메뉴 건너뛰기




Volumn 19, Issue 6, 2014, Pages 743-753

Electrospinning for regenerative medicine: A review of the main topics

Author keywords

[No Author keywords available]

Indexed keywords

BIOMATERIAL; NANOFIBER; NANOMATERIAL;

EID: 84902116598     PISSN: 13596446     EISSN: 18785832     Source Type: Journal    
DOI: 10.1016/j.drudis.2014.03.024     Document Type: Review
Times cited : (237)

References (138)
  • 1
    • 84859139575 scopus 로고    scopus 로고
    • Using polymeric materials to control stem cell behavior for tissue regeneration
    • N. Zhang, and D.H. Kohn Using polymeric materials to control stem cell behavior for tissue regeneration Birth Defects Res. C Embryo Today 96 2012 63 81
    • (2012) Birth Defects Res. C Embryo Today , vol.96 , pp. 63-81
    • Zhang, N.1    Kohn, D.H.2
  • 2
    • 81255171938 scopus 로고    scopus 로고
    • Review paper: Critical issues in tissue engineering: Biomaterials, cell sources, angiogenesis, and drug delivery systems
    • H. Naderi et al. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems J. Biomater. Appl. 26 2011 383 417
    • (2011) J. Biomater. Appl. , vol.26 , pp. 383-417
    • Naderi, H.1
  • 3
    • 33749454574 scopus 로고    scopus 로고
    • Electrospinning approaches toward scaffold engineering - A brief overview
    • DOI 10.1111/j.1525-1594.2006.00301.x
    • U. Boudriot et al. Electrospinning approaches toward scaffold engineering - a brief overview Artif. Organs 30 2006 785 792 (Pubitemid 44521370)
    • (2006) Artificial Organs , vol.30 , Issue.10 , pp. 785-792
    • Boudriot, U.1    Dersch, R.2    Greiner, A.3    Wendorff, J.H.4
  • 4
    • 34547475023 scopus 로고    scopus 로고
    • Electrospinning: A fascinating method for the preparation of ultrathin fibers
    • DOI 10.1002/anie.200604646
    • A. Greiner, and J.H. Wendorff Electrospinning: a fascinating method for the preparation of ultrathin fibers Angew. Chem. Int. Ed. Engl. 46 2007 5670 5703 (Pubitemid 47172190)
    • (2007) Angewandte Chemie - International Edition , vol.46 , Issue.30 , pp. 5670-5703
    • Greiner, A.1    Wendorff, J.H.2
  • 7
    • 0029347278 scopus 로고
    • Electrospinning process and applications of electrospun fibers
    • J. Doshi, and D. Reneker Electrospinning process and applications of electrospun fibers J. Electrostat. 35 1995 151 160
    • (1995) J. Electrostat. , vol.35 , pp. 151-160
    • Doshi, J.1    Reneker, D.2
  • 8
    • 33745799503 scopus 로고    scopus 로고
    • Electrospinning of polymeric nanofibers for tissue engineering applications: A review
    • DOI 10.1089/ten.2006.12.1197
    • Q.P. Pham et al. Electrospinning of polymeric nanofibers for tissue engineering applications: a review Tissue Eng. 12 2006 1197 1211 (Pubitemid 44024491)
    • (2006) Tissue Engineering , vol.12 , Issue.5 , pp. 1197-1211
    • Pham, Q.P.1    Sharma, U.2    Mikos, A.G.3
  • 10
    • 56349100057 scopus 로고    scopus 로고
    • Use of electrospinning technique for biomedical applications
    • S. Agarwal et al. Use of electrospinning technique for biomedical applications Polymer 49 2008 5603 5621
    • (2008) Polymer , vol.49 , pp. 5603-5621
    • Agarwal, S.1
  • 11
    • 70249125098 scopus 로고    scopus 로고
    • Progress in the field of electrospinning for tissue engineering applications
    • S. Agarwal et al. Progress in the field of electrospinning for tissue engineering applications Adv. Mater. 21 2009 3343 3351
    • (2009) Adv. Mater. , vol.21 , pp. 3343-3351
    • Agarwal, S.1
  • 12
    • 84879412130 scopus 로고    scopus 로고
    • Fiber-based tissue engineering: Progress, challenges, and opportunities
    • A. Tamayol et al. Fiber-based tissue engineering: progress, challenges, and opportunities Biotechnol. Adv. 31 2013 669 687
    • (2013) Biotechnol. Adv. , vol.31 , pp. 669-687
    • Tamayol, A.1
  • 13
    • 70349840742 scopus 로고    scopus 로고
    • Electrohydrodynamics: A facile technique to fabricate drug delivery systems
    • S. Chakraborty et al. Electrohydrodynamics: a facile technique to fabricate drug delivery systems Adv. Drug Deliv. Rev. 61 2009 1043 1054
    • (2009) Adv. Drug Deliv. Rev. , vol.61 , pp. 1043-1054
    • Chakraborty, S.1
  • 14
    • 77951592441 scopus 로고    scopus 로고
    • Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications
    • S. Sahoo et al. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications J. Biomed. Mater. Res. A 93 2010 1539 1550
    • (2010) J. Biomed. Mater. Res. A , vol.93 , pp. 1539-1550
    • Sahoo, S.1
  • 15
    • 48849098482 scopus 로고    scopus 로고
    • Pilot study to investigate the possibility of cytogenetic and physiological changes in bio-electrosprayed human lymphocyte cells
    • H. Kempski et al. Pilot study to investigate the possibility of cytogenetic and physiological changes in bio-electrosprayed human lymphocyte cells Regen. Med. 3 2008 343 349
    • (2008) Regen. Med. , vol.3 , pp. 343-349
    • Kempski, H.1
  • 17
    • 77049098178 scopus 로고    scopus 로고
    • Distinctive degradation behaviors of electrospun polyglycolide, poly(dl-lactide-co-glycolide), and poly(l-lactide-co-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells
    • Y. Dong et al. Distinctive degradation behaviors of electrospun polyglycolide, poly(dl-lactide-co-glycolide), and poly(l-lactide-co-epsilon- caprolactone) nanofibers cultured with/without porcine smooth muscle cells Tissue Eng. Part A 16 2010 283 298
    • (2010) Tissue Eng. Part A , vol.16 , pp. 283-298
    • Dong, Y.1
  • 18
    • 84886382164 scopus 로고    scopus 로고
    • Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments
    • X. Chen et al. Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments Nanomedicine 9 2013 1283 1292
    • (2013) Nanomedicine , vol.9 , pp. 1283-1292
    • Chen, X.1
  • 19
    • 9344220476 scopus 로고    scopus 로고
    • Mechanical properties and cellular proliferation of electrospun collagen type II
    • DOI 10.1089/ten.2004.10.1510
    • K.J. Shields et al. Mechanical properties and cellular proliferation of electrospun collagen type II Tissue Eng. 10 2004 1510 1517 (Pubitemid 39557854)
    • (2004) Tissue Engineering , vol.10 , Issue.9-10 , pp. 1510-1517
    • Shields, K.J.1    Beckman, M.J.2    Bowlin, G.L.3    Wayne, J.S.4
  • 20
    • 84861100674 scopus 로고    scopus 로고
    • Electrospun matrices for localized drug delivery: Current technologies and selected biomedical applications
    • A.J. Meinel et al. Electrospun matrices for localized drug delivery: current technologies and selected biomedical applications Eur. J. Pharm. Biopharm. 81 2012 1 13
    • (2012) Eur. J. Pharm. Biopharm. , vol.81 , pp. 1-13
    • Meinel, A.J.1
  • 21
    • 84881475759 scopus 로고    scopus 로고
    • Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for cardiac tissue engineering
    • R. Ravichandran et al. Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for cardiac tissue engineering Int. J. Cardiol. 167 2012 1461 1468
    • (2012) Int. J. Cardiol. , vol.167 , pp. 1461-1468
    • Ravichandran, R.1
  • 22
    • 84877585444 scopus 로고    scopus 로고
    • Coelectrospinning of chitosan/alginate fibers by dual-jet system for modulating material surfaces
    • W.W. Hu, and H.N. Yu Coelectrospinning of chitosan/alginate fibers by dual-jet system for modulating material surfaces Carbohydr. Polym. 95 2013 716 727
    • (2013) Carbohydr. Polym. , vol.95 , pp. 716-727
    • Hu, W.W.1    Yu, H.N.2
  • 23
    • 53649108808 scopus 로고    scopus 로고
    • Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles
    • T.G. Kim et al. Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles Acta Biomater. 4 2008 1611 1619
    • (2008) Acta Biomater. , vol.4 , pp. 1611-1619
    • Kim, T.G.1
  • 25
    • 4043075572 scopus 로고    scopus 로고
    • Electrospinning of nanofibers: Reinventing the wheel?
    • D. Li, and Y. Xia Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16 2004 1151 1170
    • (2004) Adv. Mater. , vol.16 , pp. 1151-1170
    • Li, D.1    Xia, Y.2
  • 26
    • 0141683910 scopus 로고    scopus 로고
    • A review on polymer nanofibers by electrospinning and their applications in nanocomposites
    • Z.M. Huang et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites Compos. Sci. Technol. 63 2003 2223 2253
    • (2003) Compos. Sci. Technol. , vol.63 , pp. 2223-2253
    • Huang, Z.M.1
  • 27
    • 84869083365 scopus 로고    scopus 로고
    • The in vitro and in vivo biocompatibility evaluation of heparin-poly(epsilon-caprolactone) conjugate for vascular tissue engineering scaffolds
    • L. Ye et al. The in vitro and in vivo biocompatibility evaluation of heparin-poly(epsilon-caprolactone) conjugate for vascular tissue engineering scaffolds J. Biomed. Mater. Res. A 100 2012 3251 3258
    • (2012) J. Biomed. Mater. Res. A , vol.100 , pp. 3251-3258
    • Ye, L.1
  • 28
    • 77951672608 scopus 로고    scopus 로고
    • A fibronectin peptide-coupled biopolymer nanofibrous matrix to speed up initial cellular events
    • J-E. Kim et al. A fibronectin peptide-coupled biopolymer nanofibrous matrix to speed up initial cellular events Adv. Biomater. 12 2010 94 100
    • (2010) Adv. Biomater. , vol.12 , pp. 94-100
    • Kim, J.-E.1
  • 29
    • 84864399744 scopus 로고    scopus 로고
    • The biological response of poly(l-lactide) films modified by different biomolecules: Role of the coating strategy
    • F. Boccafoschi et al. The biological response of poly(l-lactide) films modified by different biomolecules: role of the coating strategy J. Biomed. Mater. Res. A 100 2012 2373 2381
    • (2012) J. Biomed. Mater. Res. A , vol.100 , pp. 2373-2381
    • Boccafoschi, F.1
  • 31
    • 84892580039 scopus 로고    scopus 로고
    • Examining the formulation of emulsion electrospinning for improving the release of bioactive proteins from electrospun fibers
    • T. Briggs, and T.L. Arinzeh Examining the formulation of emulsion electrospinning for improving the release of bioactive proteins from electrospun fibers J. Biomed. Mater. Res. A 102 2013 674 684
    • (2013) J. Biomed. Mater. Res. A , vol.102 , pp. 674-684
    • Briggs, T.1    Arinzeh, T.L.2
  • 32
    • 80355140634 scopus 로고    scopus 로고
    • Emulsion electrospinning of a collagen-like protein/PLGA fibrous scaffold: Empirical modeling and preliminary release assessment of encapsulated protein
    • K. Wei et al. Emulsion electrospinning of a collagen-like protein/PLGA fibrous scaffold: empirical modeling and preliminary release assessment of encapsulated protein Macromol. Biosci. 11 2011 1526 1536
    • (2011) Macromol. Biosci. , vol.11 , pp. 1526-1536
    • Wei, K.1
  • 33
    • 84861150675 scopus 로고    scopus 로고
    • Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications
    • D. Brahatheeswaran et al. Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications Biomed. Mater. 7 2012 045001
    • (2012) Biomed. Mater. , vol.7 , pp. 045001
    • Brahatheeswaran, D.1
  • 34
    • 84860718111 scopus 로고    scopus 로고
    • Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes
    • D.W. Chen et al. Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes Int. J. Pharm. 430 2012 335 341
    • (2012) Int. J. Pharm. , vol.430 , pp. 335-341
    • Chen, D.W.1
  • 35
    • 84868500032 scopus 로고    scopus 로고
    • Incorporation of stromal cell-derived factor-1alpha in PCL/gelatin electrospun membranes for guided bone regeneration
    • W. Ji et al. Incorporation of stromal cell-derived factor-1alpha in PCL/gelatin electrospun membranes for guided bone regeneration Biomaterials 34 2013 735 745
    • (2013) Biomaterials , vol.34 , pp. 735-745
    • Ji, W.1
  • 36
    • 84873102487 scopus 로고    scopus 로고
    • Controllable dual protein delivery through electrospun fibrous scaffolds with different hydrophilicities
    • W. Xu et al. Controllable dual protein delivery through electrospun fibrous scaffolds with different hydrophilicities Biomed. Mater. 8 2013 1 8
    • (2013) Biomed. Mater. , vol.8 , pp. 1-8
    • Xu, W.1
  • 37
    • 84879603530 scopus 로고    scopus 로고
    • Biological activity of a nanofibrous barrier membrane containing bone morphogenetic protein formed by core-shell electrospinning as a sustained delivery vehicle
    • H. Zhu et al. Biological activity of a nanofibrous barrier membrane containing bone morphogenetic protein formed by core-shell electrospinning as a sustained delivery vehicle J. Biomed. Mater. Res. B: Appl. Biomater. 101 2013 541 552
    • (2013) J. Biomed. Mater. Res. B: Appl. Biomater. , vol.101 , pp. 541-552
    • Zhu, H.1
  • 38
    • 84867460772 scopus 로고    scopus 로고
    • Creating 3D angiogenic growth factor gradients in fibrous constructs to guide fast angiogenesis
    • X. Guo et al. Creating 3D angiogenic growth factor gradients in fibrous constructs to guide fast angiogenesis Biomacromolecules 13 2012 3262 3271
    • (2012) Biomacromolecules , vol.13 , pp. 3262-3271
    • Guo, X.1
  • 39
    • 33751345416 scopus 로고    scopus 로고
    • Effects of sterilisation method on surface topography and in-vitro cell behaviour of electrostatically spun scaffolds
    • DOI 10.1016/j.biomaterials.2006.10.014, PII S0142961206008878
    • K.D. Andrews et al. Effects of sterilisation method on surface topography and in-vitro cell behaviour of electrostatically spun scaffolds Biomaterials 28 2007 1014 1026 (Pubitemid 44809414)
    • (2007) Biomaterials , vol.28 , Issue.6 , pp. 1014-1026
    • Andrews, K.D.1    Hunt, J.A.2    Black, R.A.3
  • 40
    • 77955270275 scopus 로고    scopus 로고
    • Cells preferentially grow on rough substrates
    • F. Gentile et al. Cells preferentially grow on rough substrates Biomaterials 31 2010 7205 7212
    • (2010) Biomaterials , vol.31 , pp. 7205-7212
    • Gentile, F.1
  • 41
    • 33644908463 scopus 로고    scopus 로고
    • Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering
    • S. Sahoo et al. Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering Tissue Eng. 12 2006 91 99
    • (2006) Tissue Eng. , vol.12 , pp. 91-99
    • Sahoo, S.1
  • 42
    • 79959845985 scopus 로고    scopus 로고
    • Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering
    • G. Jin et al. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering Acta Biomater. 7 2011 3113 3122
    • (2011) Acta Biomater. , vol.7 , pp. 3113-3122
    • Jin, G.1
  • 43
    • 84860748533 scopus 로고    scopus 로고
    • Characterizations of chondrocyte attachment and proliferation on electrospun biodegradable scaffolds of PLLA and PBSA for use in cartilage tissue engineering
    • J.D. Wei et al. Characterizations of chondrocyte attachment and proliferation on electrospun biodegradable scaffolds of PLLA and PBSA for use in cartilage tissue engineering J. Biomater. Appl. 26 2012 963 985
    • (2012) J. Biomater. Appl. , vol.26 , pp. 963-985
    • Wei, J.D.1
  • 44
    • 78149414080 scopus 로고    scopus 로고
    • Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering
    • S.H. Ku, and C.B. Park Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering Biomaterials 31 2010 9431 9437
    • (2010) Biomaterials , vol.31 , pp. 9431-9437
    • Ku, S.H.1    Park, C.B.2
  • 45
    • 84876575921 scopus 로고    scopus 로고
    • A new biomaterial of nanofibers with the microalga Spirulina as scaffolds to cultivate with stem cells for use in tissue engineering
    • D. Steffens et al. A new biomaterial of nanofibers with the microalga Spirulina as scaffolds to cultivate with stem cells for use in tissue engineering J. Biomed. Nanotechnol. 9 2013 710 718
    • (2013) J. Biomed. Nanotechnol. , vol.9 , pp. 710-718
    • Steffens, D.1
  • 46
    • 80052768917 scopus 로고    scopus 로고
    • Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: Effects of topography, mechanical, and chemical stimuli
    • P. Kuppan et al. Development of poly(3-hydroxybutyrate-co-3- hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli Biomacromolecules 12 2011 3156 3165
    • (2011) Biomacromolecules , vol.12 , pp. 3156-3165
    • Kuppan, P.1
  • 47
    • 80053567701 scopus 로고    scopus 로고
    • Effects of electrospun submicron fibers in calcium phosphate cement scaffold on mechanical properties and osteogenic differentiation of umbilical cord stem cells
    • C. Bao et al. Effects of electrospun submicron fibers in calcium phosphate cement scaffold on mechanical properties and osteogenic differentiation of umbilical cord stem cells Acta Biomater. 7 2011 4037 4044
    • (2011) Acta Biomater. , vol.7 , pp. 4037-4044
    • Bao, C.1
  • 48
    • 84884681553 scopus 로고    scopus 로고
    • Electrospinning and characterization of chitin nanofibril/ polycaprolactone nanocomposite fiber mats
    • Y. Ji et al. Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats Carbohydr. Polym. 101 2014 68 74
    • (2014) Carbohydr. Polym. , vol.101 , pp. 68-74
    • Ji, Y.1
  • 49
    • 11144281219 scopus 로고    scopus 로고
    • Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: Structural characteristics, mechanical properties and cell adhesion potential
    • DOI 10.1016/j.biomaterials.2004.10.007, PII S0142961204009263
    • I. Kwon et al. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential Biomaterials 26 2005 3929 3939 (Pubitemid 40038784)
    • (2005) Biomaterials , vol.26 , Issue.18 , pp. 3929-3939
    • Keun Kwon, I.1    Kidoaki, S.2    Matsuda, T.3
  • 50
    • 54949154117 scopus 로고    scopus 로고
    • Hybrid process for fabricating 3D hierarchical scaffolds combining rapid prototyping and electrospinning
    • G. Kim et al. Hybrid process for fabricating 3D hierarchical scaffolds combining rapid prototyping and electrospinning Macromol. J. 29 2008 1577 1581
    • (2008) Macromol. J. , vol.29 , pp. 1577-1581
    • Kim, G.1
  • 51
    • 84870383341 scopus 로고    scopus 로고
    • Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses
    • J. Sirc et al. Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses Int. J. Nanomed. 7 2012 5315 5325
    • (2012) Int. J. Nanomed. , vol.7 , pp. 5315-5325
    • Sirc, J.1
  • 52
    • 33750315715 scopus 로고    scopus 로고
    • Electrospun poly (ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration
    • DOI 10.1021/bm060680j
    • Q.P. Pham et al. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration Biomacromolecules 7 2006 2796 2805 (Pubitemid 44615263)
    • (2006) Biomacromolecules , vol.7 , Issue.10 , pp. 2796-2805
    • Pham, Q.P.1    Sharma, U.2    Mikos, A.G.3
  • 53
    • 70449533988 scopus 로고    scopus 로고
    • Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats
    • J.L. Lowery et al. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats Biomaterials 31 2010 491 504
    • (2010) Biomaterials , vol.31 , pp. 491-504
    • Lowery, J.L.1
  • 54
    • 84898839820 scopus 로고    scopus 로고
    • The effect of sterilization methods on electrospun poly(lactide-co- glycolide) and subsequent adhesion efficiency of mesenchymal stem cells
    • 10.1002/jbm.b.33049
    • D.I. Braghirolli et al. The effect of sterilization methods on electrospun poly(lactide-co-glycolide) and subsequent adhesion efficiency of mesenchymal stem cells J. Biomed. Mater. Res. B: Appl. Biomater. 2013 10.1002/jbm.b.33049
    • (2013) J. Biomed. Mater. Res. B: Appl. Biomater.
    • Braghirolli, D.I.1
  • 55
    • 77953817767 scopus 로고    scopus 로고
    • Integration of porosity and bio-functionalization to form a 3D scaffold: Cell culture studies and in vitro degradation
    • A. Mittal et al. Integration of porosity and bio-functionalization to form a 3D scaffold: cell culture studies and in vitro degradation Biomed. Mater. 5 2010 045001
    • (2010) Biomed. Mater. , vol.5 , pp. 045001
    • Mittal, A.1
  • 56
    • 33947516026 scopus 로고    scopus 로고
    • Development of a biodegradable composite scaffold for bone tissue engineering: Physicochemical, topographical, mechanical, degradation, and biological properties
    • M. Navarro et al. Development of a biodegradable composite scaffold for bone tissue engineering: physicochemical, topographical, mechanical, degradation, and biological properties Adv. Polym. Sci. 200 2006 209 231
    • (2006) Adv. Polym. Sci. , vol.200 , pp. 209-231
    • Navarro, M.1
  • 57
    • 84908070683 scopus 로고    scopus 로고
    • Structure-property relationship of regenerated spider silk protein nano/microfibrous scaffold fabricated by electrospinning
    • 10.1002/jbm.a.35051
    • Q. Yu et al. Structure-property relationship of regenerated spider silk protein nano/microfibrous scaffold fabricated by electrospinning J. Biomed. Mater. Res. A 2013 10.1002/jbm.a.35051
    • (2013) J. Biomed. Mater. Res. A
    • Yu, Q.1
  • 58
    • 70549097123 scopus 로고    scopus 로고
    • Encapsulation of proteins in poly(l-lactide-co-caprolactone) fibers by emulsion electrospinning
    • X. Li et al. Encapsulation of proteins in poly(l-lactide-co-caprolactone) fibers by emulsion electrospinning Colloids Surf. B: Biointerfaces 75 2010 418 424
    • (2010) Colloids Surf. B: Biointerfaces , vol.75 , pp. 418-424
    • Li, X.1
  • 59
    • 84860345141 scopus 로고    scopus 로고
    • Quantification of protein incorporated into electrospun polycaprolactone tissue engineering scaffolds
    • N.E. Zander et al. Quantification of protein incorporated into electrospun polycaprolactone tissue engineering scaffolds ACS Appl. Mater. Interfaces 4 2012 2074 2081
    • (2012) ACS Appl. Mater. Interfaces , vol.4 , pp. 2074-2081
    • Zander, N.E.1
  • 60
    • 80055102650 scopus 로고    scopus 로고
    • Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering
    • W.B. Tsai et al. Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering Acta Biomater. 7 2011 4187 4194
    • (2011) Acta Biomater. , vol.7 , pp. 4187-4194
    • Tsai, W.B.1
  • 61
    • 78650824780 scopus 로고    scopus 로고
    • A biomimetic three-layered compartmented scaffold for vascular tissue engineering
    • A. Rainer et al. A biomimetic three-layered compartmented scaffold for vascular tissue engineering Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010 2010 839 842
    • (2010) Conf. Proc. IEEE Eng. Med. Biol. Soc. , vol.2010 , pp. 839-842
    • Rainer, A.1
  • 62
    • 84876699519 scopus 로고    scopus 로고
    • Nano-bio effects: Interaction of nanomaterials with cells
    • L.C. Cheng et al. Nano-bio effects: interaction of nanomaterials with cells Nanoscale 5 2013 3547 3569
    • (2013) Nanoscale , vol.5 , pp. 3547-3569
    • Cheng, L.C.1
  • 63
    • 84861570624 scopus 로고    scopus 로고
    • Does the tissue engineering architecture of poly(3-hydroxybutyrate) scaffold affects cell-material interactions?
    • E. Masaeli et al. Does the tissue engineering architecture of poly(3-hydroxybutyrate) scaffold affects cell-material interactions? J. Biomed. Mater. Res. A 100 2012 1907 1918
    • (2012) J. Biomed. Mater. Res. A , vol.100 , pp. 1907-1918
    • Masaeli, E.1
  • 64
    • 79551503319 scopus 로고    scopus 로고
    • Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration
    • A.R. Chandrasekaran et al. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration Biomed. Mater. 6 2011 015001
    • (2011) Biomed. Mater. , vol.6 , pp. 015001
    • Chandrasekaran, A.R.1
  • 65
    • 81555229449 scopus 로고    scopus 로고
    • Multifunctionalized electrospun silk fibers promote axon regeneration in central nervous system
    • C.R. Wittmer et al. Multifunctionalized electrospun silk fibers promote axon regeneration in central nervous system Adv. Funct. Mater. 21 2011 4232 4242
    • (2011) Adv. Funct. Mater. , vol.21 , pp. 4232-4242
    • Wittmer, C.R.1
  • 66
    • 84857395764 scopus 로고    scopus 로고
    • Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications
    • D. Kai et al. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications Nanotechnology 23 2012 095705
    • (2012) Nanotechnology , vol.23 , pp. 095705
    • Kai, D.1
  • 67
    • 0035129867 scopus 로고    scopus 로고
    • Tissue engineering: Current state and prospects
    • DOI 10.1146/annurev.med.52.1.443
    • U.A. Stock, and J.P. Vacanti Tissue engineering: current state and prospects Annu. Rev. Med. 52 2001 443 451 (Pubitemid 32195334)
    • (2001) Annual Review of Medicine , vol.52 , pp. 443-451
    • Stock, U.A.1    Vacanti, J.P.2
  • 68
    • 77956630963 scopus 로고    scopus 로고
    • Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration
    • H.B. Wang et al. Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration Acta Biomater. 6 2010 2970 2978
    • (2010) Acta Biomater. , vol.6 , pp. 2970-2978
    • Wang, H.B.1
  • 69
    • 79955769760 scopus 로고    scopus 로고
    • A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting
    • M. Kempf et al. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting Biomaterials 32 2011 4782 4792
    • (2011) Biomaterials , vol.32 , pp. 4782-4792
    • Kempf, M.1
  • 70
    • 41949105727 scopus 로고    scopus 로고
    • Electrospinning of highly porous scaffolds for cartilage regeneration
    • DOI 10.1021/bm701225a
    • A. Thorvaldsson et al. Electrospinning of highly porous scaffolds for cartilage regeneration Biomacromolecules 9 2008 1044 1049 (Pubitemid 351560500)
    • (2008) Biomacromolecules , vol.9 , Issue.3 , pp. 1044-1049
    • Thorvaldsson, A.1    Stenhamre, H.2    Gatenholm, P.3    Walkenstrom, P.4
  • 71
    • 80054988621 scopus 로고    scopus 로고
    • Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells
    • A. Shafiee et al. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells J. Biomed. Mater. Res. A 99 2011 467 478
    • (2011) J. Biomed. Mater. Res. A , vol.99 , pp. 467-478
    • Shafiee, A.1
  • 72
    • 33745503987 scopus 로고    scopus 로고
    • Mesenchymal stem cells reside in virtually all post-natal organs and tissues
    • L. da Silva Meirelles et al. Mesenchymal stem cells reside in virtually all post-natal organs and tissues J. Cell Sci. 119 2006 2204 2213
    • (2006) J. Cell Sci. , vol.119 , pp. 2204-2213
    • Da Silva Meirelles, L.1
  • 73
    • 84876568439 scopus 로고    scopus 로고
    • Multilineage differentiation of human bone marrow mesenchymal stem cells and
    • Y.H. Zheng et al. Multilineage differentiation of human bone marrow mesenchymal stem cells and Exp. Ther. Med. 5 2013 1576 1580
    • (2013) Exp. Ther. Med. , vol.5 , pp. 1576-1580
    • Zheng, Y.H.1
  • 74
    • 34848863384 scopus 로고    scopus 로고
    • Adult mesenchymal stem cells for tissue engineering versus regenerative medicine
    • DOI 10.1002/jcp.21200
    • A.I. Caplan Adult mesenchymal stem cells for tissue engineering versus regenerative medicine J. Cell. Physiol. 213 2007 341 347 (Pubitemid 47509711)
    • (2007) Journal of Cellular Physiology , vol.213 , Issue.2 , pp. 341-347
    • Caplan, A.I.1
  • 75
    • 79251523855 scopus 로고    scopus 로고
    • Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density
    • S. Soliman et al. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density J. Biomed. Mater. Res. A 96 2011 566 574
    • (2011) J. Biomed. Mater. Res. A , vol.96 , pp. 566-574
    • Soliman, S.1
  • 76
    • 84888049650 scopus 로고    scopus 로고
    • The influence of electrospun scaffold topography on endothelial cell morphology, alignment, and adhesion in response to fluid flow
    • B.M. Whited, and M.N. Rylander The influence of electrospun scaffold topography on endothelial cell morphology, alignment, and adhesion in response to fluid flow Biotechnol. Bioeng. 111 2014 184 195
    • (2014) Biotechnol. Bioeng. , vol.111 , pp. 184-195
    • Whited, B.M.1    Rylander, M.N.2
  • 77
    • 79958741478 scopus 로고    scopus 로고
    • The fiber diameter of synthetic bioresorbable extracellular matrix influences human fibroblast morphology and fibronectin matrix assembly
    • H.C. Hsia et al. The fiber diameter of synthetic bioresorbable extracellular matrix influences human fibroblast morphology and fibronectin matrix assembly Plast. Reconstr. Surg. 127 2011 2312 2320
    • (2011) Plast. Reconstr. Surg. , vol.127 , pp. 2312-2320
    • Hsia, H.C.1
  • 78
    • 33744942905 scopus 로고    scopus 로고
    • Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications
    • W.J. Li et al. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications Acta Biomater. 2 2006 377 385
    • (2006) Acta Biomater. , vol.2 , pp. 377-385
    • Li, W.J.1
  • 79
    • 84861476526 scopus 로고    scopus 로고
    • Mesenchymal stem cell adherence on poly(d,l-lactide-co-glycolide) nanofibers scaffold is integrin-beta 1 receptor dependent
    • G. Zanatta et al. Mesenchymal stem cell adherence on poly(d,l-lactide-co- glycolide) nanofibers scaffold is integrin-beta 1 receptor dependent J. Biomed. Nanotechnol. 8 2012 211 218
    • (2012) J. Biomed. Nanotechnol. , vol.8 , pp. 211-218
    • Zanatta, G.1
  • 80
    • 84859850968 scopus 로고    scopus 로고
    • Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh
    • A. Zonari et al. Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh PLoS ONE 7 2012 e35422
    • (2012) PLoS ONE , vol.7 , pp. 35422
    • Zonari, A.1
  • 81
    • 84859910748 scopus 로고    scopus 로고
    • Hepatic differentiation from human mesenchymal stem cells on a novel nanofiber scaffold
    • M. Ghaedi et al. Hepatic differentiation from human mesenchymal stem cells on a novel nanofiber scaffold Cell. Mol. Biol. Lett. 17 2012 89 106
    • (2012) Cell. Mol. Biol. Lett. , vol.17 , pp. 89-106
    • Ghaedi, M.1
  • 82
    • 84882827009 scopus 로고    scopus 로고
    • Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers
    • R. Ravichandran et al. Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers World J. Cardiol. 5 2013 28 41
    • (2013) World J. Cardiol. , vol.5 , pp. 28-41
    • Ravichandran, R.1
  • 83
    • 84869007056 scopus 로고    scopus 로고
    • Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs
    • H. Peng et al. Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs Nanotechnology 23 2012 485102
    • (2012) Nanotechnology , vol.23 , pp. 485102
    • Peng, H.1
  • 84
    • 81155150287 scopus 로고    scopus 로고
    • Gradient nanofibrous chitosan/poly varepsilon-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering
    • F. Du et al. Gradient nanofibrous chitosan/poly varepsilon-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering Biomaterials 33 2012 762 770
    • (2012) Biomaterials , vol.33 , pp. 762-770
    • Du, F.1
  • 85
    • 85046528607 scopus 로고    scopus 로고
    • Ischemic heart disease, hospitalization, length of stay and expenses in Brazil from 1993 to 1997
    • R. Laurenti et al. Ischemic heart disease, hospitalization, length of stay and expenses in Brazil from 1993 to 1997 Arq. Bras. Cardiol. 74 2000 488 492
    • (2000) Arq. Bras. Cardiol. , vol.74 , pp. 488-492
    • Laurenti, R.1
  • 86
    • 84880947497 scopus 로고    scopus 로고
    • The preparation and performance of a new polyurethane vascular prosthesis
    • W. He et al. The preparation and performance of a new polyurethane vascular prosthesis Cell. Biochem. Biophys. 66 2013 855 866
    • (2013) Cell. Biochem. Biophys. , vol.66 , pp. 855-866
    • He, W.1
  • 88
    • 84891624553 scopus 로고    scopus 로고
    • Porcine carotid artery replacement with biodegradable electrospun poly-e-caprolactone vascular prosthesis
    • W. Mrowczynski et al. Porcine carotid artery replacement with biodegradable electrospun poly-e-caprolactone vascular prosthesis J. Vasc. Surg. 59 2013 210 219
    • (2013) J. Vasc. Surg. , vol.59 , pp. 210-219
    • Mrowczynski, W.1
  • 89
    • 84892440050 scopus 로고    scopus 로고
    • Heparin-conjugated PCL scaffolds fabricated by electrospinning and loaded with fibroblast growth factor 2
    • (Epub ahead of print)
    • L. Ye et al. Heparin-conjugated PCL scaffolds fabricated by electrospinning and loaded with fibroblast growth factor 2 J. Biomater. Sci. Polym. Ed. 2010 (Epub ahead of print)
    • (2010) J. Biomater. Sci. Polym. Ed.
    • Ye, L.1
  • 90
    • 84855992820 scopus 로고    scopus 로고
    • Electrospun small-diameter polyurethane vascular grafts: Ingrowth and differentiation of vascular-specific host cells
    • H. Bergmeister et al. Electrospun small-diameter polyurethane vascular grafts: ingrowth and differentiation of vascular-specific host cells Artif. Organs 36 2012 54 61
    • (2012) Artif. Organs , vol.36 , pp. 54-61
    • Bergmeister, H.1
  • 91
    • 79952752313 scopus 로고    scopus 로고
    • Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering
    • H. Liu et al. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering Biomaterials 32 2011 3784 3793
    • (2011) Biomaterials , vol.32 , pp. 3784-3793
    • Liu, H.1
  • 92
    • 84877700593 scopus 로고    scopus 로고
    • Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-(l)-lactide) as an elastomeric scaffold for vascular engineering
    • B.L. Dargaville et al. Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-(l)-lactide) as an elastomeric scaffold for vascular engineering Acta Biomater. 9 2013 6885 6897
    • (2013) Acta Biomater. , vol.9 , pp. 6885-6897
    • Dargaville, B.L.1
  • 93
    • 84874280627 scopus 로고    scopus 로고
    • Biodegradable scaffold fabricated of electrospun albumin fibers: Mechanical and biological characterization
    • N. Nseir et al. Biodegradable scaffold fabricated of electrospun albumin fibers: mechanical and biological characterization Tissue Eng. Part C: Methods 19 2013 257 264
    • (2013) Tissue Eng. Part C: Methods , vol.19 , pp. 257-264
    • Nseir, N.1
  • 94
    • 56449087188 scopus 로고    scopus 로고
    • The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction
    • B.W. Tillman et al. The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction Biomaterials 30 2009 583 588
    • (2009) Biomaterials , vol.30 , pp. 583-588
    • Tillman, B.W.1
  • 95
    • 77949653337 scopus 로고    scopus 로고
    • Bilayered scaffold for engineering cellularized blood vessels
    • Y.M. Ju et al. Bilayered scaffold for engineering cellularized blood vessels Biomaterials 31 2010 4313 4321
    • (2010) Biomaterials , vol.31 , pp. 4313-4321
    • Ju, Y.M.1
  • 96
    • 84878798957 scopus 로고    scopus 로고
    • Fabrication of small-diameter vascular scaffolds by heparin-bonded P(LLA-CL) composite nanofibers to improve graft patency
    • S. Wang et al. Fabrication of small-diameter vascular scaffolds by heparin-bonded P(LLA-CL) composite nanofibers to improve graft patency Int. J. Nanomed. 8 2013 2131 2139
    • (2013) Int. J. Nanomed. , vol.8 , pp. 2131-2139
    • Wang, S.1
  • 97
    • 78651417650 scopus 로고    scopus 로고
    • The enhancement of VEGF-mediated angiogenesis by polycaprolactone scaffolds with surface cross-linked heparin
    • S. Singh et al. The enhancement of VEGF-mediated angiogenesis by polycaprolactone scaffolds with surface cross-linked heparin Biomaterials 32 2011 2059 2069
    • (2011) Biomaterials , vol.32 , pp. 2059-2069
    • Singh, S.1
  • 98
    • 84865021298 scopus 로고    scopus 로고
    • Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects
    • M. Kim et al. Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects Biomacromolecules 13 2012 2287 2298
    • (2012) Biomacromolecules , vol.13 , pp. 2287-2298
    • Kim, M.1
  • 99
    • 77549086332 scopus 로고    scopus 로고
    • Electrospun synthetic polymer scaffold for cartilage repair without cultured cells in an animal model
    • N. Toyokawa et al. Electrospun synthetic polymer scaffold for cartilage repair without cultured cells in an animal model Arthroscopy 26 2010 375 383
    • (2010) Arthroscopy , vol.26 , pp. 375-383
    • Toyokawa, N.1
  • 100
    • 84867026831 scopus 로고    scopus 로고
    • Anisotropic fibrous scaffolds for articular cartilage regeneration
    • S.D. McCullen et al. Anisotropic fibrous scaffolds for articular cartilage regeneration Tissue Eng. Part A 18 2012 2073 2083
    • (2012) Tissue Eng. Part A , vol.18 , pp. 2073-2083
    • McCullen, S.D.1
  • 101
    • 84889656039 scopus 로고    scopus 로고
    • PLDLA/PCL-T scaffold for meniscus tissue engineering
    • A.R. Esposito et al. PLDLA/PCL-T scaffold for meniscus tissue engineering Bioresour. Open Access 2 2013 138 147
    • (2013) Bioresour. Open Access , vol.2 , pp. 138-147
    • Esposito, A.R.1
  • 102
    • 84855380839 scopus 로고    scopus 로고
    • Repair of meniscal defect using an induced myoblast-loaded polyglycolic acid mesh in a canine model
    • Y. Gu et al. Repair of meniscal defect using an induced myoblast-loaded polyglycolic acid mesh in a canine model Exp. Ther. Med. 3 2012 293 298
    • (2012) Exp. Ther. Med. , vol.3 , pp. 293-298
    • Gu, Y.1
  • 103
    • 84870236719 scopus 로고    scopus 로고
    • Organized nanofibrous scaffolds that mimic the macroscopic and microscopic architecture of the knee meniscus
    • M.B. Fisher et al. Organized nanofibrous scaffolds that mimic the macroscopic and microscopic architecture of the knee meniscus Acta Biomater. 9 2013 4496 4504
    • (2013) Acta Biomater. , vol.9 , pp. 4496-4504
    • Fisher, M.B.1
  • 104
    • 56549121685 scopus 로고    scopus 로고
    • In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes
    • E.K. Ko et al. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes Tissue Eng. Part A 14 2008 2105 2119
    • (2008) Tissue Eng. Part A , vol.14 , pp. 2105-2119
    • Ko, E.K.1
  • 105
    • 76649103732 scopus 로고    scopus 로고
    • Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on composite nanofibers containing poly[lactic-co- (glycolic acid)] and hydroxyapatite
    • J.H. Lee et al. Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on composite nanofibers containing poly[lactic-co-(glycolic acid)] and hydroxyapatite Macromol. Biosci. 10 2010 173 182
    • (2010) Macromol. Biosci. , vol.10 , pp. 173-182
    • Lee, J.H.1
  • 106
    • 77950906803 scopus 로고    scopus 로고
    • Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering
    • M.V. Jose et al. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering Macromol. Biosci. 10 2010 433 444
    • (2010) Macromol. Biosci. , vol.10 , pp. 433-444
    • Jose, M.V.1
  • 107
    • 84880818924 scopus 로고    scopus 로고
    • Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration
    • T. Chae et al. Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration J. Mater. Sci. Mater. Med. 24 2013 1885 1894
    • (2013) J. Mater. Sci. Mater. Med. , vol.24 , pp. 1885-1894
    • Chae, T.1
  • 108
    • 84875586449 scopus 로고    scopus 로고
    • The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs
    • H. Liu et al. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs Biomaterials 34 2013 4404 4417
    • (2013) Biomaterials , vol.34 , pp. 4404-4417
    • Liu, H.1
  • 109
    • 79952114069 scopus 로고    scopus 로고
    • Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like cells
    • R. Fang et al. Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like cells J. Nanosci. Nanotechnol. 10 2010 7747 7751
    • (2010) J. Nanosci. Nanotechnol. , vol.10 , pp. 7747-7751
    • Fang, R.1
  • 110
    • 84872860561 scopus 로고    scopus 로고
    • Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo
    • L.X. Lu et al. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo ACS Appl. Mater. Interfaces 5 2013 319 330
    • (2013) ACS Appl. Mater. Interfaces , vol.5 , pp. 319-330
    • Lu, L.X.1
  • 111
    • 37549031767 scopus 로고    scopus 로고
    • Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery
    • H. Nie et al. Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery Biotechnol. Bioeng. 99 2008 223 234
    • (2008) Biotechnol. Bioeng. , vol.99 , pp. 223-234
    • Nie, H.1
  • 112
    • 84855454430 scopus 로고    scopus 로고
    • Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering
    • Y. Su et al. Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering Acta Biomater. 8 2012 763 771
    • (2012) Acta Biomater. , vol.8 , pp. 763-771
    • Su, Y.1
  • 113
    • 84862292046 scopus 로고    scopus 로고
    • Enhancement of tibial regeneration in a rat model by adipose-derived stromal cells in a PLGA scaffold
    • B.H. Park et al. Enhancement of tibial regeneration in a rat model by adipose-derived stromal cells in a PLGA scaffold Bone 51 2012 313 323
    • (2012) Bone , vol.51 , pp. 313-323
    • Park, B.H.1
  • 114
    • 79952117325 scopus 로고    scopus 로고
    • Types of neural guides and using nanotechnology for peripheral nerve reconstruction
    • E. Biazar et al. Types of neural guides and using nanotechnology for peripheral nerve reconstruction Int. J. Nanomed. 5 2010 839 852
    • (2010) Int. J. Nanomed. , vol.5 , pp. 839-852
    • Biazar, E.1
  • 115
    • 67849109814 scopus 로고    scopus 로고
    • Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering
    • M.P. Prabhakaran et al. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering Biomaterials 30 2009 4996 5003
    • (2009) Biomaterials , vol.30 , pp. 4996-5003
    • Prabhakaran, M.P.1
  • 116
    • 69049088741 scopus 로고    scopus 로고
    • Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering
    • D. Gupta et al. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering Acta Biomater. 5 2009 2560 2569
    • (2009) Acta Biomater. , vol.5 , pp. 2560-2569
    • Gupta, D.1
  • 117
    • 80355131697 scopus 로고    scopus 로고
    • The culture of primary motor and sensory neurons in defined media on electrospun poly-l-lactide nanofiber scaffolds
    • 10.3791/2389
    • M.K. Leach et al. The culture of primary motor and sensory neurons in defined media on electrospun poly-l-lactide nanofiber scaffolds J. Vis. Exp. 2011 10.3791/2389
    • (2011) J. Vis. Exp.
    • Leach, M.K.1
  • 118
    • 84874514440 scopus 로고    scopus 로고
    • Fabrication, characterization and cellular compatibility of poly(hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering
    • E. Masaeli et al. Fabrication, characterization and cellular compatibility of poly(hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering PLoS ONE 8 2013 e57157
    • (2013) PLoS ONE , vol.8 , pp. 57157
    • Masaeli, E.1
  • 119
    • 55249093369 scopus 로고    scopus 로고
    • The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages
    • J. Xie et al. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages Biomaterials 30 2009 354 362
    • (2009) Biomaterials , vol.30 , pp. 354-362
    • Xie, J.1
  • 120
    • 67651215634 scopus 로고    scopus 로고
    • Conductive core-sheath nanofibers and their potential application in neural tissue engineering
    • J. Xie et al. Conductive core-sheath nanofibers and their potential application in neural tissue engineering Adv. Funct. Mater. 19 2009 2312 2318
    • (2009) Adv. Funct. Mater. , vol.19 , pp. 2312-2318
    • Xie, J.1
  • 121
    • 34249802305 scopus 로고    scopus 로고
    • Aligned protein-polymer composite fibers enhance nerve regeneration: A potential tissue-engineering platform
    • DOI 10.1002/adfm.200600441
    • S.Y. Chew et al. Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform Adv. Funct. Mater. 17 2007 1288 1296 (Pubitemid 46847643)
    • (2007) Advanced Functional Materials , vol.17 , Issue.8 , pp. 1288-1296
    • Chew, S.Y.1    Mi, R.2    Hoke, A.3    Leong, K.W.4
  • 122
    • 78649561274 scopus 로고    scopus 로고
    • Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning
    • J-J. Liu et al. Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning J. Biomed. Mater. Res. A 96 2010 13 20
    • (2010) J. Biomed. Mater. Res. A , vol.96 , pp. 13-20
    • Liu, J.-J.1
  • 123
    • 82955213428 scopus 로고    scopus 로고
    • The effect of aligned core-shell nanofibres delivering NGF on the promotion of sciatic nerve regeneration
    • C.Y. Wang et al. The effect of aligned core-shell nanofibres delivering NGF on the promotion of sciatic nerve regeneration J. Biomater. Sci. Polym. Ed. 23 2012 167 184
    • (2012) J. Biomater. Sci. Polym. Ed. , vol.23 , pp. 167-184
    • Wang, C.Y.1
  • 124
    • 84880776765 scopus 로고    scopus 로고
    • Fibrin scaffolds containing ectomesenchymal stem cells enhance behavioral and histological improvement in a rat model of spinal cord injury
    • J. Liu et al. Fibrin scaffolds containing ectomesenchymal stem cells enhance behavioral and histological improvement in a rat model of spinal cord injury Cells Tissues Organs 198 2013 35 46
    • (2013) Cells Tissues Organs , vol.198 , pp. 35-46
    • Liu, J.1
  • 125
    • 84899443845 scopus 로고    scopus 로고
    • A comparative study of gelatin sponge scaffolds and PLGA scaffolds transplanted to completely transected spinal cord of rat
    • 10.1002/jbm.a.34835
    • B.L. Du et al. A comparative study of gelatin sponge scaffolds and PLGA scaffolds transplanted to completely transected spinal cord of rat J. Biomed. Mater. Res. A 2013 10.1002/jbm.a.34835
    • (2013) J. Biomed. Mater. Res. A
    • Du, B.L.1
  • 126
    • 84890559162 scopus 로고    scopus 로고
    • Promotion of spinal cord axon regeneration by 3D nanofibrous core-sheath scaffolds
    • F. Zamani et al. Promotion of spinal cord axon regeneration by 3D nanofibrous core-sheath scaffolds J. Biomed. Mater. Res. A 102 2014 506 513
    • (2014) J. Biomed. Mater. Res. A , vol.102 , pp. 506-513
    • Zamani, F.1
  • 127
    • 84879813562 scopus 로고    scopus 로고
    • Nanofiber nets in prevention of cicatrisation in spinal procedures. Experimental study
    • J. Andrychowski et al. Nanofiber nets in prevention of cicatrisation in spinal procedures. Experimental study Folia Neuropathol. 51 2013 147 157
    • (2013) Folia Neuropathol. , vol.51 , pp. 147-157
    • Andrychowski, J.1
  • 128
    • 79960937862 scopus 로고    scopus 로고
    • New dermal substitutes
    • V.C. van der Veen et al. New dermal substitutes Wound Repair Regen. 19 Suppl 1 2011 59 65
    • (2011) Wound Repair Regen. , vol.19 , Issue.SUPPL. 1 , pp. 59-65
    • Van Der Veen, V.C.1
  • 129
    • 0345688114 scopus 로고    scopus 로고
    • Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro
    • B.M. Min et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro Biomaterials 25 2004 1289 1297
    • (2004) Biomaterials , vol.25 , pp. 1289-1297
    • Min, B.M.1
  • 130
    • 84891599197 scopus 로고    scopus 로고
    • Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications
    • E. Vatankhah et al. Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications J. Biomater. Appl. 28 2013 909 921
    • (2013) J. Biomater. Appl. , vol.28 , pp. 909-921
    • Vatankhah, E.1
  • 131
    • 84888358224 scopus 로고    scopus 로고
    • Controlled release of multiple epidermal induction factors through core-shell nanofibers for skin regeneration
    • G. Jin et al. Controlled release of multiple epidermal induction factors through core-shell nanofibers for skin regeneration Eur. J. Pharm. Biopharm. 85 2013 689 698
    • (2013) Eur. J. Pharm. Biopharm. , vol.85 , pp. 689-698
    • Jin, G.1
  • 132
    • 84863853088 scopus 로고    scopus 로고
    • Antibacterial efficacy of silver-impregnated polyelectrolyte multilayers immobilized on a biological dressing in a murine wound infection model
    • K.M. Guthrie et al. Antibacterial efficacy of silver-impregnated polyelectrolyte multilayers immobilized on a biological dressing in a murine wound infection model Ann. Surg. 256 2012 371 377
    • (2012) Ann. Surg. , vol.256 , pp. 371-377
    • Guthrie, K.M.1
  • 133
    • 84867054779 scopus 로고    scopus 로고
    • Synthesis and evaluation of novel absorptive and antibacterial polyurethane membranes as wound dressing
    • A. Yari et al. Synthesis and evaluation of novel absorptive and antibacterial polyurethane membranes as wound dressing J. Mater. Sci. Mater. Med. 23 2012 2187 2202
    • (2012) J. Mater. Sci. Mater. Med. , vol.23 , pp. 2187-2202
    • Yari, A.1
  • 134
    • 84891689096 scopus 로고    scopus 로고
    • Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice
    • P. Losi et al. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice Acta Biomater. 9 2013 7814 7821
    • (2013) Acta Biomater. , vol.9 , pp. 7814-7821
    • Losi, P.1
  • 135
    • 78650814661 scopus 로고    scopus 로고
    • A G-CSF functionalized PLLA scaffold for wound repair: An in vitro preliminary study
    • C. Spadaccio et al. A G-CSF functionalized PLLA scaffold for wound repair: an in vitro preliminary study Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010 2010 843 846
    • (2010) Conf. Proc. IEEE Eng. Med. Biol. Soc. , vol.2010 , pp. 843-846
    • Spadaccio, C.1
  • 136
    • 77954599023 scopus 로고    scopus 로고
    • A controlled, randomized-blinded clinical trial to assess the efficacy of a nitric oxide releasing patch in the treatment of cutaneous leishmaniasis by Leishmania (V.) panamensis
    • P. Lopez-Jaramillo et al. A controlled, randomized-blinded clinical trial to assess the efficacy of a nitric oxide releasing patch in the treatment of cutaneous leishmaniasis by Leishmania (V.) panamensis Am. J. Trop. Med. Hyg. 83 2010 97 101
    • (2010) Am. J. Trop. Med. Hyg. , vol.83 , pp. 97-101
    • Lopez-Jaramillo, P.1
  • 137
    • 84863766804 scopus 로고    scopus 로고
    • Light-activated nanofibre textiles exert antibacterial effects in the setting of chronic wound healing
    • M. Arenbergerova et al. Light-activated nanofibre textiles exert antibacterial effects in the setting of chronic wound healing Exp. Dermatol. 21 2012 619 624
    • (2012) Exp. Dermatol. , vol.21 , pp. 619-624
    • Arenbergerova, M.1
  • 138
    • 78649360521 scopus 로고    scopus 로고
    • Decontamination of the skin with absorbing materials
    • J. Lademann et al. Decontamination of the skin with absorbing materials Skin Pharmacol. Physiol. 24 2011 87 92
    • (2011) Skin Pharmacol. Physiol. , vol.24 , pp. 87-92
    • Lademann, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.