-
1
-
-
0033533381
-
Self-processing of FtsH and its implication for the cleavage specificity of this protease
-
Akiyama Y. 1999. Self-processing of FtsH and its implication for the cleavage specificity of this protease. Biochemistry 38:11693-99
-
(1999)
Biochemistry
, vol.38
, pp. 11693-11699
-
-
Akiyama, Y.1
-
2
-
-
0037062428
-
Proton-motive force stimulates the proteolytic activity of FtsH, a membrane-bound ATP-dependent protease in Escherichia coli
-
Akiyama Y. 2002. Proton-motive force stimulates the proteolytic activity of FtsH, a membrane-bound ATP-dependent protease in Escherichia coli. Proc. Natl. Acad. Sci. USA 99:8066-71
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 8066-8071
-
-
Akiyama, Y.1
-
4
-
-
0034254272
-
Roles of multimerization and membrane association in the proteolytic functions of FtsH (HflB)
-
Akiyama Y, Ito K. 2000. Roles of multimerization and membrane association in the proteolytic functions of FtsH (HflB). EMBO J. 19:3888-95
-
(2000)
EMBO J.
, vol.19
, pp. 3888-3895
-
-
Akiyama, Y.1
Ito, K.2
-
5
-
-
0035954369
-
Roles of homooligomerization and membrane association in ATPase and proteolytic activities of FtsH in vitro
-
Akiyama Y, Ito K. 2001. Roles of homooligomerization and membrane association in ATPase and proteolytic activities of FtsH in vitro. Biochemistry 40:7687-93
-
(2001)
Biochemistry
, vol.40
, pp. 7687-7693
-
-
Akiyama, Y.1
Ito, K.2
-
6
-
-
0038043180
-
Reconstitution of membrane proteolysis by FtsH
-
Akiyama Y, Ito K. 2003. Reconstitution of membrane proteolysis by FtsH. J. Biol. Chem. 278:18146-53
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 18146-18153
-
-
Akiyama, Y.1
Ito, K.2
-
7
-
-
84944047110
-
FtsH protease
-
ed. AJ Barrett, ND Rawlings, JF Woessner. San Diego: Academic. 2nd ed.
-
Akiyama Y, Ito K, Ogura T. 2004. FtsH protease. Handbook of Proteolytic Enzymes, ed. AJ Barrett, ND Rawlings, JF Woessner, pp. 794-98. San Diego: Academic. 2nd ed.
-
(2004)
Handbook of Proteolytic Enzymes
, pp. 794-798
-
-
Akiyama, Y.1
Ito, K.2
Ogura, T.3
-
8
-
-
0030577385
-
Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coli
-
Akiyama Y, Kihara A, Ito K. 1996. Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coli. FEBS Lett. 399:26-28
-
(1996)
FEBS Lett.
, vol.399
, pp. 26-28
-
-
Akiyama, Y.1
Kihara, A.2
Ito, K.3
-
9
-
-
0032575554
-
Roles of the periplasmic domain of Escherichia coli FtsH (HflB) in protein interactions and activity modulation
-
Akiyama Y, Kihara A, Mori H, Ogura T, Ito K. 1998. Roles of the periplasmic domain of Escherichia coli FtsH (HflB) in protein interactions and activity modulation. J. Biol. Chem. 273:22326-33
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 22326-22333
-
-
Akiyama, Y.1
Kihara, A.2
Mori, H.3
Ogura, T.4
Ito, K.5
-
10
-
-
0029989855
-
FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins
-
Akiyama Y, Kihara A, Tokuda H, Ito K. 1996. FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins. J. Biol. Chem. 271:31196-201
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 31196-31201
-
-
Akiyama, Y.1
Kihara, A.2
Tokuda, H.3
Ito, K.4
-
11
-
-
0027983603
-
Involvement of FtsH in protein assembly into and through the membrane. I. Mutations that reduce retention efficiency of a cytoplasmic reporter
-
Akiyama Y, Ogura T, Ito K. 1994. Involvement of FtsH in protein assembly into and through the membrane. I. Mutations that reduce retention efficiency of a cytoplasmic reporter. J. Biol Chem. 269:5218-24
-
(1994)
J. Biol Chem.
, vol.269
, pp. 5218-5224
-
-
Akiyama, Y.1
Ogura, T.2
Ito, K.3
-
12
-
-
0028033333
-
Involvement of FtsH in protein assembly into and through the membrane. II. Dominant mutations affecting FtsH functions
-
Akiyama Y, Shirai Y, Ito K. 1994. Involvement of FtsH in protein assembly into and through the membrane. II. Dominant mutations affecting FtsH functions. J. Biol. Chem. 269:5225-29
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 5225-5229
-
-
Akiyama, Y.1
Shirai, Y.2
Ito, K.3
-
13
-
-
0028840312
-
FtsH, a membrane-bound ATPase, forms a complex in the cytoplasmic membrane of Escherichia coli
-
Akiyama Y, Yoshihisa T, Ito K. 1995. FtsH, a membrane-bound ATPase, forms a complex in the cytoplasmic membrane of Escherichia coli. J. Biol. Chem. 270:23485-90
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 23485-23490
-
-
Akiyama, Y.1
Yoshihisa, T.2
Ito, K.3
-
14
-
-
0037009120
-
Membrane protein degradation by AAA proteases in mitochondria
-
Arnold I, Langer T. 2002. Membrane protein degradation by AAA proteases in mitochondria. Biochim. Biophys. Acta 1592:89-96
-
(2002)
Biochim. Biophys. Acta
, vol.1592
, pp. 89-96
-
-
Arnold, I.1
Langer, T.2
-
15
-
-
0034079766
-
FtsH recognizes proteins with unfolded structure and hydrolyzes the carboxyl side of hydrophobic residues
-
Asahara Y, Atsuta K, Motohashi K, Taguchi H, Yohda M, Yoshida M. 2000. FtsH recognizes proteins with unfolded structure and hydrolyzes the carboxyl side of hydrophobic residues. J. Biochem. 127:931-37
-
(2000)
J. Biochem.
, vol.127
, pp. 931-937
-
-
Asahara, Y.1
Atsuta, K.2
Motohashi, K.3
Taguchi, H.4
Yohda, M.5
Yoshida, M.6
-
16
-
-
0036785582
-
A structure for the yeast prohibitin complex: Structure prediction and evidence from chemical crosslinking and mass spectrometry
-
Back JW, Sanz MA, De Jong L, De Koning LJ, Nijtmans LG, et al. 2002. A structure for the yeast prohibitin complex: structure prediction and evidence from chemical crosslinking and mass spectrometry. Protein Sci. 11:2471-78
-
(2002)
Protein Sci.
, vol.11
, pp. 2471-2478
-
-
Back, J.W.1
Sanz, M.A.2
De Jong, L.3
De Koning, L.J.4
Nijtmans, L.G.5
-
17
-
-
0022477617
-
HflB, a new Escherichia coli locus regulating lysogeny and the level of bacteriophage lambda CII protein
-
Banuett F, Hoyt MA, McFarlane L, Echols H, Herskowitz I. 1986. hflB, a new Escherichia coli locus regulating lysogeny and the level of bacteriophage lambda CII protein. J. Mol. Biol. 187:213-24
-
(1986)
J. Mol. Biol.
, vol.187
, pp. 213-224
-
-
Banuett, F.1
Hoyt, M.A.2
McFarlane, L.3
Echols, H.4
Herskowitz, I.5
-
18
-
-
0026544881
-
Escherichia coli mutant Y16 is a double mutant carrying thermosensitive ftsH and ftsI mutations
-
Begg KJ, Tomoyasu T, Donachie WD, Khattar M, Niki H, et al. 1992. Escherichia coli mutant Y16 is a double mutant carrying thermosensitive ftsH and ftsI mutations. J. Bacteriol. 174:2416-17
-
(1992)
J. Bacteriol.
, vol.174
, pp. 2416-2417
-
-
Begg, K.J.1
Tomoyasu, T.2
Donachie, W.D.3
Khattar, M.4
Niki, H.5
-
19
-
-
0035937480
-
An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease
-
Bertani D, Oppenheim AB, Narberhaus F. 2001. An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease. FEBS Lett. 493:17-20
-
(2001)
FEBS Lett.
, vol.493
, pp. 17-20
-
-
Bertani, D.1
Oppenheim, A.B.2
Narberhaus, F.3
-
20
-
-
0042318746
-
Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease
-
Bruckner RC, Gunyuzlu PL, Stein RL. 2003. Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease. Biochemistry 42:10843-52
-
(2003)
Biochemistry
, vol.42
, pp. 10843-10852
-
-
Bruckner, R.C.1
Gunyuzlu, P.L.2
Stein, R.L.3
-
21
-
-
0034596029
-
The FtsJ/RrmJ heat shock protein of Escherichia coli is a 2 3 S ribosomal RNA methyltransferase
-
Caldas T, Binet E, Bouloc P, Costa A, Desgres J, Richarme G. 2000. The FtsJ/RrmJ heat shock protein of Escherichia coli is a 2 3 S ribosomal RNA methyltransferase. J. Biol. Chem. 275:16414-19
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 16414-16419
-
-
Caldas, T.1
Binet, E.2
Bouloc, P.3
Costa, A.4
Desgres, J.5
Richarme, G.6
-
22
-
-
0024110776
-
Cleavage of the cII protein of phage lambda by purified HflA protease: Control of the switch between lysis and lysogeny
-
Cheng HH, Muhlrad PJ, Hoyt MA, Echols H. 1988. Cleavage of the cII protein of phage lambda by purified HflA protease: control of the switch between lysis and lysogeny. Proc. Natl. Acad. Sci. USA 85:7882-86
-
(1988)
Proc. Natl. Acad. Sci. USA
, vol.85
, pp. 7882-7886
-
-
Cheng, H.H.1
Muhlrad, P.J.2
Hoyt, M.A.3
Echols, H.4
-
23
-
-
0036720126
-
Membrane protein degradation by FtsH can be initiated from either end
-
Chiba S, Akiyama Y, Ito K. 2002. Membrane protein degradation by FtsH can be initiated from either end. J. Bacteriol. 184:4775-82
-
(2002)
J. Bacteriol.
, vol.184
, pp. 4775-4782
-
-
Chiba, S.1
Akiyama, Y.2
Ito, K.3
-
24
-
-
0034231476
-
Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis
-
Chiba S, Akiyama Y, Mori H, Matsuo E, Ito K. 2000. Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis. EMBO Rep. 1:47-52
-
(2000)
EMBO Rep.
, vol.1
, pp. 47-52
-
-
Chiba, S.1
Akiyama, Y.2
Mori, H.3
Matsuo, E.4
Ito, K.5
-
25
-
-
0030928663
-
SpoVM, a small protein essential to development in Bacillus subtilis, interacts with the ATP-dependent protease FtsH
-
Cutting S, Anderson M, Lysenko E, Page A, Tomoyasu T, et al. 1997. SpoVM, a small protein essential to development in Bacillus subtilis, interacts with the ATP-dependent protease FtsH. J. Bacteriol. 179:5534-42
-
(1997)
J. Bacteriol.
, vol.179
, pp. 5534-5542
-
-
Cutting, S.1
Anderson, M.2
Lysenko, E.3
Page, A.4
Tomoyasu, T.5
-
26
-
-
0031033658
-
The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion
-
Deuerling E, Mogk A, Richter C, Purucker M, Schumann W. 1997. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Mol. Microbiol. 23:921-33
-
(1997)
Mol. Microbiol.
, vol.23
, pp. 921-933
-
-
Deuerling, E.1
Mogk, A.2
Richter, C.3
Purucker, M.4
Schumann, W.5
-
27
-
-
0037010120
-
AAA+ proteins and substrate recognition, it all depends on their partner in crime
-
Dougan DA, Mogk A, Zeth K, Turgay K, Bukau B. 2002. AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett. 529:6-10
-
(2002)
FEBS Lett.
, vol.529
, pp. 6-10
-
-
Dougan, D.A.1
Mogk, A.2
Zeth, K.3
Turgay, K.4
Bukau, B.5
-
28
-
-
0036225047
-
The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus
-
Fischer B, Rummel G, Aldridge P, Jenal U. 2002. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus. Mol. Microbiol. 44:461-78
-
(2002)
Mol. Microbiol.
, vol.44
, pp. 461-478
-
-
Fischer, B.1
Rummel, G.2
Aldridge, P.3
Jenal, U.4
-
29
-
-
0016198523
-
Fine structure mapping, complementation, and physiology of Escherichia coli hfl mutants
-
Gautsch JW, Wulff DL. 1974. Fine structure mapping, complementation, and physiology of Escherichia coli hfl mutants. Genetics 77:435-48
-
(1974)
Genetics
, vol.77
, pp. 435-448
-
-
Gautsch, J.W.1
Wulff, D.L.2
-
30
-
-
1642524483
-
Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons
-
Griffith KL, Shah IM, Wolf RE Jr. 2004. Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. Mol. Microbiol. 51:1801-16
-
(2004)
Mol. Microbiol.
, vol.51
, pp. 1801-1816
-
-
Griffith, K.L.1
Shah, I.M.2
Wolf Jr., R.E.3
-
31
-
-
0028853562
-
Regulation of the heat-shock response depends on divalent metal ions in an hflB mutant of Escherichia coli
-
Herman C, Lecat S, D'Ari R, Bouloc P. 1995. Regulation of the heat-shock response depends on divalent metal ions in an hflB mutant of Escherichia coli. Mol. Microbiol. 18:247-55
-
(1995)
Mol. Microbiol.
, vol.18
, pp. 247-255
-
-
Herman, C.1
Lecat, S.2
D'Ari, R.3
Bouloc, P.4
-
32
-
-
0027364005
-
Cell growth and lambda phage development controlled by the same essential Escherichia coli gene, ftsH/hflB
-
Herman C, Ogura T, Tomoyasu T, Hiraga S, Akiyama Y, et al. 1993. Cell growth and lambda phage development controlled by the same essential Escherichia coli gene, ftsH/hflB. Proc. Natl. Acad. Sci. USA 90:10861-65
-
(1993)
Proc. Natl. Acad. Sci. USA
, vol.90
, pp. 10861-10865
-
-
Herman, C.1
Ogura, T.2
Tomoyasu, T.3
Hiraga, S.4
Akiyama, Y.5
-
33
-
-
0344211512
-
Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH
-
Herman C, Prakash S, Lu CZ, Matouschek A, Gross CA. 2003. Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol. Cell 11:659-69
-
(2003)
Mol. Cell
, vol.11
, pp. 659-669
-
-
Herman, C.1
Prakash, S.2
Lu, C.Z.3
Matouschek, A.4
Gross, C.A.5
-
34
-
-
2642666491
-
Degradation of carboxyterminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH)
-
Herman C, Thevenet D, Bouloc P, Walker GC, D'Ari R. 1998. Degradation of carboxyterminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 12:1348-55
-
(1998)
Genes Dev.
, vol.12
, pp. 1348-1355
-
-
Herman, C.1
Thevenet, D.2
Bouloc, P.3
Walker, G.C.4
D'Ari, R.5
-
35
-
-
0028985616
-
Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB
-
Herman C, Thevenet D, D'Ari R, Bouloc P. 1995. Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc. Natl. Acad. Sci. USA 92:3516-20
-
(1995)
Proc. Natl. Acad. Sci. USA
, vol.92
, pp. 3516-3520
-
-
Herman, C.1
Thevenet, D.2
D'Ari, R.3
Bouloc, P.4
-
36
-
-
0031036515
-
The HflB protease of Escherichia coli degrades its inhibitor lambda cIII
-
Herman C, Thevenet D, D'Ari R, Bouloc P. 1997. The HflB protease of Escherichia coli degrades its inhibitor lambda cIII. J. Bacteriol. 179:358-63
-
(1997)
J. Bacteriol.
, vol.179
, pp. 358-363
-
-
Herman, C.1
Thevenet, D.2
D'Ari, R.3
Bouloc, P.4
-
37
-
-
0020428339
-
Control of phage lambda development by stability and synthesis of cII protein: Role of the viral cIII and host hflA, himA and himD genes
-
Hoyt MA, Knight DM, Das A, Miller HI, Echols H. 1982. Control of phage lambda development by stability and synthesis of cII protein: role of the viral cIII and host hflA, himA and himD genes. Cell 31:565-73
-
(1982)
Cell
, vol.31
, pp. 565-573
-
-
Hoyt, M.A.1
Knight, D.M.2
Das, A.3
Miller, H.I.4
Echols, H.5
-
38
-
-
0034882038
-
Defective plasmid partition in ftsH mutants of Escherichia coli
-
Inagawa T, Kato J, Niki H, Karata K, Ogura T. 2001. Defective plasmid partition in ftsH mutants of Escherichia coli. Mol. Genet. Genomics 265:755-62
-
(2001)
Mol. Genet. Genomics
, vol.265
, pp. 755-762
-
-
Inagawa, T.1
Kato, J.2
Niki, H.3
Karata, K.4
Ogura, T.5
-
39
-
-
0030613795
-
Synergistic roles of HsIVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli
-
Kanemori M, Nishihara K, Yanagi H, Yura T. 1997. Synergistic roles of HsIVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J. Bacteriol. 179:7219-25
-
(1997)
J. Bacteriol.
, vol.179
, pp. 7219-7225
-
-
Kanemori, M.1
Nishihara, K.2
Yanagi, H.3
Yura, T.4
-
40
-
-
0033618309
-
Marked instability of the sigma(32) heat shock transcription factor at high temperature. Implications for heat shock regulation
-
Kanemori M, Yanagi H, Yura T. 1999. Marked instability of the sigma(32) heat shock transcription factor at high temperature. Implications for heat shock regulation. J. Biol. Chem. 274:22002-7
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 22002-22007
-
-
Kanemori, M.1
Yanagi, H.2
Yura, T.3
-
41
-
-
0033543650
-
Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsH
-
Karata K, Inagawa T, Wilkinson AJ, Tatsuta T, Ogura T. 1999. Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsH. J. Biol. Chem. 274:26225-32
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 26225-26232
-
-
Karata, K.1
Inagawa, T.2
Wilkinson, A.J.3
Tatsuta, T.4
Ogura, T.5
-
42
-
-
0035116848
-
Probing the mechanism of ATP hydrolysis and substrate translocation in the AAA protease FtsH by modelling and mutagenesis
-
Karata K, Verma CS, Wilkinson AJ, Ogura T. 2001. Probing the mechanism of ATP hydrolysis and substrate translocation in the AAA protease FtsH by modelling and mutagenesis. Mol. Microbiol. 39:890-903
-
(2001)
Mol. Microbiol.
, vol.39
, pp. 890-903
-
-
Karata, K.1
Verma, C.S.2
Wilkinson, A.J.3
Ogura, T.4
-
43
-
-
0344012569
-
Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease
-
Kaser M, Kambacheld M, Kisters-Woike B, Langer T. 2003. Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease. J. Biol. Chem. 278:46414-45
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 46414-46445
-
-
Kaser, M.1
Kambacheld, M.2
Kisters-Woike, B.3
Langer, T.4
-
44
-
-
0029017127
-
FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit
-
Kihara A, Akiyama Y, Ito K. 1995. FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. Proc. Natl. Acad. Sci. USA 92:4532-36
-
(1995)
Proc. Natl. Acad. Sci. USA
, vol.92
, pp. 4532-4536
-
-
Kihara, A.1
Akiyama, Y.2
Ito, K.3
-
45
-
-
0029910627
-
A protease complex in the Escherichia coli plasma membrane: HflKC (HflA) forms a complex with FtsH (HflB), regulating its proteolytic activity against SecY
-
Kihara A, Akiyama Y, Ito K. 1996. A protease complex in the Escherichia coli plasma membrane: HflKC (HflA) forms a complex with FtsH (HflB), regulating its proteolytic activity against SecY. EMBO J. 15:6122-31
-
(1996)
EMBO J.
, vol.15
, pp. 6122-6131
-
-
Kihara, A.1
Akiyama, Y.2
Ito, K.3
-
46
-
-
0030914642
-
Host regulation of lysogenic decision in bacteriophage lambda: Transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA)
-
Kihara A, Akiyama Y, Ito K. 1997. Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA). Proc. Natl. Acad. Sci. USA 94:5544-49
-
(1997)
Proc. Natl. Acad. Sci. USA
, vol.94
, pp. 5544-5549
-
-
Kihara, A.1
Akiyama, Y.2
Ito, K.3
-
47
-
-
0032577263
-
Different pathways for protein degradation by the FtsH/HflKC membrane-embedded protease complex: An implication from the interference by a mutant form of a new substrate protein, YccA
-
Kihara A, Akiyama Y, Ito K. 1998. Different pathways for protein degradation by the FtsH/HflKC membrane-embedded protease complex: an implication from the interference by a mutant form of a new substrate protein, YccA. J. Mol. Biol. 279:175-88
-
(1998)
J. Mol. Biol.
, vol.279
, pp. 175-188
-
-
Kihara, A.1
Akiyama, Y.2
Ito, K.3
-
48
-
-
0033153237
-
Dislocation of membrane proteins in FtsH-mediated proteolysis
-
Kihara A, Akiyama Y, Ito K. 1999. Dislocation of membrane proteins in FtsH-mediated proteolysis. EMBO J. 18:2970-81
-
(1999)
EMBO J.
, vol.18
, pp. 2970-2981
-
-
Kihara, A.1
Akiyama, Y.2
Ito, K.3
-
49
-
-
0035957955
-
Revisiting the lysogenization control of bacteriophage lambda. Identification and characterization of a new host component, HflD
-
Kihara A, Akiyama Y, Ito K. 2001. Revisiting the lysogenization control of bacteriophage lambda. Identification and characterization of a new host component, HflD. J. Biol. Chem. 276:13695-700
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 13695-13700
-
-
Kihara, A.1
Akiyama, Y.2
Ito, K.3
-
50
-
-
0032491523
-
Translocation, folding, and stability of the HflKC complex with signal anchor topogenic sequences
-
Kihara A, Ito K. 1998. Translocation, folding, and stability of the HflKC complex with signal anchor topogenic sequences. J. Biol. Chem. 273:29770-75
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 29770-29775
-
-
Kihara, A.1
Ito, K.2
-
51
-
-
0037069332
-
The phage lambda CII transcriptional activator carries a C-terminal domain signaling for rapid proteolysis
-
Kobiler O, Koby S, Teff D, Court D, Oppenheim AB. 2002. The phage lambda CII transcriptional activator carries a C-terminal domain signaling for rapid proteolysis. Proc. Natl. Acad. Sci. USA 99:14964-69
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 14964-14969
-
-
Kobiler, O.1
Koby, S.2
Teff, D.3
Court, D.4
Oppenheim, A.B.5
-
52
-
-
4444332721
-
Membrane protein turnover by the m-AAA protease in mitochondria depends on the transmembrane domains of its subunits
-
Korbel D, Wurth S, Kaser M, Langer T. 2004. Membrane protein turnover by the m-AAA protease in mitochondria depends on the transmembrane domains of its subunits. EMBO Rep. 5:698-703
-
(2004)
EMBO Rep.
, vol.5
, pp. 698-703
-
-
Korbel, D.1
Wurth, S.2
Kaser, M.3
Langer, T.4
-
53
-
-
0036054289
-
The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 Å resolution
-
Krzywda S, Brzozowski AM, Verma C, Karata K, Ogura T, Wilkinson AJ. 2002. The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 Å resolution. Structure 10:1073-83
-
(2002)
Structure
, vol.10
, pp. 1073-1083
-
-
Krzywda, S.1
Brzozowski, A.M.2
Verma, C.3
Karata, K.4
Ogura, T.5
Wilkinson, A.J.6
-
54
-
-
0034874791
-
AAA proteases of mitochondria: Quality control of membrane proteins and regulatory functions during mitochondrial biogenesis
-
Langer T, Kaser M, Klanner C, Leonhard K. 2001. AAA proteases of mitochondria: quality control of membrane proteins and regulatory functions during mitochondrial biogenesis. Biochem. Soc. Trans. 29:431-36
-
(2001)
Biochem. Soc. Trans.
, vol.29
, pp. 431-436
-
-
Langer, T.1
Kaser, M.2
Klanner, C.3
Leonhard, K.4
-
55
-
-
0031894923
-
Lambda Xis degradation in vivo by Lon and FtsH
-
Leffers GG Jr, Gottesman S. 1998. Lambda Xis degradation in vivo by Lon and FtsH. J. Bacteriol. 180:1573-77
-
(1998)
J. Bacteriol.
, vol.180
, pp. 1573-1577
-
-
Leffers Jr., G.G.1
Gottesman, S.2
-
56
-
-
0033602381
-
Chaperone-like activity of the AAA domain of the Yeast Yme1 AAA protease
-
Leonhard K, Stiegler A, Neupert W, Langer T. 1999. Chaperone-like activity of the AAA domain of the Yeast Yme1 AAA protease. Nature 398:348-51
-
(1999)
Nature
, vol.398
, pp. 348-351
-
-
Leonhard, K.1
Stiegler, A.2
Neupert, W.3
Langer, T.4
-
57
-
-
0032748086
-
Second transmembrane segment of FtsH plays a role in its proteolytic activity and homo-oligomerization
-
Makino S, Makino T, Abe K, Hashimoto J, Tatsuta T, et al. 1999. Second transmembrane segment of FtsH plays a role in its proteolytic activity and homo-oligomerization. FEBS Lett. 460:554-58
-
(1999)
FEBS Lett.
, vol.460
, pp. 554-558
-
-
Makino, S.1
Makino, T.2
Abe, K.3
Hashimoto, J.4
Tatsuta, T.5
-
58
-
-
0030926241
-
A silent mutation in the ftsH gene of Escherichia coli that affects FtsH protein production and colicin tolerance
-
Makino S, Qu JN, Uemori K, Ichikawa H, Ogura T, Matsuzawa H. 1997. A silent mutation in the ftsH gene of Escherichia coli that affects FtsH protein production and colicin tolerance. Mol. Gen. Genet. 254:578-83
-
(1997)
Mol. Gen. Genet.
, vol.254
, pp. 578-583
-
-
Makino, S.1
Qu, J.N.2
Uemori, K.3
Ichikawa, H.4
Ogura, T.5
Matsuzawa, H.6
-
59
-
-
0036036407
-
Stabilization of FtsH-unfolded protein complex by binding of ATP and blocking of protease
-
Makyio H, Niwa H, Motohashi K, Taguchi H, Yoshida M. 2002. Stabilization of FtsH-unfolded protein complex by binding of ATP and blocking of protease. Biochem. Biophys. Res. Commun. 296:8-12
-
(2002)
Biochem. Biophys. Res. Commun.
, vol.296
, pp. 8-12
-
-
Makyio, H.1
Niwa, H.2
Motohashi, K.3
Taguchi, H.4
Yoshida, M.5
-
60
-
-
0032969563
-
AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes
-
Neuwald AF, Aravind L, Spouge JL, Koonin EV. 1999. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9:27-43
-
(1999)
Genome Res.
, vol.9
, pp. 27-43
-
-
Neuwald, A.F.1
Aravind, L.2
Spouge, J.L.3
Koonin, E.V.4
-
61
-
-
0034213904
-
Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins
-
60a. Nijtmans LG, de Jong L, Artal Sanz M, Coates PJ, Berden JA, et al. 2000. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J. 19:2444-51
-
(2000)
EMBO J.
, vol.19
, pp. 2444-2451
-
-
Nijtmans, L.G.1
De Jong, L.2
Artal Sanz, M.3
Coates, P.J.4
Berden, J.A.5
-
62
-
-
0034293329
-
Role of the non-essential region encompassing the N-terminal two transmembrane stretches of Escherichia coli SecE
-
Nishiyama K, Suzuki H, Tokuda H. 2000. Role of the non-essential region encompassing the N-terminal two transmembrane stretches of Escherichia coli SecE. Biosci. Biotechnol. Biochem. 64:2121-27
-
(2000)
Biosci. Biotechnol. Biochem.
, vol.64
, pp. 2121-2127
-
-
Nishiyama, K.1
Suzuki, H.2
Tokuda, H.3
-
63
-
-
0036773132
-
Hexameric ring structure of the ATPase domain of the membrane-integrated metalloprotease FtsH from Thermus thermophilus HB8
-
Niwa H, Tsuchiya D, Makyio H, Yoshida M, Morikawa K. 2002. Hexameric ring structure of the ATPase domain of the membrane-integrated metalloprotease FtsH from Thermus thermophilus HB8. Structure 10:1415-23
-
(2002)
Structure
, vol.10
, pp. 1415-1423
-
-
Niwa, H.1
Tsuchiya, D.2
Makyio, H.3
Yoshida, M.4
Morikawa, K.5
-
64
-
-
0027436841
-
The Escherichia coli hflA locus encodes a putative GTP-binding protein and two membrane proteins, one of which contains a protease-like domain
-
Noble JA, Innis MA, Koonin EV, Rudd KE, Banuett F, Herskowitz I. 1993. The Escherichia coli hflA locus encodes a putative GTP-binding protein and two membrane proteins, one of which contains a protease-like domain. Proc. Natl. Acad. Sci. USA 90:10866-70
-
(1993)
Proc. Natl. Acad. Sci. USA
, vol.90
, pp. 10866-10870
-
-
Noble, J.A.1
Innis, M.A.2
Koonin, E.V.3
Rudd, K.E.4
Banuett, F.5
Herskowitz, I.6
-
65
-
-
0014138330
-
Interaction of colicins with bacterial cells. III. Colicin-tolerant mutations in Escherichia coli mutant
-
Nomura M, Witten C. 1967. Interaction of colicins with bacterial cells. III. Colicin-tolerant mutations in Escherichia coli mutant. J. Bacteriol. 94:1093-111
-
(1967)
J. Bacteriol.
, vol.94
, pp. 1093-1111
-
-
Nomura, M.1
Witten, C.2
-
66
-
-
0345523771
-
Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid a biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli
-
Ogura T, Inoue K, Tatsuta T, Suzaki T, Karata K, et al. 1999. Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol. Microbiol. 31:833-44
-
(1999)
Mol. Microbiol.
, vol.31
, pp. 833-844
-
-
Ogura, T.1
Inoue, K.2
Tatsuta, T.3
Suzaki, T.4
Karata, K.5
-
67
-
-
0025916453
-
Structure and function of the ftsH gene in Escherichia coli
-
Ogura T, Tomoyasu T, Yuki T, Morimura S, Begg KJ, et al. 1991. Structure and function of the ftsH gene in Escherichia coli. Res. Microbiol. 142:279-82
-
(1991)
Res. Microbiol.
, vol.142
, pp. 279-282
-
-
Ogura, T.1
Tomoyasu, T.2
Yuki, T.3
Morimura, S.4
Begg, K.J.5
-
68
-
-
0034885052
-
AAA+ superfamily ATPases: Common structure-diverse function
-
Ogura T, Wilkinson AJ. 2001. AAA+ superfamily ATPases: common structure-diverse function. Genes Cells 6:575-97
-
(2001)
Genes Cells
, vol.6
, pp. 575-597
-
-
Ogura, T.1
Wilkinson, A.J.2
-
69
-
-
1642333987
-
Spectrometric analysis of degradation of a physiological substrate sigma32 by Escherichia coli AAA protease FtsH
-
Okuno T, Yamada-Inagawa T, Karata K, Yamanaka K, Ogura T. 2004. Spectrometric analysis of degradation of a physiological substrate sigma32 by Escherichia coli AAA protease FtsH. J. Struct. Biol. 146:148-54
-
(2004)
J. Struct. Biol.
, vol.146
, pp. 148-154
-
-
Okuno, T.1
Yamada-Inagawa, T.2
Karata, K.3
Yamanaka, K.4
Ogura, T.5
-
70
-
-
4344577287
-
Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis
-
Park S, Rodermel SR. 2004. Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis. Proc. Natl. Acad. Sci. USA 101:12765-70
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 12765-12770
-
-
Park, S.1
Rodermel, S.R.2
-
71
-
-
0034718116
-
Structural and functional studies on an FtsH inhibitor from Bacillus subtilis
-
Prajapati RS, Ogura T, Cutting SM. 2000. Structural and functional studies on an FtsH inhibitor from Bacillus subtilis. Biochim. Biophys. Acta 1475:353-59
-
(2000)
Biochim. Biophys. Acta
, vol.1475
, pp. 353-359
-
-
Prajapati, R.S.1
Ogura, T.2
Cutting, S.M.3
-
72
-
-
0029896059
-
The tolZ gene of Escherichia coli is identified as the ftsH gene
-
Qu JN, Makino SI, Adachi H, Koyama Y, Akiyama Y, et al. 1996. The tolZ gene of Escherichia coli is identified as the ftsH gene. J. Bacteriol. 178:3457-61
-
(1996)
J. Bacteriol.
, vol.178
, pp. 3457-3461
-
-
Qu, J.N.1
Makino, S.I.2
Adachi, H.3
Koyama, Y.4
Akiyama, Y.5
-
73
-
-
0345803934
-
Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange
-
Rist W, Jorgensen TJ, Roepstorff P, Bukau B, Mayer MP. 2003. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange. J. Biol. Chem. 278:51415-21
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 51415-51421
-
-
Rist, W.1
Jorgensen, T.J.2
Roepstorff, P.3
Bukau, B.4
Mayer, M.P.5
-
74
-
-
1642356725
-
FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli
-
Saikawa N, Akiyama Y, Ito K. 2004. FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli. J. Struct. Biol. 146:123-29
-
(2004)
J. Struct. Biol.
, vol.146
, pp. 123-129
-
-
Saikawa, N.1
Akiyama, Y.2
Ito, K.3
-
75
-
-
0037065698
-
Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB)
-
Saikawa N, Ito K, Akiyama Y. 2002. Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB). Biochemistry 41:1861-68
-
(2002)
Biochemistry
, vol.41
, pp. 1861-1868
-
-
Saikawa, N.1
Ito, K.2
Akiyama, Y.3
-
76
-
-
0016627718
-
Isolation and characterization of a new temperature-sensitive cell division mutant of Escherichia coli K-12
-
Santos D, De Almeida DF. 1975. Isolation and characterization of a new temperature-sensitive cell division mutant of Escherichia coli K-12. J. Bacteriol. 124:1502-7
-
(1975)
J. Bacteriol.
, vol.124
, pp. 1502-1507
-
-
Santos, D.1
De Almeida, D.F.2
-
77
-
-
0032965905
-
FtsH: A single-chain charonin?
-
Schumann W. 1999. FtsH: a single-chain charonin? FEMS Microbiol. Rev. 23:1-11
-
(1999)
FEMS Microbiol. Rev.
, vol.23
, pp. 1-11
-
-
Schumann, W.1
-
78
-
-
0035985049
-
The Cpx stress response system of Escherichia coli senses plasma membrane proteins and controls HtpX, a membrane protease with a cytosolic active site
-
Shimohata N, Chiba S, Saikawa N, Ito K, Akiyama Y. 2002. The Cpx stress response system of Escherichia coli senses plasma membrane proteins and controls HtpX, a membrane protease with a cytosolic active site. Genes Cells 7:653-62
-
(2002)
Genes Cells
, vol.7
, pp. 653-662
-
-
Shimohata, N.1
Chiba, S.2
Saikawa, N.3
Ito, K.4
Akiyama, Y.5
-
79
-
-
0030025784
-
Suppression of ftsH mutant phenotypes by overproduction of molecular chaperones
-
Shirai Y, Akiyama Y, Ito K. 1996. Suppression of ftsH mutant phenotypes by overproduction of molecular chaperones. J. Bacteriol. 178:1141-45
-
(1996)
J. Bacteriol.
, vol.178
, pp. 1141-1145
-
-
Shirai, Y.1
Akiyama, Y.2
Ito, K.3
-
80
-
-
8544283778
-
Proteolysis of the phage lambda CII regulatory protein by FtsH (HflB) of Escherichia coli
-
Shetland Y, Koby S, Teff D, Mansur N, Oren DA, et al. 1997. Proteolysis of the phage lambda CII regulatory protein by FtsH (HflB) of Escherichia coli. Mol. Microbiol. 24:1303-10
-
(1997)
Mol. Microbiol.
, vol.24
, pp. 1303-1310
-
-
Shetland, Y.1
Koby, S.2
Teff, D.3
Mansur, N.4
Oren, D.A.5
-
81
-
-
0034109114
-
Proteolysis of bacteriophage lambda CH by Escherichia coli FtsH (HflB)
-
Shotland Y, Shifrin A, Ziv T, Teff D, Koby S, et al. 2000. Proteolysis of bacteriophage lambda CH by Escherichia coli FtsH (HflB). J. Bacteriol. 182:3111-16
-
(2000)
J. Bacteriol.
, vol.182
, pp. 3111-3116
-
-
Shotland, Y.1
Shifrin, A.2
Ziv, T.3
Teff, D.4
Koby, S.5
-
82
-
-
0034674173
-
Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli
-
Shotland Y, Teff D, Koby S, Kobiler O, Oppenheim AB. 2000. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli. J. Mol. Biol. 299:953-64
-
(2000)
J. Mol. Biol.
, vol.299
, pp. 953-964
-
-
Shotland, Y.1
Teff, D.2
Koby, S.3
Kobiler, O.4
Oppenheim, A.B.5
-
83
-
-
0344631696
-
Regulation of bacteriophage lambda development by guanosine 5′-diphosphate-3′-diphosphate
-
Slominska M, Neubauer P, Wegrzyn G. 1999. Regulation of bacteriophage lambda development by guanosine 5′-diphosphate-3′-diphosphate. Virology 262:431-41
-
(1999)
Virology
, vol.262
, pp. 431-441
-
-
Slominska, M.1
Neubauer, P.2
Wegrzyn, G.3
-
84
-
-
0032954927
-
Prohibions regulate membrane protein degradation by the m-AAA protease in mitochondria
-
82a. Steglich G, Neupert W, Langer T. 1999. Prohibions regulate membrane protein degradation by the m-AAA protease in mitochondria. Mol. Cell Biol. 19:3435-42
-
(1999)
Mol. Cell Biol.
, vol.19
, pp. 3435-3442
-
-
Steglich, G.1
Neupert, W.2
Langer, T.3
-
85
-
-
0030965758
-
ATP-dependent proteases that also chaperone protein biogenesis
-
Suzuki CK, Rep M, van Dijl JM, Suda K, Grivell LA, Schatz G. 1997. ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem. Sci. 22:118-23
-
(1997)
Trends Biochem. Sci.
, vol.22
, pp. 118-123
-
-
Suzuki, C.K.1
Rep, M.2
Van Dijl, J.M.3
Suda, K.4
Grivell, L.A.5
Schatz, G.6
-
86
-
-
0034604704
-
Evidence for an active role of the DnaK chaperone system in the degradation of sigma(32)
-
Tatsuta T, Joo DM, Calendar R, Akiyama Y, Ogura T. 2000. Evidence for an active role of the DnaK chaperone system in the degradation of sigma(32). FEBS Lett. 478:271-75
-
(2000)
FEBS Lett.
, vol.478
, pp. 271-275
-
-
Tatsuta, T.1
Joo, D.M.2
Calendar, R.3
Akiyama, Y.4
Ogura, T.5
-
87
-
-
0031737263
-
Heat shock regulation in the ftsH null mutant of Escherichia coli: Dissection of stability and activity control mechanisms of sigma32 in vivo
-
Tatsuta T, Tomoyasu T, Bukau B, Kitagawa M, Mori H, et al. 1998. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Mol. Microbiol. 30:583-93
-
(1998)
Mol. Microbiol.
, vol.30
, pp. 583-593
-
-
Tatsuta, T.1
Tomoyasu, T.2
Bukau, B.3
Kitagawa, M.4
Mori, H.5
-
88
-
-
0027131290
-
Determinants of the quantity of the stable SecY complex in the Escherichia coli cell
-
Taura T, Baba T, Akiyama Y, Ito K. 1993. Determinants of the quantity of the stable SecY complex in the Escherichia coli cell. J. Bacteriol. 175:7771-75
-
(1993)
J. Bacteriol.
, vol.175
, pp. 7771-7775
-
-
Taura, T.1
Baba, T.2
Akiyama, Y.3
Ito, K.4
-
89
-
-
0033959174
-
A colicin-tolerant Escherichia coli mutant that confers hfl phenotype carries two mutations in the region coding for the C-terminal domain of FtsH (HflB)
-
Teff D, Koby S, Shotland Y, Ogura T, Oppenheim AB. 2000. A colicin-tolerant Escherichia coli mutant that confers hfl phenotype carries two mutations in the region coding for the C-terminal domain of FtsH (HflB). FEMS Microbiol. Lett. 183:115-17
-
(2000)
FEMS Microbiol. Lett.
, vol.183
, pp. 115-117
-
-
Teff, D.1
Koby, S.2
Shotland, Y.3
Ogura, T.4
Oppenheim, A.B.5
-
90
-
-
0034805893
-
The C terminus of sigma(32) is not essential for degradation by FtsH
-
Tomoyasu T, Arsene F, Ogura T, Bukau B. 2001. The C terminus of sigma(32) is not essential for degradation by FtsH. J. Bacteriol. 183:5911-17
-
(2001)
J. Bacteriol.
, vol.183
, pp. 5911-5917
-
-
Tomoyasu, T.1
Arsene, F.2
Ogura, T.3
Bukau, B.4
-
91
-
-
0029060112
-
Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32
-
Tomoyasu T, Gamer J, Bukau B, Kanemori M, Mori H, et al. 1995. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO J. 14:2551-60
-
(1995)
EMBO J.
, vol.14
, pp. 2551-2560
-
-
Tomoyasu, T.1
Gamer, J.2
Bukau, B.3
Kanemori, M.4
Mori, H.5
-
92
-
-
0031793242
-
Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli
-
Tomoyasu T, Ogura T, Tatsuta T, Bukau B. 1998. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol. Microbiol. 30:567-81
-
(1998)
Mol. Microbiol.
, vol.30
, pp. 567-581
-
-
Tomoyasu, T.1
Ogura, T.2
Tatsuta, T.3
Bukau, B.4
-
93
-
-
0027514035
-
Topology and subcellular localization of FtsH protein in Escherichia coli
-
Tomoyasu T, Yamanaka K, Murata K, Suzaki T, Bouloc P, et al. 1993. Topology and subcellular localization of FtsH protein in Escherichia coli. J. Bacteriol. 175:1352-57
-
(1993)
J. Bacteriol.
, vol.175
, pp. 1352-1357
-
-
Tomoyasu, T.1
Yamanaka, K.2
Murata, K.3
Suzaki, T.4
Bouloc, P.5
-
94
-
-
0027535381
-
The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression
-
Tomoyasu T, Yuki T, Morimura S, Mori H, Yamanaka K, et al. 1993. The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J. Bacteriol. 175:1344-51
-
(1993)
J. Bacteriol.
, vol.175
, pp. 1344-1351
-
-
Tomoyasu, T.1
Yuki, T.2
Morimura, S.3
Mori, H.4
Yamanaka, K.5
-
95
-
-
0029824724
-
Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock
-
Tsui HC, Feng G, Winkler ME. 1996. Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock. J. Bacteriol. 178:5719-31
-
(1996)
J. Bacteriol.
, vol.178
, pp. 5719-5731
-
-
Tsui, H.C.1
Feng, G.2
Winkler, M.E.3
-
96
-
-
0347192985
-
X-ray structure of a protein-conducting channel
-
van den Berg B, Clemons WMJ, Collinson I, Modis Y, Hartmann E, et al. 2004. X-ray structure of a protein-conducting channel. Nature 427:36-44
-
(2004)
Nature
, vol.427
, pp. 36-44
-
-
Van Den Berg, B.1
Clemons, W.M.J.2
Collinson, I.3
Modis, Y.4
Hartmann, E.5
-
97
-
-
0035096082
-
Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism
-
Wang J, Song JJ, Franklin MC, Kamtekar S, Im YJ, et al. 2001. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9:177-84
-
(2001)
Structure
, vol.9
, pp. 177-184
-
-
Wang, J.1
Song, J.J.2
Franklin, M.C.3
Kamtekar, S.4
Im, Y.J.5
-
98
-
-
0031894053
-
Escherichia coli mrsC is an allele of hflB, encoding a membrane-associated ATPase and protease that is required for mRNA decay
-
Wang RF, O'Hara EB, Aldea M, Bargmann CI, Gromley H, Kushner SR. 1998. Escherichia coli mrsC is an allele of hflB, encoding a membrane-associated ATPase and protease that is required for mRNA decay. J. Bacteriol. 180:1929-38
-
(1998)
J. Bacteriol.
, vol.180
, pp. 1929-1938
-
-
Wang, R.F.1
O'Hara, E.B.2
Aldea, M.3
Bargmann, C.I.4
Gromley, H.5
Kushner, S.R.6
-
99
-
-
8844251486
-
Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB
-
Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z, et al. 2004. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119:653-65
-
(2004)
Cell
, vol.119
, pp. 653-665
-
-
Weibezahn, J.1
Tessarz, P.2
Schlieker, C.3
Zahn, R.4
Maglica, Z.5
-
100
-
-
0348010363
-
Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis
-
Yamada-Inagawa T, Okuno T, Karata K, Yamanaka K, Ogura T. 2003. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J. Biol. Chem. 278:50182-87
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 50182-50187
-
-
Yamada-Inagawa, T.1
Okuno, T.2
Karata, K.3
Yamanaka, K.4
Ogura, T.5
-
101
-
-
3042677637
-
A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol
-
Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA. 2004. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841-47
-
(2004)
Nature
, vol.429
, pp. 841-847
-
-
Ye, Y.1
Shibata, Y.2
Yun, C.3
Ron, D.4
Rapoport, T.A.5
|