메뉴 건너뛰기




Volumn 24, Issue 10, 2014, Pages

Stress-induced remodeling of the bacterial proteome

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIAL PROTEIN; PROTEOME; TRANSCRIPTOME;

EID: 84901006261     PISSN: 09609822     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cub.2014.03.023     Document Type: Review
Times cited : (83)

References (198)
  • 1
    • 78449268845 scopus 로고    scopus 로고
    • Interdependence of cell growth and gene expression: Origins and consequences
    • M. Scott, C.W. Gunderson, E.M. Mateescu, Z. Zhang, and T. Hwa Interdependence of cell growth and gene expression: origins and consequences Science 330 2010 1099 1102
    • (2010) Science , vol.330 , pp. 1099-1102
    • Scott, M.1    Gunderson, C.W.2    Mateescu, E.M.3    Zhang, Z.4    Hwa, T.5
  • 2
    • 84858436083 scopus 로고    scopus 로고
    • Bacterial RNA thermometers: Molecular zippers and switches
    • J. Kortmann, and F. Narberhaus Bacterial RNA thermometers: molecular zippers and switches Nat. Rev. Microbiol. 10 2012 255 265
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 255-265
    • Kortmann, J.1    Narberhaus, F.2
  • 3
    • 0142027814 scopus 로고    scopus 로고
    • Structure and function of the feed-forward loop network motif
    • S. Mangan, and U. Alon Structure and function of the feed-forward loop network motif Proc. Natl. Acad. Sci. USA 100 2003 11980 11985
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 11980-11985
    • Mangan, S.1    Alon, U.2
  • 4
    • 77955155615 scopus 로고    scopus 로고
    • Noise and robustness in prokaryotic regulatory networks
    • R. Silva-Rocha, and V. De Lorenzo Noise and robustness in prokaryotic regulatory networks Annu. Rev. Microbiol. 64 2010 257 275
    • (2010) Annu. Rev. Microbiol. , vol.64 , pp. 257-275
    • Silva-Rocha, R.1    De Lorenzo, V.2
  • 8
    • 77949911836 scopus 로고    scopus 로고
    • Diversity of structure and function of response regulator output domains
    • M.Y. Galperin Diversity of structure and function of response regulator output domains Curr. Opin. Microbiol. 13 2010 150 159
    • (2010) Curr. Opin. Microbiol. , vol.13 , pp. 150-159
    • Galperin, M.Y.1
  • 9
    • 77949916535 scopus 로고    scopus 로고
    • Protein histidine kinases: Assembly of active sites and their regulation in signaling pathways
    • R.C. Stewart Protein histidine kinases: assembly of active sites and their regulation in signaling pathways Curr. Opin. Microbiol. 13 2010 133 141
    • (2010) Curr. Opin. Microbiol. , vol.13 , pp. 133-141
    • Stewart, R.C.1
  • 10
  • 11
    • 84861834618 scopus 로고    scopus 로고
    • Rewiring two-component signal transduction with small RNAs
    • Y. Göpel, and B. Görke Rewiring two-component signal transduction with small RNAs Curr. Opin. Microbiol. 15 2012 132 139
    • (2012) Curr. Opin. Microbiol. , vol.15 , pp. 132-139
    • Göpel, Y.1    Görke, B.2
  • 12
    • 0242692671 scopus 로고    scopus 로고
    • Multiple sigma subunits and the partitioning of bacterial transcription space
    • T.M. Gruber, and C.A. Gross Multiple sigma subunits and the partitioning of bacterial transcription space Annu. Rev. Microbiol. 57 2003 441 466
    • (2003) Annu. Rev. Microbiol. , vol.57 , pp. 441-466
    • Gruber, T.M.1    Gross, C.A.2
  • 14
    • 84877013872 scopus 로고    scopus 로고
    • Signaling diversity and evolution of extracytoplasmic function (ECF) σ factors
    • T. Mascher Signaling diversity and evolution of extracytoplasmic function (ECF) σ factors Curr. Opin. Microbiol. 16 2013 148 155
    • (2013) Curr. Opin. Microbiol. , vol.16 , pp. 148-155
    • Mascher, T.1
  • 15
    • 32044465772 scopus 로고    scopus 로고
    • Metal bridges between the PhoQ sensor domain and the membrane regulate transmembrane signaling
    • U.S. Cho, M.W. Bader, M.F. Amaya, M.E. Daley, R.E. Klevit, S.I. Miller, and W. Xu Metal bridges between the PhoQ sensor domain and the membrane regulate transmembrane signaling J. Mol. Biol. 356 2006 1193 1206
    • (2006) J. Mol. Biol. , vol.356 , pp. 1193-1206
    • Cho, U.S.1    Bader, M.W.2    Amaya, M.F.3    Daley, M.E.4    Klevit, R.E.5    Miller, S.I.6    Xu, W.7
  • 16
    • 77957949467 scopus 로고    scopus 로고
    • Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases
    • J.S. Parkinson Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases Annu. Rev. Microbiol. 64 2010 101 122
    • (2010) Annu. Rev. Microbiol. , vol.64 , pp. 101-122
    • Parkinson, J.S.1
  • 17
    • 77949918665 scopus 로고    scopus 로고
    • Sensor domains of two-component regulatory systems
    • J. Cheung, and W.A. Hendrickson Sensor domains of two-component regulatory systems Curr. Opin. Microbiol. 13 2010 116 123
    • (2010) Curr. Opin. Microbiol. , vol.13 , pp. 116-123
    • Cheung, J.1    Hendrickson, W.A.2
  • 21
    • 84874684844 scopus 로고    scopus 로고
    • Mechanistic insights revealed by the crystal structure of a histidine kinase with signal transducer and sensor domains
    • C. Wang, J. Sang, J. Wang, M. Su, J.S. Downey, Q. Wu, S. Wang, Y. Cai, X. Xu, and J. Wu et al. Mechanistic insights revealed by the crystal structure of a histidine kinase with signal transducer and sensor domains PLoS Biol. 11 2013 e1001493
    • (2013) PLoS Biol. , vol.11 , pp. 1001493
    • Wang, C.1    Sang, J.2    Wang, J.3    Su, M.4    Downey, J.S.5    Wu, Q.6    Wang, S.7    Cai, Y.8    Xu, X.9    Wu, J.10
  • 22
    • 0031089715 scopus 로고    scopus 로고
    • Signal transduction via the histidyl-aspartyl phosphorelay
    • L.A. Egger, H. Park, and M. Inouye Signal transduction via the histidyl-aspartyl phosphorelay Genes Cells 2 1997 167 184
    • (1997) Genes Cells , vol.2 , pp. 167-184
    • Egger, L.A.1    Park, H.2    Inouye, M.3
  • 23
    • 0029992419 scopus 로고    scopus 로고
    • From acids to osmZ: Multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli
    • L.A. Pratt, W. Hsing, K.E. Gibson, and T.J. Silhavy From acids to osmZ: multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli Mol. Microbiol. 20 1996 911 917
    • (1996) Mol. Microbiol. , vol.20 , pp. 911-917
    • Pratt, L.A.1    Hsing, W.2    Gibson, K.E.3    Silhavy, T.J.4
  • 24
    • 84861849986 scopus 로고    scopus 로고
    • The inner membrane histidine kinase EnvZ senses osmolality via helix-coil transitions in the cytoplasm
    • L.C. Wang, L.K. Morgan, P. Godakumbura, L.J. Kenney, and G.S. Anand The inner membrane histidine kinase EnvZ senses osmolality via helix-coil transitions in the cytoplasm EMBO J. 31 2012 2648 2659
    • (2012) EMBO J. , vol.31 , pp. 2648-2659
    • Wang, L.C.1    Morgan, L.K.2    Godakumbura, P.3    Kenney, L.J.4    Anand, G.S.5
  • 25
    • 0032499693 scopus 로고    scopus 로고
    • Two-domain reconstitution of a functional protein histidine kinase
    • H. Park, S.K. Saha, and M. Inouye Two-domain reconstitution of a functional protein histidine kinase Proc. Natl. Acad. Sci. USA 95 1998 6728 6732
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 6728-6732
    • Park, H.1    Saha, S.K.2    Inouye, M.3
  • 26
    • 0026681093 scopus 로고
    • Transmembrane signal transduction and osmoregulation in Escherichia coli: Functional importance of the transmembrane regions of membrane-located protein kinase, EnvZ
    • S. Tokishita, A. Kojima, and T. Mizuno Transmembrane signal transduction and osmoregulation in Escherichia coli: functional importance of the transmembrane regions of membrane-located protein kinase, EnvZ J. Biochem. 111 1992 707 713
    • (1992) J. Biochem. , vol.111 , pp. 707-713
    • Tokishita, S.1    Kojima, A.2    Mizuno, T.3
  • 30
    • 78649367258 scopus 로고    scopus 로고
    • MzrA-EnvZ interactions in the periplasm influence the EnvZ/OmpR two-component regulon
    • H. Gerken, and R. Misra MzrA-EnvZ interactions in the periplasm influence the EnvZ/OmpR two-component regulon J. Bacteriol. 192 2010 6271 6278
    • (2010) J. Bacteriol. , vol.192 , pp. 6271-6278
    • Gerken, H.1    Misra, R.2
  • 31
    • 0032990441 scopus 로고    scopus 로고
    • PAS domains: Internal sensors of oxygen, redox potential, and light
    • B.L. Taylor, and I.B. Zhulin PAS domains: internal sensors of oxygen, redox potential, and light Microbiol. Mol. Biol. Rev. 63 1999 479 506
    • (1999) Microbiol. Mol. Biol. Rev. , vol.63 , pp. 479-506
    • Taylor, B.L.1    Zhulin, I.B.2
  • 32
    • 70349777587 scopus 로고    scopus 로고
    • Structure and signaling mechanism of Per-ARNT-Sim domains
    • A. Möglich, R.A. Ayers, and K. Moffat Structure and signaling mechanism of Per-ARNT-Sim domains Structure 17 2009 1282 1294
    • (2009) Structure , vol.17 , pp. 1282-1294
    • Möglich, A.1    Ayers, R.A.2    Moffat, K.3
  • 33
    • 80053291460 scopus 로고    scopus 로고
    • Ligand-binding PAS domains in a genomic, cellular, and structural context
    • J.T. Henry, and S. Crosson Ligand-binding PAS domains in a genomic, cellular, and structural context Annu. Rev. Microbiol. 65 2011 261 286
    • (2011) Annu. Rev. Microbiol. , vol.65 , pp. 261-286
    • Henry, J.T.1    Crosson, S.2
  • 34
    • 0030851024 scopus 로고    scopus 로고
    • The PAS domain confers target gene specificity of Drosophila bHLH/PAS proteins
    • E. Zelzer, P. Wappner, and B.Z. Shilo The PAS domain confers target gene specificity of Drosophila bHLH/PAS proteins Genes Dev. 11 1997 2079 2089
    • (1997) Genes Dev. , vol.11 , pp. 2079-2089
    • Zelzer, E.1    Wappner, P.2    Shilo, B.Z.3
  • 35
    • 77954383214 scopus 로고    scopus 로고
    • Addition at the molecular level: Signal integration in designed Per-ARNT-Sim receptor proteins
    • A. Möglich, R.A. Ayers, and K. Moffat Addition at the molecular level: signal integration in designed Per-ARNT-Sim receptor proteins J. Mol. Biol. 400 2010 477 486
    • (2010) J. Mol. Biol. , vol.400 , pp. 477-486
    • Möglich, A.1    Ayers, R.A.2    Moffat, K.3
  • 36
    • 58549105950 scopus 로고    scopus 로고
    • Design and signaling mechanism of light-regulated histidine kinases
    • A. Möglich, R.A. Ayers, and K. Moffat Design and signaling mechanism of light-regulated histidine kinases J. Mol. Biol. 385 2009 1433 1444
    • (2009) J. Mol. Biol. , vol.385 , pp. 1433-1444
    • Möglich, A.1    Ayers, R.A.2    Moffat, K.3
  • 37
    • 69949104482 scopus 로고    scopus 로고
    • A genetically encoded photoactivatable Rac controls the motility of living cells
    • Y.I. Wu, D. Frey, O.I. Lungu, A. Jaehrig, I. Schlichting, B. Kuhlman, and K.M. Hahn A genetically encoded photoactivatable Rac controls the motility of living cells Nature 461 2009 104 108
    • (2009) Nature , vol.461 , pp. 104-108
    • Wu, Y.I.1    Frey, D.2    Lungu, O.I.3    Jaehrig, A.4    Schlichting, I.5    Kuhlman, B.6    Hahn, K.M.7
  • 39
    • 84866488172 scopus 로고    scopus 로고
    • The heat shock response: Systems biology of proteotoxic stress in aging and disease
    • R.I. Morimoto The heat shock response: systems biology of proteotoxic stress in aging and disease Cold Spring Harb. Symp. Quant. Biol. 76 2011 91 99
    • (2011) Cold Spring Harb. Symp. Quant. Biol. , vol.76 , pp. 91-99
    • Morimoto, R.I.1
  • 40
    • 84863882374 scopus 로고    scopus 로고
    • Integrating protein homeostasis strategies in prokaryotes
    • 10.1101/cshperspect.a004366
    • A. Mogk, D. Huber, and B. Bukau Integrating protein homeostasis strategies in prokaryotes Cold Spring Harb. Perspect Biol. 3 2011 10.1101/cshperspect.a004366
    • (2011) Cold Spring Harb. Perspect Biol. , vol.3
    • Mogk, A.1    Huber, D.2    Bukau, B.3
  • 41
    • 79959463520 scopus 로고    scopus 로고
    • Regulation of HSF1 function in the heat stress response: Implications in aging and disease
    • J. Anckar, and L. Sistonen Regulation of HSF1 function in the heat stress response: implications in aging and disease Annu. Rev. Biochem. 80 2011 1089 1115
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 1089-1115
    • Anckar, J.1    Sistonen, L.2
  • 42
    • 51949087754 scopus 로고    scopus 로고
    • Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response
    • E. Guisbert, T. Yura, V.A. Rhodius, and C.A. Gross Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response Microbiol. Mol. Biol. Rev. 72 2008 545 554
    • (2008) Microbiol. Mol. Biol. Rev. , vol.72 , pp. 545-554
    • Guisbert, E.1    Yura, T.2    Rhodius, V.A.3    Gross, C.A.4
  • 43
    • 33745618956 scopus 로고    scopus 로고
    • Regulon and promoter analysis of the E coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress
    • G. Nonaka, M. Blankschien, C. Herman, C.A. Gross, and V.A. Rhodius Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress Genes Dev. 20 2006 1776 1789
    • (2006) Genes Dev. , vol.20 , pp. 1776-1789
    • Nonaka, G.1    Blankschien, M.2    Herman, C.3    Gross, C.A.4    Rhodius, V.A.5
  • 44
    • 0032959546 scopus 로고    scopus 로고
    • Heat-induced synthesis of sigma32 in Escherichia coli: Structural and functional dissection of rpoH mRNA secondary structure
    • M. Morita, M. Kanemori, H. Yanagi, and T. Yura Heat-induced synthesis of sigma32 in Escherichia coli: structural and functional dissection of rpoH mRNA secondary structure J. Bacteriol. 181 1999 401 410
    • (1999) J. Bacteriol. , vol.181 , pp. 401-410
    • Morita, M.1    Kanemori, M.2    Yanagi, H.3    Yura, T.4
  • 45
    • 0001641104 scopus 로고    scopus 로고
    • Translational induction of heat shock transcription factor sigma32: Evidence for a built-in RNA thermosensor
    • M.T. Morita, Y. Tanaka, T.S. Kodama, Y. Kyogoku, H. Yanagi, and T. Yura Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor Genes Dev. 13 1999 655 665
    • (1999) Genes Dev. , vol.13 , pp. 655-665
    • Morita, M.T.1    Tanaka, Y.2    Kodama, T.S.3    Kyogoku, Y.4    Yanagi, H.5    Yura, T.6
  • 46
    • 8644290874 scopus 로고    scopus 로고
    • A chaperone network controls the heat shock response in E coli
    • E. Guisbert, C. Herman, C.Z. Lu, and C.A. Gross A chaperone network controls the heat shock response in E. coli Genes Dev. 18 2004 2812 2821
    • (2004) Genes Dev. , vol.18 , pp. 2812-2821
    • Guisbert, E.1    Herman, C.2    Lu, C.Z.3    Gross, C.A.4
  • 47
    • 0030044799 scopus 로고    scopus 로고
    • A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32
    • J. Gamer, G. Multhaup, T. Tomoyasu, J.S. McCarty, S. Rüdiger, H.J. Schönfeld, C. Schirra, H. Bujard, and B. Bukau A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32 EMBO J. 15 1996 607 617
    • (1996) EMBO J. , vol.15 , pp. 607-617
    • Gamer, J.1    Multhaup, G.2    Tomoyasu, T.3    McCarty, J.S.4    Rüdiger, S.5    Schönfeld, H.J.6    Schirra, C.7    Bujard, H.8    Bukau, B.9
  • 48
    • 0028985616 scopus 로고
    • Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB
    • C. Herman, D. Thévenet, R. D'Ari, and P. Bouloc Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB Proc. Natl. Acad. Sci. USA 92 1995 3516 3520
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 3516-3520
    • Herman, C.1    Thévenet, D.2    D'Ari, R.3    Bouloc, P.4
  • 49
  • 50
    • 7744233862 scopus 로고    scopus 로고
    • Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity
    • M. Horikoshi, T. Yura, S. Tsuchimoto, Y. Fukumori, and M. Kanemori Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity J. Bacteriol. 186 2004 7474 7480
    • (2004) J. Bacteriol. , vol.186 , pp. 7474-7480
    • Horikoshi, M.1    Yura, T.2    Tsuchimoto, S.3    Fukumori, Y.4    Kanemori, M.5
  • 51
    • 18944378454 scopus 로고    scopus 로고
    • Identification of a turnover element in region 2.1 of Escherichia coli sigma32 by a bacterial one-hybrid approach
    • M. Obrist, and F. Narberhaus Identification of a turnover element in region 2.1 of Escherichia coli sigma32 by a bacterial one-hybrid approach J. Bacteriol. 187 2005 3807 3813
    • (2005) J. Bacteriol. , vol.187 , pp. 3807-3813
    • Obrist, M.1    Narberhaus, F.2
  • 52
    • 36749102048 scopus 로고    scopus 로고
    • Analysis of sigma32 mutants defective in chaperone-mediated feedback control reveals unexpected complexity of the heat shock response
    • T. Yura, E. Guisbert, M. Poritz, C.Z. Lu, E. Campbell, and C.A. Gross Analysis of sigma32 mutants defective in chaperone-mediated feedback control reveals unexpected complexity of the heat shock response Proc. Natl. Acad. Sci. USA 104 2007 17638 17643
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 17638-17643
    • Yura, T.1    Guisbert, E.2    Poritz, M.3    Lu, C.Z.4    Campbell, E.5    Gross, C.A.6
  • 53
    • 84861745331 scopus 로고    scopus 로고
    • Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability: Implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function
    • H. Suzuki, A. Ikeda, S. Tsuchimoto, K.-i. Adachi, A. Noguchi, Y. Fukumori, and M. Kanemori Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability: implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function J. Biol. Chem. 287 2012 19275 19283
    • (2012) J. Biol. Chem. , vol.287 , pp. 19275-19283
    • Suzuki, H.1    Ikeda, A.2    Tsuchimoto, S.3    Adachi, K.-I.4    Noguchi, A.5    Fukumori, Y.6    Kanemori, M.7
  • 54
    • 84892779367 scopus 로고    scopus 로고
    • Heat shock transcription factor σ(32) co-opts the signal recognition particle to regulate protein homeostasis in E coli
    • B. Lim, R. Miyazaki, S. Neher, D.A. Siegele, K. Ito, P. Walter, Y. Akiyama, T. Yura, and C.A. Gross Heat shock transcription factor σ(32) co-opts the signal recognition particle to regulate protein homeostasis in E. coli PLoS Biol. 11 2013 e1001735
    • (2013) PLoS Biol. , vol.11 , pp. 1001735
    • Lim, B.1    Miyazaki, R.2    Neher, S.3    Siegele, D.A.4    Ito, K.5    Walter, P.6    Akiyama, Y.7    Yura, T.8    Gross, C.A.9
  • 55
    • 50649104037 scopus 로고    scopus 로고
    • Protein translocation across the bacterial cytoplasmic membrane
    • A.J.M. Driessen, and N. Nouwen Protein translocation across the bacterial cytoplasmic membrane Annu. Rev. Biochem. 77 2008 643 667
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 643-667
    • Driessen, A.J.M.1    Nouwen, N.2
  • 56
    • 79851516418 scopus 로고    scopus 로고
    • Early targeting events during membrane protein biogenesis in Escherichia coli
    • E. Bibi Early targeting events during membrane protein biogenesis in Escherichia coli Biochim. Biophys. Acta 1808 2011 841 850
    • (2011) Biochim. Biophys. Acta , vol.1808 , pp. 841-850
    • Bibi, E.1
  • 57
    • 84902343087 scopus 로고    scopus 로고
    • Co-translational protein targeting to the bacterial membrane
    • 10.1016/j.bbamcr.2013.10.013
    • I. Saraogi, and S.-o. Shan Co-translational protein targeting to the bacterial membrane Biochim. Biophys. Acta. 2013 10.1016/j.bbamcr.2013.10.013
    • (2013) Biochim. Biophys. Acta.
    • Saraogi, I.1    Shan, S.-O.2
  • 58
    • 0028034242 scopus 로고
    • Concentrations of 4.5S RNA and Ffh protein in Escherichia coli: The stability of Ffh protein is dependent on the concentration of 4.5S RNA
    • C.G. Jensen, and S. Pedersen Concentrations of 4.5S RNA and Ffh protein in Escherichia coli: the stability of Ffh protein is dependent on the concentration of 4.5S RNA J. Bacteriol. 176 1994 7148 7154
    • (1994) J. Bacteriol. , vol.176 , pp. 7148-7154
    • Jensen, C.G.1    Pedersen, S.2
  • 60
    • 84900995914 scopus 로고    scopus 로고
    • FtsH protease-mediated regulation of various cellular functions
    • T. Okuno, and T. Ogura FtsH protease-mediated regulation of various cellular functions Subcell. Biochem. 66 2013 53 69
    • (2013) Subcell. Biochem. , vol.66 , pp. 53-69
    • Okuno, T.1    Ogura, T.2
  • 61
    • 25844525796 scopus 로고    scopus 로고
    • Cellular functions, mechanism of action, and regulation of FtsH protease
    • K. Ito, and Y. Akiyama Cellular functions, mechanism of action, and regulation of FtsH protease Annu. Rev. Microbiol. 59 2005 211 231
    • (2005) Annu. Rev. Microbiol. , vol.59 , pp. 211-231
    • Ito, K.1    Akiyama, Y.2
  • 62
    • 0035910270 scopus 로고    scopus 로고
    • Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
    • A. Krogh, B. Larsson, G. von Heijne, and E.L. Sonnhammer Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes J. Mol. Biol. 305 2001 567 580
    • (2001) J. Mol. Biol. , vol.305 , pp. 567-580
    • Krogh, A.1    Larsson, B.2    Von Heijne, G.3    Sonnhammer, E.L.4
  • 63
    • 0347479229 scopus 로고    scopus 로고
    • Molecular basis of bacterial outer membrane permeability revisited
    • H. Nikaido Molecular basis of bacterial outer membrane permeability revisited Microbiol. Mol. Biol. Rev. 67 2003 593 656
    • (2003) Microbiol. Mol. Biol. Rev. , vol.67 , pp. 593-656
    • Nikaido, H.1
  • 64
    • 64649088018 scopus 로고    scopus 로고
    • Outer membrane permeability and antibiotic resistance
    • A.H. Delcour Outer membrane permeability and antibiotic resistance Biochim. Biophys. Acta 1794 2009 808 816
    • (2009) Biochim. Biophys. Acta , vol.1794 , pp. 808-816
    • Delcour, A.H.1
  • 66
    • 65349145827 scopus 로고    scopus 로고
    • Biogenesis of outer membranes in Gram-negative bacteria
    • H. Tokuda Biogenesis of outer membranes in Gram-negative bacteria Biosci. Biotechnol. Biochem. 73 2009 465 473
    • (2009) Biosci. Biotechnol. Biochem. , vol.73 , pp. 465-473
    • Tokuda, H.1
  • 67
    • 80053280679 scopus 로고    scopus 로고
    • Lipoprotein sorting in bacteria
    • S. Okuda, and H. Tokuda Lipoprotein sorting in bacteria Annu. Rev. Microbiol. 65 2011 239 259
    • (2011) Annu. Rev. Microbiol. , vol.65 , pp. 239-259
    • Okuda, S.1    Tokuda, H.2
  • 68
    • 67649289353 scopus 로고    scopus 로고
    • The lipopolysaccharide transport system of Gram-negative bacteria
    • P. Sperandeo, G. Dehò, and A. Polissi The lipopolysaccharide transport system of Gram-negative bacteria Biochim. Biophys. Acta 1791 2009 594 602
    • (2009) Biochim. Biophys. Acta , vol.1791 , pp. 594-602
    • Sperandeo, P.1    Dehò, G.2    Polissi, A.3
  • 69
    • 84857644824 scopus 로고    scopus 로고
    • The Bam machine: A molecular cooper
    • D.P. Ricci, and T.J. Silhavy The Bam machine: a molecular cooper Biochim. Biophys. Acta 1818 2012 1067 1084
    • (2012) Biochim. Biophys. Acta , vol.1818 , pp. 1067-1084
    • Ricci, D.P.1    Silhavy, T.J.2
  • 71
    • 84888197676 scopus 로고    scopus 로고
    • On the essentiality of lipopolysaccharide to Gram-negative bacteria
    • G. Zhang, T.C. Meredith, and D. Kahne On the essentiality of lipopolysaccharide to Gram-negative bacteria Curr. Opin. Microbiol. 16 2013 779 785
    • (2013) Curr. Opin. Microbiol. , vol.16 , pp. 779-785
    • Zhang, G.1    Meredith, T.C.2    Kahne, D.3
  • 72
    • 79959468179 scopus 로고    scopus 로고
    • The essentiality of lipopolysaccharide to Gram-negative bacteri
    • C.L. Hagan, T.J. Silhavy, and D. Kahne The essentiality of lipopolysaccharide to Gram-negative bacteri Biochem. 80 2011 189 210
    • (2011) Biochem. , vol.80 , pp. 189-210
    • Hagan, C.L.1    Silhavy, T.J.2    Kahne, D.3
  • 73
    • 31144454629 scopus 로고    scopus 로고
    • Conserved and variable functions of the sigmaE stress response in related genomes
    • V.A. Rhodius, W.C. Suh, G. Nonaka, J. West, and C.A. Gross Conserved and variable functions of the sigmaE stress response in related genomes PLoS Biol. 4 2006 e2
    • (2006) PLoS Biol. , vol.4 , pp. 2
    • Rhodius, V.A.1    Suh, W.C.2    Nonaka, G.3    West, J.4    Gross, C.A.5
  • 74
    • 84880692365 scopus 로고    scopus 로고
    • Regulated proteolysis: Control of the Escherichia coli σ(E)-dependent cell envelope stress response
    • S.E. Barchinger, and S.E. Ades Regulated proteolysis: control of the Escherichia coli σ(E)-dependent cell envelope stress response Subcell. Biochem. 66 2013 129 160
    • (2013) Subcell. Biochem. , vol.66 , pp. 129-160
    • Barchinger, S.E.1    Ades, S.E.2
  • 75
    • 0030907038 scopus 로고    scopus 로고
    • Modulation of the Escherichia coli sigmaE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins
    • D. Missiakas, M.P. Mayer, M. Lemaire, C. Georgopoulos, and S. Raina Modulation of the Escherichia coli sigmaE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins Mol. Microbiol. 24 1997 355 371
    • (1997) Mol. Microbiol. , vol.24 , pp. 355-371
    • Missiakas, D.1    Mayer, M.P.2    Lemaire, M.3    Georgopoulos, C.4    Raina, S.5
  • 76
    • 0030611303 scopus 로고    scopus 로고
    • The sigmaE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of sigmaE
    • A. De Las Peñas, L. Connolly, and C.A. Gross The sigmaE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of sigmaE Mol. Microbiol. 24 1997 373 385
    • (1997) Mol. Microbiol. , vol.24 , pp. 373-385
    • De Las Peñas, A.1    Connolly, L.2    Gross, C.A.3
  • 77
    • 0344953579 scopus 로고    scopus 로고
    • OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain
    • N.P. Walsh, B.M. Alba, B. Bose, C.A. Gross, and R.T. Sauer OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain Cell 113 2003 61 71
    • (2003) Cell , vol.113 , pp. 61-71
    • Walsh, N.P.1    Alba, B.M.2    Bose, B.3    Gross, C.A.4    Sauer, R.T.5
  • 78
    • 0033568606 scopus 로고    scopus 로고
    • The Escherichia coli sigma(E)-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor
    • S.E. Ades, L.E. Connolly, B.M. Alba, and C.A. Gross The Escherichia coli sigma(E)-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor Genes Dev. 13 1999 2449 2461
    • (1999) Genes Dev. , vol.13 , pp. 2449-2461
    • Ades, S.E.1    Connolly, L.E.2    Alba, B.M.3    Gross, C.A.4
  • 79
    • 0037102509 scopus 로고    scopus 로고
    • DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response
    • B.M. Alba, J.A. Leeds, C. Onufryk, C.Z. Lu, and C.A. Gross DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response Genes Dev. 16 2002 2156 2168
    • (2002) Genes Dev. , vol.16 , pp. 2156-2168
    • Alba, B.M.1    Leeds, J.A.2    Onufryk, C.3    Lu, C.Z.4    Gross, C.A.5
  • 80
    • 0012837562 scopus 로고    scopus 로고
    • Crystal structure of Escherichia coli sigmaE with the cytoplasmic domain of its anti-sigma RseA
    • E.A. Campbell, J.L. Tupy, T.M. Gruber, S. Wang, M.M. Sharp, C.A. Gross, and S.A. Darst Crystal structure of Escherichia coli sigmaE with the cytoplasmic domain of its anti-sigma RseA Mol. Cell 11 2003 1067 1078
    • (2003) Mol. Cell , vol.11 , pp. 1067-1078
    • Campbell, E.A.1    Tupy, J.L.2    Gruber, T.M.3    Wang, S.4    Sharp, M.M.5    Gross, C.A.6    Darst, S.A.7
  • 81
    • 0346243935 scopus 로고    scopus 로고
    • YaeL proteolysis of RseA is controlled by the PDZ domain of YaeL and a Gln-rich region of RseA
    • K. Kanehara, K. Ito, and Y. Akiyama YaeL proteolysis of RseA is controlled by the PDZ domain of YaeL and a Gln-rich region of RseA EMBO J. 22 2003 6389 6398
    • (2003) EMBO J. , vol.22 , pp. 6389-6398
    • Kanehara, K.1    Ito, K.2    Akiyama, Y.3
  • 82
    • 1942468856 scopus 로고    scopus 로고
    • Dispensable PDZ domain of Escherichia coli YaeL essential protease
    • C. Bohn, J. Collier, and P. Bouloc Dispensable PDZ domain of Escherichia coli YaeL essential protease Mol. Microbiol. 52 2004 427 435
    • (2004) Mol. Microbiol. , vol.52 , pp. 427-435
    • Bohn, C.1    Collier, J.2    Bouloc, P.3
  • 83
    • 7544239890 scopus 로고    scopus 로고
    • Fine-tuning of the Escherichia coli sigmaE envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-sigma factor, RseA
    • I.L. Grigorova, R. Chaba, H.J. Zhong, B.M. Alba, V. Rhodius, C. Herman, and C.A. Gross Fine-tuning of the Escherichia coli sigmaE envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-sigma factor, RseA Genes Dev. 18 2004 2686 2697
    • (2004) Genes Dev. , vol.18 , pp. 2686-2697
    • Grigorova, I.L.1    Chaba, R.2    Zhong, H.J.3    Alba, B.M.4    Rhodius, V.5    Herman, C.6    Gross, C.A.7
  • 84
    • 35548973933 scopus 로고    scopus 로고
    • Allosteric activation of DegS, a stress sensor PDZ protease
    • J. Sohn, R.A. Grant, and R.T. Sauer Allosteric activation of DegS, a stress sensor PDZ protease Cell 131 2007 572 583
    • (2007) Cell , vol.131 , pp. 572-583
    • Sohn, J.1    Grant, R.A.2    Sauer, R.T.3
  • 85
    • 58149287846 scopus 로고    scopus 로고
    • OMP peptides modulate the activity of DegS protease by differential binding to active and inactive conformations
    • J. Sohn, and R.T. Sauer OMP peptides modulate the activity of DegS protease by differential binding to active and inactive conformations Mol. Cell 33 2009 64 74
    • (2009) Mol. Cell , vol.33 , pp. 64-74
    • Sohn, J.1    Sauer, R.T.2
  • 86
    • 70349779534 scopus 로고    scopus 로고
    • OMP peptides activate the DegS stress-sensor protease by a relief of inhibition mechanism
    • J. Sohn, R.A. Grant, and R.T. Sauer OMP peptides activate the DegS stress-sensor protease by a relief of inhibition mechanism Structure 17 2009 1411 1421
    • (2009) Structure , vol.17 , pp. 1411-1421
    • Sohn, J.1    Grant, R.A.2    Sauer, R.T.3
  • 87
    • 0027787823 scopus 로고
    • The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins
    • J. Mecsas, P.E. Rouviere, J.W. Erickson, T.J. Donohue, and C.A. Gross The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins Genes Dev. 7 1993 2618 2628
    • (1993) Genes Dev. , vol.7 , pp. 2618-2628
    • Mecsas, J.1    Rouviere, P.E.2    Erickson, J.W.3    Donohue, T.J.4    Gross, C.A.5
  • 88
    • 2442563573 scopus 로고    scopus 로고
    • Regulation of the Escherichia coli sigma-dependent envelope stress response
    • B.M. Alba, and C.A. Gross Regulation of the Escherichia coli sigma-dependent envelope stress response Mol. Microbiol. 52 2004 613 619
    • (2004) Mol. Microbiol. , vol.52 , pp. 613-619
    • Alba, B.M.1    Gross, C.A.2
  • 89
    • 0034721887 scopus 로고    scopus 로고
    • RseB binding to the periplasmic domain of RseA modulates the RseA:sigmaE interaction in the cytoplasm and the availability of sigmaE: RNA polymerase
    • B. Collinet, H. Yuzawa, T. Chen, C. Herrera, and D. Missiakas RseB binding to the periplasmic domain of RseA modulates the RseA:sigmaE interaction in the cytoplasm and the availability of sigmaE: RNA polymerase J. Biol. Chem. 275 2000 33898 33904
    • (2000) J. Biol. Chem. , vol.275 , pp. 33898-33904
    • Collinet, B.1    Yuzawa, H.2    Chen, T.3    Herrera, C.4    Missiakas, D.5
  • 91
    • 77952694508 scopus 로고    scopus 로고
    • Structural basis for the negative regulation of bacterial stress response by RseB
    • D.Y. Kim, E. Kwon, J. Choi, H.-Y. Hwang, and K.K. Kim Structural basis for the negative regulation of bacterial stress response by RseB Protein Sci. 19 2010 1258 1263
    • (2010) Protein Sci. , vol.19 , pp. 1258-1263
    • Kim, D.Y.1    Kwon, E.2    Choi, J.3    Hwang, H.-Y.4    Kim, K.K.5
  • 92
    • 79952146175 scopus 로고    scopus 로고
    • Signal integration by DegS and RseB governs the σe-mediated envelope stress response in Escherichia coli
    • R. Chaba, B.M. Alba, M.S. Guo, J. Sohn, N. Ahuja, R.T. Sauer, and C.A. Gross Signal integration by DegS and RseB governs the σE-mediated envelope stress response in Escherichia coli Proc. Natl. Acad. Sci. USA 108 2011 2106 2111
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 2106-2111
    • Chaba, R.1    Alba, B.M.2    Guo, M.S.3    Sohn, J.4    Ahuja, N.5    Sauer, R.T.6    Gross, C.A.7
  • 93
    • 84877753334 scopus 로고    scopus 로고
    • Dual molecular signals mediate the bacterial response to outer-membrane stress
    • S. Lima, M.S. Guo, R. Chaba, C.A. Gross, and R.T. Sauer Dual molecular signals mediate the bacterial response to outer-membrane stress Science 340 2013 837 841
    • (2013) Science , vol.340 , pp. 837-841
    • Lima, S.1    Guo, M.S.2    Chaba, R.3    Gross, C.A.4    Sauer, R.T.5
  • 94
    • 14844309359 scopus 로고    scopus 로고
    • Changes in lipopolysaccharide structure induce the sigma(E)-dependent response of Escherichia coli
    • C. Tam, and D. Missiakas Changes in lipopolysaccharide structure induce the sigma(E)-dependent response of Escherichia coli Mol. Microbiol. 55 2005 1403 1412
    • (2005) Mol. Microbiol. , vol.55 , pp. 1403-1412
    • Tam, C.1    Missiakas, D.2
  • 95
    • 0015973774 scopus 로고
    • Protein composition of the outer membrane of Salmonella typhimurium: Effect of lipopolysaccharide mutations
    • G.F. Ames, E.N. Spudich, and H. Nikaido Protein composition of the outer membrane of Salmonella typhimurium: effect of lipopolysaccharide mutations J. Bacteriol. 117 1974 406 416
    • (1974) J. Bacteriol. , vol.117 , pp. 406-416
    • Ames, G.F.1    Spudich, E.N.2    Nikaido, H.3
  • 96
    • 0025005224 scopus 로고
    • Genetic analysis of lipopolysaccharide core biosynthesis by Escherichia coli K-12: Insertion mutagenesis of the rfa locus
    • E.A. Austin, J.F. Graves, L.A. Hite, C.T. Parker, and C.A. Schnaitman Genetic analysis of lipopolysaccharide core biosynthesis by Escherichia coli K-12: insertion mutagenesis of the rfa locus J. Bacteriol. 172 1990 5312 5325
    • (1990) J. Bacteriol. , vol.172 , pp. 5312-5325
    • Austin, E.A.1    Graves, J.F.2    Hite, L.A.3    Parker, C.T.4    Schnaitman, C.A.5
  • 97
    • 77955463665 scopus 로고    scopus 로고
    • Nonconsecutive disulfide bond formation in an essential integral outer membrane protein
    • N. Ruiz, S.-S. Chng, A. Hiniker, D. Kahne, and T.J. Silhavy Nonconsecutive disulfide bond formation in an essential integral outer membrane protein Proc. Natl. Acad. Sci. USA 107 2010 12245 12250
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 12245-12250
    • Ruiz, N.1    Chng, S.-S.2    Hiniker, A.3    Kahne, D.4    Silhavy, T.J.5
  • 98
    • 66249114348 scopus 로고    scopus 로고
    • Characterization of the role of the Escherichia coli periplasmic chaperone SurA using differential proteomics
    • D. Vertommen, N. Ruiz, P. Leverrier, T.J. Silhavy, and J.-F. Collet Characterization of the role of the Escherichia coli periplasmic chaperone SurA using differential proteomics Proteomics 9 2009 2432 2443
    • (2009) Proteomics , vol.9 , pp. 2432-2443
    • Vertommen, D.1    Ruiz, N.2    Leverrier, P.3    Silhavy, T.J.4    Collet, J.-F.5
  • 101
    • 33750297745 scopus 로고    scopus 로고
    • Conserved small non-coding RNAs that belong to the sigmaE regulon: Role in down-regulation of outer membrane proteins
    • J. Johansen, A.A. Rasmussen, M. Overgaard, and P. Valentin-Hansen Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins J. Mol. Biol. 364 2006 1 8
    • (2006) J. Mol. Biol. , vol.364 , pp. 1-8
    • Johansen, J.1    Rasmussen, A.A.2    Overgaard, M.3    Valentin-Hansen, P.4
  • 102
    • 33751383274 scopus 로고    scopus 로고
    • SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay
    • K. Papenfort, V. Pfeiffer, F. Mika, S. Lucchini, J.C.D. Hinton, and J. Vogel SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay Mol. Microbiol. 62 2006 1674 1688
    • (2006) Mol. Microbiol. , vol.62 , pp. 1674-1688
    • Papenfort, K.1    Pfeiffer, V.2    Mika, F.3    Lucchini, S.4    Hinton, J.C.D.5    Vogel, J.6
  • 103
    • 34249807616 scopus 로고    scopus 로고
    • SigmaE regulates and is regulated by a small RNA in Escherichia coli
    • K.M. Thompson, V.A. Rhodius, and S. Gottesman SigmaE regulates and is regulated by a small RNA in Escherichia coli J. Bacteriol. 189 2007 4243 4256
    • (2007) J. Bacteriol. , vol.189 , pp. 4243-4256
    • Thompson, K.M.1    Rhodius, V.A.2    Gottesman, S.3
  • 104
    • 45249100907 scopus 로고    scopus 로고
    • The extracytoplasmic stress factor, sigmaE, is required to maintain cell envelope integrity in Escherichia coli
    • J.D. Hayden, and S.E. Ades The extracytoplasmic stress factor, sigmaE, is required to maintain cell envelope integrity in Escherichia coli PLoS One 3 2008 e1573
    • (2008) PLoS One , vol.3 , pp. 1573
    • Hayden, J.D.1    Ades, S.E.2
  • 105
    • 79961239912 scopus 로고    scopus 로고
    • Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon
    • E.B. Gogol, V.A. Rhodius, K. Papenfort, J. Vogel, and C.A. Gross Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon Proc. Natl. Acad. Sci. USA 108 2011 12875 12880
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 12875-12880
    • Gogol, E.B.1    Rhodius, V.A.2    Papenfort, K.3    Vogel, J.4    Gross, C.A.5
  • 106
    • 82255173966 scopus 로고    scopus 로고
    • The unfolded protein response: From stress pathway to homeostatic regulation
    • P. Walter, and D. Ron The unfolded protein response: from stress pathway to homeostatic regulation Science 334 2011 1081 1086
    • (2011) Science , vol.334 , pp. 1081-1086
    • Walter, P.1    Ron, D.2
  • 107
    • 84863900963 scopus 로고    scopus 로고
    • New insights into translational regulation in the endoplasmic reticulum unfolded protein response
    • 10.1101/cshperspect.a012278
    • G.D. Pavitt, and D. Ron New insights into translational regulation in the endoplasmic reticulum unfolded protein response Cold Spring Harb. Perspectives Biol. 4 2012 10.1101/cshperspect.a012278
    • (2012) Cold Spring Harb. Perspectives Biol. , vol.4
    • Pavitt, G.D.1    Ron, D.2
  • 108
    • 84879155370 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress signaling: The microRNA connection
    • M. Maurel, and E. Chevet Endoplasmic reticulum stress signaling: the microRNA connection Am. J. Physiol. Cell Physiol. 304 2013 C1117 C1126
    • (2013) Am. J. Physiol. Cell Physiol. , vol.304
    • Maurel, M.1    Chevet, E.2
  • 109
    • 34249079154 scopus 로고    scopus 로고
    • Network motifs: Theory and experimental approaches
    • U. Alon Network motifs: theory and experimental approaches Nat. Rev. Genet. 8 2007 450 461
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 450-461
    • Alon, U.1
  • 110
    • 2942555282 scopus 로고    scopus 로고
    • Stochastic gene expression in fluctuating environments
    • M. Thattai, and A. Van Oudenaarden Stochastic gene expression in fluctuating environments Genetics 167 2004 523 530
    • (2004) Genetics , vol.167 , pp. 523-530
    • Thattai, M.1    Van Oudenaarden, A.2
  • 111
    • 33646175490 scopus 로고    scopus 로고
    • Regulated degradation is a mechanism for suppressing stochastic fluctuations in gene regulatory networks
    • H. El-Samad, and M. Khammash Regulated degradation is a mechanism for suppressing stochastic fluctuations in gene regulatory networks Biophys. J. 90 2006 3749 3761
    • (2006) Biophys. J. , vol.90 , pp. 3749-3761
    • El-Samad, H.1    Khammash, M.2
  • 112
    • 77956520011 scopus 로고    scopus 로고
    • Functional roles for noise in genetic circuits
    • A. Eldar, and M.B. Elowitz Functional roles for noise in genetic circuits Nature 467 2010 167 173
    • (2010) Nature , vol.467 , pp. 167-173
    • Eldar, A.1    Elowitz, M.B.2
  • 113
    • 70350336588 scopus 로고    scopus 로고
    • Architecture-dependent noise discriminates functionally analogous differentiation circuits
    • T. Caǧatay, M. Turcotte, M.B. Elowitz, J. Garcia-Ojalvo, and G.M. Süel Architecture-dependent noise discriminates functionally analogous differentiation circuits Cell 139 2009 512 522
    • (2009) Cell , vol.139 , pp. 512-522
    • Caǧatay, T.1    Turcotte, M.2    Elowitz, M.B.3    Garcia-Ojalvo, J.4    Süel, G.M.5
  • 115
    • 84874629638 scopus 로고    scopus 로고
    • Rate of environmental change determines stress response specificity
    • J.W. Young, J.C.W. Locke, and M.B. Elowitz Rate of environmental change determines stress response specificity Proc. Natl. Acad. Sci. USA 110 2013 4140 4145
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 4140-4145
    • Young, J.W.1    Locke, J.C.W.2    Elowitz, M.B.3
  • 116
    • 0031679433 scopus 로고    scopus 로고
    • Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigmaB regulon
    • M. Hecker, and U. Völker Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigmaB regulon Mol. Microbiol. 29 1998 1129 1136
    • (1998) Mol. Microbiol. , vol.29 , pp. 1129-1136
    • Hecker, M.1    Völker, U.2
  • 117
    • 35848954992 scopus 로고    scopus 로고
    • SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria
    • M. Hecker, J. Pané-Farré, and U. Völker SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria Annu. Rev. Microbiol. 61 2007 215 236
    • (2007) Annu. Rev. Microbiol. , vol.61 , pp. 215-236
    • Hecker, M.1    Pané-Farré, J.2    Völker, U.3
  • 118
    • 0027401048 scopus 로고
    • Bacillus subtilis sigma B is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase
    • A.K. Benson, and W.G. Haldenwang Bacillus subtilis sigma B is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase Proc. Natl. Acad. Sci. USA 90 1993 2330 2334
    • (1993) Proc. Natl. Acad. Sci. USA , vol.90 , pp. 2330-2334
    • Benson, A.K.1    Haldenwang, W.G.2
  • 119
    • 0030581172 scopus 로고    scopus 로고
    • Role of adenosine nucleotides in the regulation of a stress-response transcription factor in Bacillus subtilis
    • S. Alper, A. Dufour, D.A. Garsin, L. Duncan, and R. Losick Role of adenosine nucleotides in the regulation of a stress-response transcription factor in Bacillus subtilis J. Mol. Biol. 260 1996 165 177
    • (1996) J. Mol. Biol. , vol.260 , pp. 165-177
    • Alper, S.1    Dufour, A.2    Garsin, D.A.3    Duncan, L.4    Losick, R.5
  • 120
    • 0028299026 scopus 로고
    • Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV)
    • A. Dufour, and W.G. Haldenwang Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV) J. Bacteriol. 176 1994 1813 1820
    • (1994) J. Bacteriol. , vol.176 , pp. 1813-1820
    • Dufour, A.1    Haldenwang, W.G.2
  • 121
    • 0029007416 scopus 로고
    • Separate mechanisms activate sigma B of Bacillus subtilis in response to environmental and metabolic stresses
    • U. Voelker, A. Voelker, B. Maul, M. Hecker, A. Dufour, and W.G. Haldenwang Separate mechanisms activate sigma B of Bacillus subtilis in response to environmental and metabolic stresses J. Bacteriol. 177 1995 3771 3780
    • (1995) J. Bacteriol. , vol.177 , pp. 3771-3780
    • Voelker, U.1    Voelker, A.2    Maul, B.3    Hecker, M.4    Dufour, A.5    Haldenwang, W.G.6
  • 122
    • 10144255829 scopus 로고    scopus 로고
    • Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor
    • X. Yang, C.M. Kang, M.S. Brody, and C.W. Price Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor Genes Dev. 10 1996 2265 2275
    • (1996) Genes Dev. , vol.10 , pp. 2265-2275
    • Yang, X.1    Kang, C.M.2    Brody, M.S.3    Price, C.W.4
  • 123
    • 0033962203 scopus 로고    scopus 로고
    • A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the sigmaB transcription factor of Bacillus subtilis
    • K. Vijay, M.S. Brody, E. Fredlund, and C.W. Price A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the sigmaB transcription factor of Bacillus subtilis Mol. Microbiol. 35 2000 180 188
    • (2000) Mol. Microbiol. , vol.35 , pp. 180-188
    • Vijay, K.1    Brody, M.S.2    Fredlund, E.3    Price, C.W.4
  • 124
    • 4143126160 scopus 로고    scopus 로고
    • In vivo phosphorylation of partner switching regulators correlates with stress transmission in the environmental signaling pathway of Bacillus subtilis
    • T.-J. Kim, T.A. Gaidenko, and C.W. Price In vivo phosphorylation of partner switching regulators correlates with stress transmission in the environmental signaling pathway of Bacillus subtilis J. Bacteriol. 186 2004 6124 6132
    • (2004) J. Bacteriol. , vol.186 , pp. 6124-6132
    • Kim, T.-J.1    Gaidenko, T.A.2    Price, C.W.3
  • 125
    • 77955955391 scopus 로고    scopus 로고
    • The stressosome: Molecular architecture of a signalling hub
    • J. Marles-Wright, and R.J. Lewis The stressosome: molecular architecture of a signalling hub Biochem. Soc. Trans. 38 2010 928 933
    • (2010) Biochem. Soc. Trans. , vol.38 , pp. 928-933
    • Marles-Wright, J.1    Lewis, R.J.2
  • 126
    • 1842288543 scopus 로고    scopus 로고
    • Specific and general stress proteins in Bacillus subtilis-a two-deimensional protein electrophoresis study
    • J. Bernhardt, U. Völker, A. Völker, H. Antelmann, R. Schmid, H. Mach, and M. Hecker Specific and general stress proteins in Bacillus subtilis-a two-deimensional protein electrophoresis study Microbiology 143 1997 999 1017
    • (1997) Microbiology , vol.143 , pp. 999-1017
    • Bernhardt, J.1    Völker, U.2    Völker, A.3    Antelmann, H.4    Schmid, R.5    Mach, H.6    Hecker, M.7
  • 127
    • 77949915674 scopus 로고    scopus 로고
    • Interaction fidelity in two-component signaling
    • H. Szurmant, and J.A. Hoch Interaction fidelity in two-component signaling Curr. Opin. Microbiol. 13 2010 190 197
    • (2010) Curr. Opin. Microbiol. , vol.13 , pp. 190-197
    • Szurmant, H.1    Hoch, J.A.2
  • 128
    • 84877015880 scopus 로고    scopus 로고
    • Determinants of specificity in two-component signal transduction
    • A.I. Podgornaia, and M.T. Laub Determinants of specificity in two-component signal transduction Curr. Opin. Microbiol. 16 2013 156 162
    • (2013) Curr. Opin. Microbiol. , vol.16 , pp. 156-162
    • Podgornaia, A.I.1    Laub, M.T.2
  • 129
    • 44449112421 scopus 로고    scopus 로고
    • Specificity in two-component signal transduction pathways
    • M.T. Laub, and M. Goulian Specificity in two-component signal transduction pathways Annu. Rev. Genet. 41 2007 121 145
    • (2007) Annu. Rev. Genet. , vol.41 , pp. 121-145
    • Laub, M.T.1    Goulian, M.2
  • 130
    • 52649164147 scopus 로고    scopus 로고
    • Cross-talk suppression between the CpxA-CpxR and EnvZ-OmpR two-component systems in E coli
    • A. Siryaporn, and M. Goulian Cross-talk suppression between the CpxA-CpxR and EnvZ-OmpR two-component systems in E. coli Mol. Microbiol. 70 2008 494 506
    • (2008) Mol. Microbiol. , vol.70 , pp. 494-506
    • Siryaporn, A.1    Goulian, M.2
  • 131
    • 67449095110 scopus 로고    scopus 로고
    • Kinetic buffering of cross talk between bacterial two-component sensors
    • E.S. Groban, E.J. Clarke, H.M. Salis, S.M. Miller, and C.A. Voigt Kinetic buffering of cross talk between bacterial two-component sensors J. Mol. Biol. 390 2009 380 393
    • (2009) J. Mol. Biol. , vol.390 , pp. 380-393
    • Groban, E.S.1    Clarke, E.J.2    Salis, H.M.3    Miller, S.M.4    Voigt, C.A.5
  • 132
    • 78649704332 scopus 로고    scopus 로고
    • Systematic dissection and trajectory-scanning mutagenesis of the molecular interface that ensures specificity of two-component signaling pathways
    • E.J. Capra, B.S. Perchuk, E.A. Lubin, O. Ashenberg, J.M. Skerker, and M.T. Laub Systematic dissection and trajectory-scanning mutagenesis of the molecular interface that ensures specificity of two-component signaling pathways PLoS Genet. 6 2010 e1001220
    • (2010) PLoS Genet. , vol.6 , pp. 1001220
    • Capra, E.J.1    Perchuk, B.S.2    Lubin, E.A.3    Ashenberg, O.4    Skerker, J.M.5    Laub, M.T.6
  • 133
    • 84863622633 scopus 로고    scopus 로고
    • Adaptive mutations that prevent crosstalk enable the expansion of paralogous signaling protein families
    • E.J. Capra, B.S. Perchuk, J.M. Skerker, and M.T. Laub Adaptive mutations that prevent crosstalk enable the expansion of paralogous signaling protein families Cell 150 2012 222 232
    • (2012) Cell , vol.150 , pp. 222-232
    • Capra, E.J.1    Perchuk, B.S.2    Skerker, J.M.3    Laub, M.T.4
  • 134
    • 84883489489 scopus 로고    scopus 로고
    • Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling
    • A.I. Podgornaia, P. Casino, A. Marina, and M.T. Laub Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling Structure 21 2013 1636 1647
    • (2013) Structure , vol.21 , pp. 1636-1647
    • Podgornaia, A.I.1    Casino, P.2    Marina, A.3    Laub, M.T.4
  • 136
    • 78650643942 scopus 로고    scopus 로고
    • Evolving a robust signal transduction pathway from weak cross-talk
    • A. Siryaporn, B.S. Perchuk, M.T. Laub, and M. Goulian Evolving a robust signal transduction pathway from weak cross-talk Mol. Syst. Biol. 6 2010 452
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 452
    • Siryaporn, A.1    Perchuk, B.S.2    Laub, M.T.3    Goulian, M.4
  • 137
  • 138
    • 70350432754 scopus 로고    scopus 로고
    • The third pillar of bacterial signal transduction: Classification of the extracytoplasmic function (ECF) sigma factor protein family
    • A. Staroń, H. Sofia, S. Dietrich, L. Ulrich, H. Liesegang, and T. Mascher The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family Mol. Microbiol. 74 2009 557 581
    • (2009) Mol. Microbiol. , vol.74 , pp. 557-581
    • Staroń, A.1    Sofia, H.2    Dietrich, S.3    Ulrich, L.4    Liesegang, H.5    Mascher, T.6
  • 140
    • 81255127216 scopus 로고    scopus 로고
    • Regulated proteolysis in Gram-negative bacteria-how and when?
    • E. Gur, D. Biran, and E.Z. Ron Regulated proteolysis in Gram-negative bacteria-how and when? Nat. Rev. Microbiol. 9 2011 839 848
    • (2011) Nat. Rev. Microbiol. , vol.9 , pp. 839-848
    • Gur, E.1    Biran, D.2    Ron, E.Z.3
  • 141
    • 0026601663 scopus 로고
    • Proteases and protein degradation in Escherichia coli
    • M.R. Maurizi Proteases and protein degradation in Escherichia coli Experientia 48 1992 178 201
    • (1992) Experientia , vol.48 , pp. 178-201
    • Maurizi, M.R.1
  • 142
    • 79959389010 scopus 로고    scopus 로고
    • AAA+ proteases: ATP-fueled machines of protein destruction
    • R.T. Sauer, and T.A. Baker AAA+ proteases: ATP-fueled machines of protein destruction Annu. Rev. Biochem. 80 2011 587 612
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 587-612
    • Sauer, R.T.1    Baker, T.A.2
  • 143
    • 84881533533 scopus 로고    scopus 로고
    • Machines of destruction - AAA+ proteases and the adaptors that control them
    • E. Gur, R. Ottofueling, and D.A. Dougan Machines of destruction - AAA+ proteases and the adaptors that control them Subcell. Biochem. 66 2013 3 33
    • (2013) Subcell. Biochem. , vol.66 , pp. 3-33
    • Gur, E.1    Ottofueling, R.2    Dougan, D.A.3
  • 144
    • 84883575316 scopus 로고    scopus 로고
    • The Lon AAA+ protease
    • E. Gur The Lon AAA+ protease Subcell. Biochem. 66 2013 35 51
    • (2013) Subcell. Biochem. , vol.66 , pp. 35-51
    • Gur, E.1
  • 146
    • 0344824655 scopus 로고    scopus 로고
    • Proteolysis in bacterial regulatory circuits
    • S. Gottesman Proteolysis in bacterial regulatory circuits Annu. Rev. Cell Dev. Biol. 19 2003 565 587
    • (2003) Annu. Rev. Cell Dev. Biol. , vol.19 , pp. 565-587
    • Gottesman, S.1
  • 147
    • 80053226878 scopus 로고    scopus 로고
    • The RpoS-mediated general stress response in Escherichia coli
    • A. Battesti, N. Majdalani, and S. Gottesman The RpoS-mediated general stress response in Escherichia coli Annu. Rev. Microbiol. 65 2011 189 213
    • (2011) Annu. Rev. Microbiol. , vol.65 , pp. 189-213
    • Battesti, A.1    Majdalani, N.2    Gottesman, S.3
  • 148
    • 71749093772 scopus 로고    scopus 로고
    • Proteolysis of sigmaS (RpoS) and the general stress response in Escherichia coli
    • R. Hengge Proteolysis of sigmaS (RpoS) and the general stress response in Escherichia coli Res. Microbiol. 160 2009 667 676
    • (2009) Res. Microbiol. , vol.160 , pp. 667-676
    • Hengge, R.1
  • 149
    • 0029990928 scopus 로고    scopus 로고
    • The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli
    • A. Muffler, D. Fischer, S. Altuvia, G. Storz, and R. Hengge-Aronis The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli EMBO J. 15 1996 1333 1339
    • (1996) EMBO J. , vol.15 , pp. 1333-1339
    • Muffler, A.1    Fischer, D.2    Altuvia, S.3    Storz, G.4    Hengge-Aronis, R.5
  • 150
    • 0029983001 scopus 로고    scopus 로고
    • The response regulator SprE controls the stability of RpoS
    • L.A. Pratt, and T.J. Silhavy The response regulator SprE controls the stability of RpoS Proc. Natl. Acad. Sci. USA 93 1996 2488 2492
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 2488-2492
    • Pratt, L.A.1    Silhavy, T.J.2
  • 151
    • 0035281566 scopus 로고    scopus 로고
    • The RssB response regulator directly targets sigma(S) for degradation by ClpXP
    • Y. Zhou, S. Gottesman, J.R. Hoskins, M.R. Maurizi, and S. Wickner The RssB response regulator directly targets sigma(S) for degradation by ClpXP Genes Dev. 15 2001 627 637
    • (2001) Genes Dev. , vol.15 , pp. 627-637
    • Zhou, Y.1    Gottesman, S.2    Hoskins, J.R.3    Maurizi, M.R.4    Wickner, S.5
  • 152
    • 33645522854 scopus 로고    scopus 로고
    • Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli
    • A. Bougdour, S. Wickner, and S. Gottesman Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli Genes Dev. 20 2006 884 897
    • (2006) Genes Dev. , vol.20 , pp. 884-897
    • Bougdour, A.1    Wickner, S.2    Gottesman, S.3
  • 153
    • 41049111259 scopus 로고    scopus 로고
    • Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors
    • A. Bougdour, C. Cunning, P.J. Baptiste, T. Elliott, and S. Gottesman Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors Mol. Microbiol. 68 2008 298 313
    • (2008) Mol. Microbiol. , vol.68 , pp. 298-313
    • Bougdour, A.1    Cunning, C.2    Baptiste, P.J.3    Elliott, T.4    Gottesman, S.5
  • 155
    • 72449139712 scopus 로고    scopus 로고
    • Growth phase and (p)ppGpp control of IraD, a regulator of RpoS stability, in Escherichia coli
    • H. Merrikh, A.E. Ferrazzoli, and S.T. Lovett Growth phase and (p)ppGpp control of IraD, a regulator of RpoS stability, in Escherichia coli J. Bacteriol. 191 2009 7436 7446
    • (2009) J. Bacteriol. , vol.191 , pp. 7436-7446
    • Merrikh, H.1    Ferrazzoli, A.E.2    Lovett, S.T.3
  • 158
    • 38849103644 scopus 로고    scopus 로고
    • Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes
    • A. Martin, T.A. Baker, and R.T. Sauer Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes Nat. Struct. Mol. Biol. 15 2008 139 145
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 139-145
    • Martin, A.1    Baker, T.A.2    Sauer, R.T.3
  • 159
    • 80053299449 scopus 로고    scopus 로고
    • Stepwise unfolding of a β barrel protein by the AAA+ ClpXP protease
    • A.R. Nager, T.A. Baker, and R.T. Sauer Stepwise unfolding of a β barrel protein by the AAA+ ClpXP protease J. Mol. Biol. 413 2011 4 16
    • (2011) J. Mol. Biol. , vol.413 , pp. 4-16
    • Nager, A.R.1    Baker, T.A.2    Sauer, R.T.3
  • 160
    • 22244478079 scopus 로고    scopus 로고
    • Cellular DNA replicases: Components and dynamics at the replication fork
    • A. Johnson, and M. O'donnell Cellular DNA replicases: components and dynamics at the replication fork Annu. Rev. Biochem. 74 2005 283 315
    • (2005) Annu. Rev. Biochem. , vol.74 , pp. 283-315
    • Johnson, A.1    O'Donnell, M.2
  • 161
    • 0025355475 scopus 로고
    • Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme
    • Z. Tsuchihashi, and A. Kornberg Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme Proc. Natl. Acad. Sci. USA 87 1990 2516 2520
    • (1990) Proc. Natl. Acad. Sci. USA , vol.87 , pp. 2516-2520
    • Tsuchihashi, Z.1    Kornberg, A.2
  • 162
    • 0025354943 scopus 로고
    • Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III gamma subunit from within the tau subunit reading frame
    • A.L. Blinkowa, and J.R. Walker Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III gamma subunit from within the tau subunit reading frame Nucleic Acids Res. 18 1990 1725 1729
    • (1990) Nucleic Acids Res. , vol.18 , pp. 1725-1729
    • Blinkowa, A.L.1    Walker, J.R.2
  • 163
    • 0025303309 scopus 로고
    • The gamma subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting
    • A.M. Flower, and C.S. McHenry The gamma subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting Proc. Natl. Acad. Sci. USA 87 1990 3713 3717
    • (1990) Proc. Natl. Acad. Sci. USA , vol.87 , pp. 3713-3717
    • Flower, A.M.1    McHenry, C.S.2
  • 164
    • 84887284045 scopus 로고    scopus 로고
    • Critical clamp loader processing by an essential AAA+ protease in Caulobacter crescentus
    • R.H. Vass, and P. Chien Critical clamp loader processing by an essential AAA+ protease in Caulobacter crescentus Proc. Natl. Acad. Sci. USA 110 2013 18138 18143
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 18138-18143
    • Vass, R.H.1    Chien, P.2
  • 165
    • 13444306170 scopus 로고    scopus 로고
    • Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing
    • J.A. Kenniston, T.A. Baker, and R.T. Sauer Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing Proc. Natl. Acad. Sci. USA 102 2005 1390 1395
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 1390-1395
    • Kenniston, J.A.1    Baker, T.A.2    Sauer, R.T.3
  • 166
    • 79953888421 scopus 로고    scopus 로고
    • Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine
    • M.-E. Aubin-Tam, A.O. Olivares, R.T. Sauer, T.A. Baker, and M.J. Lang Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine Cell 145 2011 257 267
    • (2011) Cell , vol.145 , pp. 257-267
    • Aubin-Tam, M.-E.1    Olivares, A.O.2    Sauer, R.T.3    Baker, T.A.4    Lang, M.J.5
  • 168
    • 84877693301 scopus 로고    scopus 로고
    • Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit
    • P.H.-M. Too, J. Erales, J.D. Simen, A. Marjanovic, and P. Coffino Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit J. Biol. Chem. 288 2013 13243 13257
    • (2013) J. Biol. Chem. , vol.288 , pp. 13243-13257
    • Too, P.H.-M.1    Erales, J.2    Simen, J.D.3    Marjanovic, A.4    Coffino, P.5
  • 169
    • 28544434064 scopus 로고    scopus 로고
    • A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-kappaB
    • L. Tian, R.A. Holmgren, and A. Matouschek A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-kappaB Nat. Struct. Mol. Biol. 12 2005 1045 1053
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , pp. 1045-1053
    • Tian, L.1    Holmgren, R.A.2    Matouschek, A.3
  • 170
    • 0027980321 scopus 로고
    • The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B
    • V.J. Palombella, O.J. Rando, A.L. Goldberg, and T. Maniatis The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B Cell 78 1994 773 785
    • (1994) Cell , vol.78 , pp. 773-785
    • Palombella, V.J.1    Rando, O.J.2    Goldberg, A.L.3    Maniatis, T.4
  • 171
    • 0031587830 scopus 로고    scopus 로고
    • Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor
    • P. Aza-Blanc, F.A. Ramírez-Weber, M.P. Laget, C. Schwartz, and T.B. Kornberg Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor Cell 89 1997 1043 1053
    • (1997) Cell , vol.89 , pp. 1043-1053
    • Aza-Blanc, P.1    Ramírez-Weber, F.A.2    Laget, M.P.3    Schwartz, C.4    Kornberg, T.B.5
  • 172
    • 0030444320 scopus 로고    scopus 로고
    • Proteases and their targets in Escherichia coli
    • S. Gottesman Proteases and their targets in Escherichia coli Annu. Rev. Genet. 30 1996 465 506
    • (1996) Annu. Rev. Genet. , vol.30 , pp. 465-506
    • Gottesman, S.1
  • 173
    • 50049083221 scopus 로고    scopus 로고
    • Recognition of misfolded proteins by Lon, a AAA(+) protease
    • E. Gur, and R.T. Sauer Recognition of misfolded proteins by Lon, a AAA(+) protease Genes Dev. 22 2008 2267 2277
    • (2008) Genes Dev. , vol.22 , pp. 2267-2277
    • Gur, E.1    Sauer, R.T.2
  • 174
    • 84856155231 scopus 로고    scopus 로고
    • Protein unfolding and degradation by the AAA+ Lon protease
    • E. Gur, M. Vishkautzan, and R.T. Sauer Protein unfolding and degradation by the AAA+ Lon protease Protein Sci. 21 2012 268 278
    • (2012) Protein Sci. , vol.21 , pp. 268-278
    • Gur, E.1    Vishkautzan, M.2    Sauer, R.T.3
  • 175
    • 84891165714 scopus 로고    scopus 로고
    • Roles of the N domain of the AAA+ Lon protease in substrate recognition, allosteric regulation and chaperone activity
    • M.L. Wohlever, T.A. Baker, and R.T. Sauer Roles of the N domain of the AAA+ Lon protease in substrate recognition, allosteric regulation and chaperone activity Mol. Microbiol. 91 2014 66 78
    • (2014) Mol. Microbiol. , vol.91 , pp. 66-78
    • Wohlever, M.L.1    Baker, T.A.2    Sauer, R.T.3
  • 176
    • 73249125234 scopus 로고    scopus 로고
    • Degrons in protein substrates program the speed and operating efficiency of the AAA+ Lon proteolytic machine
    • E. Gur, and R.T. Sauer Degrons in protein substrates program the speed and operating efficiency of the AAA+ Lon proteolytic machine Proc. Natl. Acad. Sci. USA 106 2009 18503 18508
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 18503-18508
    • Gur, E.1    Sauer, R.T.2
  • 177
    • 0019842601 scopus 로고
    • Role of sulA and sulB in filamentation by lon mutants of Escherichia coli K-12
    • S. Gottesman, E. Halpern, and P. Trisler Role of sulA and sulB in filamentation by lon mutants of Escherichia coli K-12 J. Bacteriol. 148 1981 265 273
    • (1981) J. Bacteriol. , vol.148 , pp. 265-273
    • Gottesman, S.1    Halpern, E.2    Trisler, P.3
  • 178
    • 0020651799 scopus 로고
    • Protein degradation in Escherichia coli: The lon gene controls the stability of sulA protein
    • S. Mizusawa, and S. Gottesman Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein Proc. Natl. Acad. Sci. USA 80 1983 358 362
    • (1983) Proc. Natl. Acad. Sci. USA , vol.80 , pp. 358-362
    • Mizusawa, S.1    Gottesman, S.2
  • 179
    • 0033032942 scopus 로고    scopus 로고
    • Substrate sequestration by a proteolytically inactive Lon mutant
    • L. Van Melderen, and S. Gottesman Substrate sequestration by a proteolytically inactive Lon mutant Proc. Natl. Acad. Sci. USA 96 1999 6064 6071
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 6064-6071
    • Van Melderen, L.1    Gottesman, S.2
  • 180
    • 84878450345 scopus 로고    scopus 로고
    • Distinct quaternary structures of the AAA+ Lon protease control substrate degradation
    • E.F. Vieux, M.L. Wohlever, J.Z. Chen, R.T. Sauer, and T.A. Baker Distinct quaternary structures of the AAA+ Lon protease control substrate degradation Proc. Natl. Acad. Sci. USA 110 2013 E2002 2008
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 2002-2008
    • Vieux, E.F.1    Wohlever, M.L.2    Chen, J.Z.3    Sauer, R.T.4    Baker, T.A.5
  • 181
    • 84890232742 scopus 로고    scopus 로고
    • A Mutation in the N domain of Escherichia coli Lon stabilizes dodecamers and selectively alters degradation of model substrates
    • M.L. Wohlever, T.A. Baker, and R.T. Sauer A Mutation in the N domain of Escherichia coli Lon stabilizes dodecamers and selectively alters degradation of model substrates J. Bacteriol. 195 2013 5622 5628
    • (2013) J. Bacteriol. , vol.195 , pp. 5622-5628
    • Wohlever, M.L.1    Baker, T.A.2    Sauer, R.T.3
  • 182
    • 80053266375 scopus 로고    scopus 로고
    • Regulation of DnaA assembly and activity: Taking directions from the genome
    • A.C. Leonard, and J.E. Grimwade Regulation of DnaA assembly and activity: taking directions from the genome Annu. Rev. Microbiol. 65 2011 19 35
    • (2011) Annu. Rev. Microbiol. , vol.65 , pp. 19-35
    • Leonard, A.C.1    Grimwade, J.E.2
  • 183
    • 84859007974 scopus 로고    scopus 로고
    • Regulation of chromosomal replication in Caulobacter crescentus
    • J. Collier Regulation of chromosomal replication in Caulobacter crescentus Plasmid 67 2012 76 87
    • (2012) Plasmid , vol.67 , pp. 76-87
    • Collier, J.1
  • 184
    • 14544304071 scopus 로고    scopus 로고
    • Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus
    • B. Gorbatyuk, and G.T. Marczynski Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus Mol. Microbiol. 55 2005 1233 1245
    • (2005) Mol. Microbiol. , vol.55 , pp. 1233-1245
    • Gorbatyuk, B.1    Marczynski, G.T.2
  • 185
    • 53849100653 scopus 로고    scopus 로고
    • SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus
    • J.A. Lesley, and L. Shapiro SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus J. Bacteriol. 190 2008 6867 6880
    • (2008) J. Bacteriol. , vol.190 , pp. 6867-6880
    • Lesley, J.A.1    Shapiro, L.2
  • 186
    • 79960180892 scopus 로고    scopus 로고
    • Modularity of the bacterial cell cycle enables independent spatial and temporal control of DNA replication
    • K. Jonas, Y.E. Chen, and M.T. Laub Modularity of the bacterial cell cycle enables independent spatial and temporal control of DNA replication Curr. Biol. 21 2011 1092 1101
    • (2011) Curr. Biol. , vol.21 , pp. 1092-1101
    • Jonas, K.1    Chen, Y.E.2    Laub, M.T.3
  • 187
    • 84881152360 scopus 로고    scopus 로고
    • Proteotoxic stress induces a cell-cycle arrest by stimulating Lon to degrade the replication initiator DnaA
    • K. Jonas, J. Liu, P. Chien, and M.T. Laub Proteotoxic stress induces a cell-cycle arrest by stimulating Lon to degrade the replication initiator DnaA Cell 154 2013 623 636
    • (2013) Cell , vol.154 , pp. 623-636
    • Jonas, K.1    Liu, J.2    Chien, P.3    Laub, M.T.4
  • 188
    • 84871781561 scopus 로고    scopus 로고
    • Hsp33 controls elongation factor-Tu stability and allows Escherichia coli growth in the absence of the major DnaK and trigger factor chaperones
    • N. Bruel, M.-P. Castanié-Cornet, A.-M. Cirinesi, G. Koningstein, C. Georgopoulos, J. Luirink, and P. Genevaux Hsp33 controls elongation factor-Tu stability and allows Escherichia coli growth in the absence of the major DnaK and trigger factor chaperones J. Biol. Chem. 287 2012 44435 44446
    • (2012) J. Biol. Chem. , vol.287 , pp. 44435-44446
    • Bruel, N.1    Castanié-Cornet, M.-P.2    Cirinesi, A.-M.3    Koningstein, G.4
  • 190
  • 191
    • 81955167411 scopus 로고    scopus 로고
    • Persistence: Mechanisms for triggering and enhancing phenotypic variability
    • N.Q. Balaban Persistence: mechanisms for triggering and enhancing phenotypic variability Curr. Opin. Genet. Dev. 21 2011 768 775
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 768-775
    • Balaban, N.Q.1
  • 192
    • 84872241785 scopus 로고    scopus 로고
    • Bacterial persistence and toxin-antitoxin loci
    • K. Gerdes, and E. Maisonneuve Bacterial persistence and toxin-antitoxin loci Annu. Rev. Microbiol. 66 2012 103 123
    • (2012) Annu. Rev. Microbiol. , vol.66 , pp. 103-123
    • Gerdes, K.1    Maisonneuve, E.2
  • 193
    • 84883342218 scopus 로고    scopus 로고
    • (p)ppGpp Controls bacterial persistence by stochastic induction of toxin-antitoxin activity
    • E. Maisonneuve, M. Castro-Camargo, and K. Gerdes (p)ppGpp Controls bacterial persistence by stochastic induction of toxin-antitoxin activity Cell 154 2013 1140 1150
    • (2013) Cell , vol.154 , pp. 1140-1150
    • Maisonneuve, E.1    Castro-Camargo, M.2    Gerdes, K.3
  • 194
    • 33748058888 scopus 로고    scopus 로고
    • Bistability in bacteria
    • D. Dubnau, and R. Losick Bistability in bacteria Mol. Microbiol. 61 2006 564 572
    • (2006) Mol. Microbiol. , vol.61 , pp. 564-572
    • Dubnau, D.1    Losick, R.2
  • 197
    • 45549085296 scopus 로고    scopus 로고
    • Predictive behavior within microbial genetic networks
    • I. Tagkopoulos, Y.-C. Liu, and S. Tavazoie Predictive behavior within microbial genetic networks Science 320 2008 1313 1317
    • (2008) Science , vol.320 , pp. 1313-1317
    • Tagkopoulos, I.1    Liu, Y.-C.2    Tavazoie, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.