
Ludi, A.4
-
145
-
-
33847086067
-
2O. Location of water molecules and long-range magnetic order
-
2O. Location of water molecules and long-range magnetic order, Inorg. Chem., 1980, 19(4): 956.
-
(1980)
Inorg. Chem.
, vol.19
, Issue.4
, pp. 956
-
-
Herren, F.1
Fischer, P.2
Ludi, A.3
Hälg, W.4
-
146
-
-
84873951334
-
2O (M = Fe and Co): Reverse Monte Carlo simulation and neutron diffraction study
-
2O (M = Fe and Co): Reverse Monte Carlo simulation and neutron diffraction study, J. Phys. Chem. C, 2013, 117(6): 2676.
-
(2013)
J. Phys. Chem. C
, vol.117
, Issue.6
, pp. 2676
-
-
Bhatt, P.1
Thakur, N.2
Mukadam, M.D.3
Meena, S.S.4
Yusuf, S.M.5
-
147
-
-
82555195041
-
Copper hexacyanoferrate battery electrodes with long cycle life and high power
-
C. D. Wessells, R. A. Huggins, and Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power, Nat. Commun., 2011, 2: 550.
-
(2011)
Nat. Commun.
, vol.2
, pp. 550
-
-
Wessells, C.D.1
Huggins, R.A.2
Cui, Y.3
-
148
-
-
0026853807
-
Electrochemical studies of the factors influencing the cycle stability of Prussian blue films
-
D. E. Stilwell, K. H. Park, and M. H. Miles, Electrochemical studies of the factors influencing the cycle stability of Prussian blue films, J. Appl. Electrochem., 1992, 22(4): 325.
-
(1992)
J. Appl. Electrochem.
, vol.22
, Issue.4
, pp. 325
-
-
Stilwell, D.E.1
Park, K.H.2
Miles, M.H.3
-
149
-
-
0022888403
-
Electrochromic materials
-
T. Oi, Electrochromic materials, Annu. Rev. Mater. Sci., 1986, 16(1): 185.
-
(1986)
Annu. Rev. Mater. Sci.
, vol.16
, Issue.1
, pp. 185
-
-
Oi, T.1
-
150
-
-
0000797848
-
Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes
-
K. Itaya, T. Ataka, and S. Toshima, Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes, J. Am. Chem. Soc., 1982, 104(18): 4767.
-
(1982)
J. Am. Chem. Soc.
, vol.104
, Issue.18
, pp. 4767
-
-
Itaya, K.1
Ataka, T.2
Toshima, S.3
-
151
-
-
33751135622
-
The formal potentials of solid metal hexacyanometalates
-
F. Scholz and A. Dostal, The formal potentials of solid metal hexacyanometalates, Angew. Chem. Int. Ed. Engl., 1996, 34(2324): 2685.
-
(1996)
Angew. Chem. Int. Ed. Engl.
, vol.34
, Issue.2324
, pp. 2685
-
-
Scholz, F.1
Dostal, A.2
-
152
-
-
0032658066
-
Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery
-
N. Imanishi, T. Morikawa, J. Kondo, Y. Takeda, O. Yamamoto, N. Kinugasa, and T. Yamagishi, Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery, J. Power Sources, 1999, 79(2): 215.
-
(1999)
J. Power Sources
, vol.79
, Issue.2
, pp. 215
-
-
Imanishi, N.1
Morikawa, T.2
Kondo, J.3
Takeda, Y.4
Yamamoto, O.5
Kinugasa, N.6
Yamagishi, T.7
-
153
-
-
84874080928
-
Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: Core-shell nanoparticles with enhanced cyclability
-
D. Asakura, C. H. Li, Y. Mizuno, M. Okubo, H. S. Zhou, and D. R. Talham, Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: Core-shell nanoparticles with enhanced cyclability, J. Am. Chem. Soc., 2013, 135(7): 2793.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, Issue.7
, pp. 2793
-
-
Asakura, D.1
Li, C.H.2
Mizuno, Y.3
Okubo, M.4
Zhou, H.S.5
Talham, D.R.6
-
154
-
-
84885197256
-
Nanocomposite of manganese ferrocyanide and graphene: A promising cathode material for rechargeable lithium ion batteries
-
X. J. Wang, F. Krumeich, and R. Nesper, Nanocomposite of manganese ferrocyanide and graphene: A promising cathode material for rechargeable lithium ion batteries, Electrochem. Commun., 2013, 34: 246.
-
(2013)
Electrochem. Commun.
, vol.34
, pp. 246
-
-
Wang, X.J.1
Krumeich, F.2
Nesper, R.3
-
155
-
-
0033184666
-
Lithium intercalation behavior of iron cyanometallates
-
N. Imanishi, T. Morikawa, J. Kondo, R. Yamane, Y. Takeda, O. Yamamoto, H. Sakaebe, and M. Tabuchi, Lithium intercalation behavior of iron cyanometallates, J. Power Sources, 1999, 81-82: 530.
-
(1999)
J. Power Sources
, vol.81-82
, pp. 530
-
-
Imanishi, N.1
Morikawa, T.2
Kondo, J.3
Yamane, R.4
Takeda, Y.5
Yamamoto, O.6
Sakaebe, H.7
Tabuchi, M.8
-
157
-
-
84886824320
-
Ternary metal Prussian blue analogue nanoparticles as cathode materials for Li-ion batteries
-
M. Okubo and I. Honma, Ternary metal Prussian blue analogue nanoparticles as cathode materials for Li-ion batteries, Dalton Trans., 2013, 42(45): 15881.
-
(2013)
Dalton Trans.
, vol.42
, Issue.45
, pp. 15881
-
-
Okubo, M.1
Honma, I.2
-
159
-
-
84873565437
-
A superior low-cost cathode for a Na-ion battery
-
L. Wang, Y. H. Lu, J. Liu, M. W. Xu, J. G. Cheng, D. W. Zhang, and J. B. Goodenough, A superior low-cost cathode for a Na-ion battery, Angew. Chem. Int. Ed., 2013, 52(7): 1964.
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, Issue.7
, pp. 1964
-
-
Wang, L.1
Lu, Y.H.2
Liu, J.3
Xu, M.W.4
Cheng, J.G.5
Zhang, D.W.6
Goodenough, J.B.7
-
160
-
-
84862175135
-
Prussian blue: A new framework of electrode materials for sodium batteries
-
Y. Lu, L. Wang, J. Cheng, and J. B. Goodenough, Prussian blue: A new framework of electrode materials for sodium batteries, Chem. Commun., 2012, 48(52): 6544.
-
(2012)
Chem. Commun.
, vol.48
, Issue.52
, pp. 6544
-
-
Lu, Y.1
Wang, L.2
Cheng, J.3
Goodenough, J.B.4
-
161
-
-
84865469539
-
Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries
-
H. Lee, Y. I. Kim, J. K. Park, and J. W. Choi, Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries, Chem. Commun., 2012, 48(67): 8416.
-
(2012)
Chem. Commun.
, vol.48
, Issue.67
, pp. 8416
-
-
Lee, H.1
Kim, Y.I.2
Park, J.K.3
Choi, J.W.4
-
162
-
-
84874848064
-
A sodium manganese ferrocyanide thin film for Na-ion batteries
-
T. Matsuda, M. Takachi, and Y. Moritomo, A sodium manganese ferrocyanide thin film for Na-ion batteries, Chem. Commun., 2013, 49(27): 2750.
-
(2013)
Chem. Commun.
, vol.49
, Issue.27
, pp. 2750
-
-
Matsuda, T.1
Takachi, M.2
Moritomo, Y.3
-
164
-
-
0028439202
-
Rechargeable lithium batteries with aqueous electrolytes
-
W. Li, J. R. Dahn, and D. S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes, Science, 1994, 264(5162): 1115.
-
(1994)
Science
, vol.264
, Issue.5162
, pp. 1115
-
-
Li, W.1
Dahn, J.R.2
Wainwright, D.S.3
-
165
-
-
84856731882
-
Impedance spectroscopic study on interfacial ion transfers in cyanidebridged coordination polymer electrode with organic electrolyte
-
Y. Mizuno, M. Okubo, D. Asakura, T. Saito, E. Hosono, Y. Saito, K. Oh-ishi, T. Kudo, and H. Zhou, Impedance spectroscopic study on interfacial ion transfers in cyanidebridged coordination polymer electrode with organic electrolyte, Electrochim. Acta, 2012, 63: 139.
-
(2012)
Electrochim. Acta
, vol.63
, pp. 139
-
-
Mizuno, Y.1
Okubo, M.2
Asakura, D.3
Saito, T.4
Hosono, E.5
Saito, Y.6
Oh-Ishi, K.7
Kudo, T.8
Zhou, H.9
-
166
-
-
84878375237
-
2+)
-
2+), J. Phys. Chem. C, 2013, 117(21): 10877.
-
(2013)
J. Phys. Chem. C
, vol.117
, Issue.21
, pp. 10877
-
-
Mizuno, Y.1
Okubo, M.2
Hosono, E.3
Kudo, T.4
Zhou, H.5
Oh-Ishi, K.6
-
167
-
-
77952398619
-
High proton conductivity in prussian blue analogues and the interference effect by magnetic ordering
-
S. I. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto, Y. Tsunobuchi, and H. Tokoro, High proton conductivity in prussian blue analogues and the interference effect by magnetic ordering, J. Am. Chem. Soc., 2010, 132(19): 6620.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, Issue.19
, pp. 6620
-
-
Ohkoshi, S.I.1
Nakagawa, K.2
Tomono, K.3
Imoto, K.4
Tsunobuchi, Y.5
Tokoro, H.6
-
168
-
-
79960421214
-
2O
-
2O, J. Phys. Soc. Jpn., 2011, 80(7): 074608.
-
(2011)
J. Phys. Soc. Jpn.
, vol.80
, Issue.7
, pp. 074608
-
-
Moritomo, Y.1
Matsuda, T.2
Kurihara, Y.3
Kim, J.4
-
169
-
-
84857763523
-
Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage
-
C. D. Wessells, M. T. McDowell, S. V. Peddada, M. Pasta, R. A. Huggins, and Y. Cui, Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage, ACS Nano, 2012, 6(2): 1688.
-
(2012)
ACS Nano
, vol.6
, Issue.2
, pp. 1688
-
-
Wessells, C.D.1
McDowell, M.T.2
Peddada, S.V.3
Pasta, M.4
Huggins, R.A.5
Cui, Y.6
-
170
-
-
84869875634
-
Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system
-
R. Chen, H. Tanaka, T. Kawamoto, M. Asai, C. Fukushima, H. Na, M. Kurihara, M. Watanabe, M. Arisaka, and T. Nankawa, Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system, Electrochim. Acta, 2013, 87: 119.
-
(2013)
Electrochim. Acta
, vol.87
, pp. 119
-
-
Chen, R.1
Tanaka, H.2
Kawamoto, T.3
Asai, M.4
Fukushima, C.5
Na, H.6
Kurihara, M.7
Watanabe, M.8
Arisaka, M.9
Nankawa, T.10
-
171
-
-
84855327156
-
The effect of insertion species on nanostruc-tured open framework hexacyanoferrate battery electrodes
-
C. D. Wessells, S. V. Peddada, M. T. McDowell, R. A. Huggins, and Y. Cui, The effect of insertion species on nanostruc-tured open framework hexacyanoferrate battery electrodes, J. Electrochem. Soc., 2012, 159(2): A98.
-
(2012)
J. Electrochem. Soc.
, vol.159
, Issue.2
-
-
Wessells, C.D.1
Peddada, S.V.2
McDowell, M.T.3
Huggins, R.A.4
Cui, Y.5
-
172
-
-
83655190544
-
Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries
-
C. D. Wessells, S. V. Peddada, R. A. Huggins, and Y. Cui, Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries, Nano Lett., 2011, 11(12): 5421.
-
(2011)
Nano Lett.
, vol.11
, Issue.12
, pp. 5421
-
-
Wessells, C.D.1
Peddada, S.V.2
Huggins, R.A.3
Cui, Y.4
-
173
-
-
84869420954
-
A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage
-
M. Pasta, C. D. Wessells, R. A. Huggins, and Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage, Nat. Commun., 2012, 3: 1149.
-
(2012)
Nat. Commun.
, vol.3
, pp. 1149
-
-
Pasta, M.1
Wessells, C.D.2
Huggins, R.A.3
Cui, Y.4
-
174
-
-
36749115498
-
Manganese hexacyanomanganate: Magnetic interactions via cyanide in a mixed valence Prussian blue type compound
-
R. Klenze, B. Kanellakopulos, G. Trageser, and H. H. Eysel, Manganese hexacyanomanganate: Magnetic interactions via cyanide in a mixed valence Prussian blue type compound, J. Chem. Phys., 1980, 72(11): 5819.
-
(1980)
J. Chem. Phys.
, vol.72
, Issue.11
, pp. 5819
-
-
Klenze, R.1
Kanellakopulos, B.2
Trageser, G.3
Eysel, H.H.4
-
175
-
-
77249145968
-
6]
-
6], Inorg. Chem., 2010, 49(4): 1524.
-
(2010)
Inorg. Chem.
, vol.49
, Issue.4
, pp. 1524
-
-
Her, J.H.1
Stephens, P.W.2
Kareis, C.M.3
Moore, J.G.4
Min, K.S.5
Park, J.W.6
Bali, G.7
Kennon, B.S.8
Miller, J.S.9
-
176
-
-
84899943202
-
Full open-framework batteries for stationary energy storage
-
M. Pasta, C. D. Wessells, N. Liu, J. Nelson, M. T. Mc Dowell, R. A. Huggins, M. F. Toney, and Y. Cui, Full open-framework batteries for stationary energy storage, Nat. Commun., DOI: 10. 1038/ncomms4007, 201.
-
(2014)
Nat. Commun.
, pp. 201
-
-
Pasta, M.1
Wessells, C.D.2
Liu, N.3
Nelson, J.4
McDowell, M.T.5
Huggins, R.A.6
Toney, M.F.7
Cui, Y.8
-
177
-
-
84887847292
-
Highly reversible open framework nanoscale electrodes for divalent ion batteries
-
R. Y. Wang, C. D. Wessells, R. A. Huggins, and Y. Cui, Highly reversible open framework nanoscale electrodes for divalent ion batteries, Nano Lett., 2013, 13(11): 5748.
-
(2013)
Nano Lett.
, vol.13
, Issue.11
, pp. 5748
-
-
Wang, R.Y.1
Wessells, C.D.2
Huggins, R.A.3
Cui, Y.4
-
178
-
-
79954524735
-
Batteries for efficient energy extraction from a water salinity difference
-
F. La Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, and Y. Cui, Batteries for efficient energy extraction from a water salinity difference, Nano Lett., 2011, 11(4): 1810.
-
(2011)
Nano Lett.
, vol.11
, Issue.4
, pp. 1810
-
-
Mantia, F.L.1
Pasta, M.2
Deshazer, H.D.3
Logan, B.E.4
Cui, Y.5
-
179
-
-
84856970400
-
A desalination battery
-
M. Pasta, C. D. Wessells, Y. Cui, and F. La Mantia, A desalination battery, Nano Lett., 2012, 12(2): 839.
-
(2012)
Nano Lett.
, vol.12
, Issue.2
, pp. 839
-
-
Pasta, M.1
Wessells, C.D.2
Cui, Y.3
Mantia, F.L.4
-
180
-
-
84867650925
-
Batteries for lithium recovery from brines
-
M. Pasta, A. Battistel, and F. La Mantia, Batteries for lithium recovery from brines, Energy Environ. Sci., 2012, 5(11): 9487.
-
(2012)
Energy Environ. Sci.
, vol.5
, Issue.11
, pp. 9487
-
-
Pasta, M.1
Battistel, A.2
La Mantia, F.3
-
181
-
-
77956128324
-
Energy storage in electrochemical capacitors: designing functional materials to improve performance
-
P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance, Energy Environ. Sci., 2010, 3(9): 1238.
-
(2010)
Energy Environ. Sci.
, vol.3
, Issue.9
, pp. 1238
-
-
Hall, P.J.1
Mirzaeian, M.2
Fletcher, S.I.3
Sillars, F.B.4
Rennie, A.J.R.5
Shitta-Bey, G.O.6
Wilson, G.7
Cruden, A.8
Carter, R.9
-
182
-
-
7544234502
-
What are batteries, fuel cells, and supercapacitors
-
M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev., 2004, 104(10): 4245.
-
(2004)
Chem. Rev.
, vol.104
, Issue.10
, pp. 4245
-
-
Winter, M.1
Brodd, R.J.2
-
183
-
-
48749133278
-
Electrochemical capacitors for energy management
-
J. R. Miller and P. Simon, Electrochemical capacitors for energy management, Science, 2008, 321(5889): 651.
-
(2008)
Science
, vol.321
, Issue.5889
, pp. 651
-
-
Miller, J.R.1
Simon, P.2
-
184
-
-
54949139227
-
Materials for electrochemical capacitors
-
P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 2008, 7(11): 845.
-
(2008)
Nat. Mater.
, vol.7
, Issue.11
, pp. 845
-
-
Simon, P.1
Gogotsi, Y.2
-
185
-
-
10044277091
-
2 as a supercapacitor electrode material
-
2 as a supercapacitor electrode material, Solid State Ion., 2004, 175(1-4): 511.
-
(2004)
Solid State Ion.
, vol.175
, Issue.1-4
, pp. 511
-
-
Subramanian, V.1
Hall, S.C.2
Smith, P.H.3
Rambabu, B.4
-
186
-
-
33846389385
-
2 for next generation supercapacitors
-
2 for next generation supercapacitors, Nano Lett., 2006, 6(12): 2690.
-
(2006)
Nano Lett.
, vol.6
, Issue.12
, pp. 2690
-
-
Hu, C.C.1
Chang, K.H.2
Lin, M.C.3
Wu, Y.T.4
-
187
-
-
0002570699
-
Supercapacitor behavior with KCl electrolyte
-
H. Y. Lee and J. B. Goodenough, Supercapacitor behavior with KCl electrolyte, J. Solid State Chem., 1999, 144(1): 220.
-
(1999)
J. Solid State Chem.
, vol.144
, Issue.1
, pp. 220
-
-
Lee, H.Y.1
Goodenough, J.B.2
-
188
-
-
0028271317
-
Conducting polymers as active materials in electrochemical capacitors
-
A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J. P. Ferraris, Conducting polymers as active materials in electrochemical capacitors, J. Power Sources, 1994, 47(1-2): 89.
-
(1994)
J. Power Sources
, vol.47
, Issue.1-2
, pp. 89
-
-
Rudge, A.1
Davey, J.2
Raistrick, I.3
Gottesfeld, S.4
Ferraris, J.P.5
-
189
-
-
84858953535
-
Energy and environmental nanotechnology in conductive paper and textiles
-
L. Hu and Y. Cui, Energy and environmental nanotechnology in conductive paper and textiles, Energy Environ. Sci., 2012, 5(4): 6423.
-
(2012)
Energy Environ. Sci.
, vol.5
, Issue.4
, pp. 6423
-
-
Hu, L.1
Cui, Y.2
-
190
-
-
6044256332
-
High power electrochemical capacitors based on carbon nanotube electrodes
-
C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett., 1997, 70(11): 1480.
-
(1997)
Appl. Phys. Lett.
, vol.70
, Issue.11
, pp. 1480
-
-
Niu, C.1
Sichel, E.K.2
Hoch, R.3
Moy, D.4
Tennent, H.5
-
191
-
-
66449099312
-
Printable thin film supercapacitors using single-walled carbon nanotubes
-
M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes, Nano Lett., 2009, 9(5): 1872.
-
(2009)
Nano Lett.
, vol.9
, Issue.5
, pp. 1872
-
-
Kaempgen, M.1
Chan, C.K.2
Ma, J.3
Cui, Y.4
Gruner, G.5
-
192
-
-
76049104775
-
Highly conductive paper for energy-storage devices
-
L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, and Y. Cui, Highly conductive paper for energy-storage devices, Proc. Natl. Acad. Sci. USA, 2009, 106(51): 21490.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, Issue.51
, pp. 21490
-
-
Hu, L.1
Choi, J.W.2
Yang, Y.3
Jeong, S.4
Mantia, F.L.5
Cui, L.F.6
Cui, Y.7
-
193
-
-
77953642961
-
Aqueous supercapacitors on conductive cotton
-
M. Pasta, F. La Mantia, L. Hu, H. Deshazer, and Y. Cui, Aqueous supercapacitors on conductive cotton, Nano Res., 2010, 3(6): 452.
-
(2010)
Nano Res.
, vol.3
, Issue.6
, pp. 452
-
-
Pasta, M.1
Mantia, F.L.2
Hu, L.3
Deshazer, H.4
Cui, Y.5
-
194
-
-
76749167624
-
Stretchable, porous, and conductive energy textiles
-
L. Hu, M. Pasta, F. L. Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, and Y. Cui, Stretchable, porous, and conductive energy textiles, Nano Lett., 2010, 10(2): 708.
-
(2010)
Nano Lett.
, vol.10
, Issue.2
, pp. 708
-
-
Hu, L.1
Pasta, M.2
Mantia, F.L.3
Cui, L.4
Jeong, S.5
Deshazer, H.D.6
Choi, J.W.7
Han, S.M.8
Cui, Y.9
-
195
-
-
84860368898
-
Graphene-sponges as high-performance low-cost anodes for microbial fuel cells
-
X. Xie, G. Yu, N. Liu, Z. Bao, C. S. Criddle, and Y. Cui, Graphene-sponges as high-performance low-cost anodes for microbial fuel cells, Energy Environ. Sci., 2012, 5: 6862.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 6862
-
-
Xie, X.1
Yu, G.2
Liu, N.3
Bao, Z.4
Criddle, C.S.5
Cui, Y.6
-
196
-
-
77952848309
-
Printed energy storage devices by integration of electrodes and separators into single sheets of paper
-
L. Hu, H. Wu, and Y. Cui, Printed energy storage devices by integration of electrodes and separators into single sheets of paper, Appl. Phys. Lett., 2010, 96(18): 183502.
-
(2010)
Appl. Phys. Lett.
, vol.96
, Issue.18
, pp. 183502
-
-
Hu, L.1
Wu, H.2
Cui, Y.3
-
197
-
-
80052215356
-
Paper supercapacitors by a solvent-free drawing method
-
G. Zheng, L. Hu, H. Wu, X. Xie, and Y. Cui, Paper supercapacitors by a solvent-free drawing method, Energy Environ. Sci., 2011, 4(9): 3368.
-
(2011)
Energy Environ. Sci.
, vol.4
, Issue.9
, pp. 3368
-
-
Zheng, G.1
Hu, L.2
Wu, H.3
Xie, X.4
Cui, Y.5
-
198
-
-
84856814044
-
Graphene/metal oxide composite electrode materials for energy storage
-
Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, 2012, 1(1): 107.
-
(2012)
Nano Energy
, vol.1
, Issue.1
, pp. 107
-
-
Wu, Z.S.1
Zhou, G.2
Yin, L.C.3
Ren, W.4
Li, F.5
Cheng, H.M.6
-
199
-
-
84875071881
-
Hybrid nanostructured materials for high-performance electrochemical capacitors
-
G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy, 2013, 2(2): 213.
-
(2013)
Nano Energy
, vol.2
, Issue.2
, pp. 213
-
-
Yu, G.1
Xie, X.2
Pan, L.3
Bao, Z.4
Cui, Y.5
-
200
-
-
79955826752
-
Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors
-
X. Lang, A. Hirata, T. Fujita, and M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotechnol., 2011, 6(4): 232.
-
(2011)
Nat. Nanotechnol.
, vol.6
, Issue.4
, pp. 232
-
-
Lang, X.1
Hirata, A.2
Fujita, T.3
Chen, M.4
-
201
-
-
81855177427
-
2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading
-
2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading, ACS Nano, 2011, 5(11): 8904.
-
(2011)
ACS Nano
, vol.5
, Issue.11
, pp. 8904
-
-
Hu, L.1
Chen, W.2
Xie, X.3
Liu, N.4
Yang, Y.5
Wu, H.6
Yao, Y.7
Pasta, M.8
Alshareef, H.N.9
Cui, Y.10
-
202
-
-
83655172581
-
High-performance nanostructured supercapacitors on a sponge
-
W. Chen, R. B. Rakhi, L. Hu, X. Xie, Y. Cui, and H. N. Alshareef, High-performance nanostructured supercapacitors on a sponge, Nano Lett., 2011, 11(12): 5165.
-
(2011)
Nano Lett.
, vol.11
, Issue.12
, pp. 5165
-
-
Chen, W.1
Rakhi, R.B.2
Hu, L.3
Xie, X.4
Cui, Y.5
Alshareef, H.N.6
-
203
-
-
79960243225
-
2 nanostructured textiles for highperformance electrochemical capacitors
-
2 nanostructured textiles for highperformance electrochemical capacitors, Nano Lett., 2011, 11(7): 2905.
-
(2011)
Nano Lett.
, vol.11
, Issue.7
, pp. 2905
-
-
Yu, G.1
Hu, L.2
Vosgueritchian, M.3
Wang, H.4
Xie, X.5
McDonough, J.R.6
Cui, X.7
Cui, Y.8
Bao, Z.9
-
204
-
-
80054011013
-
2 nanostructured electrodes by conductive wrapping
-
2 nanostructured electrodes by conductive wrapping, Nano Lett., 2011, 11(10): 4438.
-
(2011)
Nano Lett.
, vol.11
, Issue.10
, pp. 4438
-
-
Yu, G.1
Hu, L.2
Liu, N.3
Wang, H.4
Vosgueritchian, M.5
Yang, Y.6
Cui, Y.7
Bao, Z.8
-
205
-
-
33745135423
-
Hydrogels in biology and medicine: From molecular principles to bionanotechnology
-
N. A. Peppas, J. Z. Hilt, A. Khademhosseini, and R. Langer, Hydrogels in biology and medicine: From molecular principles to bionanotechnology, Adv. Mater., 2006, 18(11): 1345.
-
(2006)
Adv. Mater.
, vol.18
, Issue.11
, pp. 1345
-
-
Peppas, N.A.1
Hilt, J.Z.2
Khademhosseini, A.3
Langer, R.4
-
206
-
-
75249089392
-
Electroconductive hydrogels: Synthesis, characterization and biomedical applications
-
A. Guiseppi-Elie, Electroconductive hydrogels: Synthesis, characterization and biomedical applications, Biomaterials, 2010, 31(10): 2701.
-
(2010)
Biomaterials
, vol.31
, Issue.10
, pp. 2701
-
-
Guiseppi-Elie, A.1
-
207
-
-
84920553650
-
Conducting polymer-hydrogels for medical electrode applications
-
R. A. Green, S. Baek, L. A. Poole-Warren, and P. J. Martens, Conducting polymer-hydrogels for medical electrode applications, Sci. Technol. Adv. Mater., 2010, 11(1): 014107.
-
(2010)
Sci. Technol. Adv. Mater.
, vol.11
, Issue.1
, pp. 014107
-
-
Green, R.A.1
Baek, S.2
Poole-Warren, L.A.3
Martens, P.J.4
-
208
-
-
0032182603
-
Supramolecular self-assembly for enhanced conductivity in conjugated polymer blends: Ionic crosslinking in blends of poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and poly(vinylpyrrolidone)
-
S. Ghosh, J. Rasmusson, and O. Inganäs, Supramolecular self-assembly for enhanced conductivity in conjugated polymer blends: Ionic crosslinking in blends of poly (3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) and poly(vinylpyrrolidone), Adv. Mater., 1998, 10(14): 1097.
-
(1998)
Adv. Mater.
, vol.10
, Issue.14
, pp. 1097
-
-
Ghosh, S.1
Rasmusson, J.2
Inganäs, O.3
-
209
-
-
0000473625
-
Conducting polymer hydrogels as 3D electrodes: Applications for supercapacitors
-
S. Ghosh and O. Inganäs, Conducting polymer hydrogels as 3D electrodes: Applications for supercapacitors, Adv. Mater., 1999, 11(14): 1214.
-
(1999)
Adv. Mater.
, vol.11
, Issue.14
, pp. 1214
-
-
Ghosh, S.1
Inganäs, O.2
-
210
-
-
34250198615
-
An electron-conducting cross-linked polyaniline-based redox hydrogel, formed in one step at pH 7.2, wires glucose oxidase
-
N. Mano, J. E. Yoo, J. Tarver, Y. L. Loo, and A. Heller, An electron-conducting cross-linked polyaniline-based redox hydrogel, formed in one step at pH 7. 2, wires glucose oxidase, J. Am. Chem. Soc., 2007, 129(22): 7006.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, Issue.22
, pp. 7006
-
-
Mano, N.1
Yoo, J.E.2
Tarver, J.3
Loo, Y.L.4
Heller, A.5
-
211
-
-
84862180974
-
Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity
-
L. Pan, G. Yu, D. Zhai, H. R. Lee, W. Zhao, N. Liu, H. Wang, B. C. K. Tee, Y. Shi, Y. Cui, and Z. Bao, Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity, Proc. Natl. Acad. Sci. USA, 2012, 109(24): 9287.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, Issue.24
, pp. 9287
-
-
Pan, L.1
Yu, G.2
Zhai, D.3
Lee, H.R.4
Zhao, W.5
Liu, N.6
Wang, H.7
Tee, B.C.K.8
Shi, Y.9
Cui, Y.10
Bao, Z.11
-
212
-
-
84884548341
-
3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices
-
Y. Zhao, B. Liu, L. Pan, and G. Yu, 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices, Energy Environ. Sci., 2013, 6(10): 2856.
-
(2013)
Energy Environ. Sci.
, vol.6
, Issue.10
, pp. 2856
-
-
Zhao, Y.1
Liu, B.2
Pan, L.3
Yu, G.4
|