메뉴 건너뛰기




Volumn 59, Issue , 2005, Pages 211-231

Cellular functions, mechanism of action, and regulation of FtsH protease

Author keywords

ATPase; Dislocation; Membrane protein; Protein degradation; Quality control

Indexed keywords

ADENOSINE TRIPHOSPHATASE; MEMBRANE PROTEIN; PROTEINASE; VIRUS PROTEIN;

EID: 25844525796     PISSN: 00664227     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev.micro.59.030804.121316     Document Type: Review
Times cited : (332)

References (101)
  • 1
    • 0033533381 scopus 로고    scopus 로고
    • Self-processing of FtsH and its implication for the cleavage specificity of this protease
    • Akiyama Y. 1999. Self-processing of FtsH and its implication for the cleavage specificity of this protease. Biochemistry 38:11693-99
    • (1999) Biochemistry , vol.38 , pp. 11693-11699
    • Akiyama, Y.1
  • 2
    • 0037062428 scopus 로고    scopus 로고
    • Proton-motive force stimulates the proteolytic activity of FtsH, a membrane-bound ATP-dependent protease in Escherichia coli
    • Akiyama Y. 2002. Proton-motive force stimulates the proteolytic activity of FtsH, a membrane-bound ATP-dependent protease in Escherichia coli. Proc. Natl. Acad. Sci. USA 99:8066-71
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 8066-8071
    • Akiyama, Y.1
  • 3
    • 0031803530 scopus 로고    scopus 로고
    • Polypeptide binding of Escherichia coli FtsH (HflB)
    • Akiyama Y, Ehrmann M, Kihara A, Ito K. 1998. Polypeptide binding of Escherichia coli FtsH (HflB). Mol. Microbiol. 28:803-12
    • (1998) Mol. Microbiol. , vol.28 , pp. 803-812
    • Akiyama, Y.1    Ehrmann, M.2    Kihara, A.3    Ito, K.4
  • 4
    • 0034254272 scopus 로고    scopus 로고
    • Roles of multimerization and membrane association in the proteolytic functions of FtsH (HflB)
    • Akiyama Y, Ito K. 2000. Roles of multimerization and membrane association in the proteolytic functions of FtsH (HflB). EMBO J. 19:3888-95
    • (2000) EMBO J. , vol.19 , pp. 3888-3895
    • Akiyama, Y.1    Ito, K.2
  • 5
    • 0035954369 scopus 로고    scopus 로고
    • Roles of homooligomerization and membrane association in ATPase and proteolytic activities of FtsH in vitro
    • Akiyama Y, Ito K. 2001. Roles of homooligomerization and membrane association in ATPase and proteolytic activities of FtsH in vitro. Biochemistry 40:7687-93
    • (2001) Biochemistry , vol.40 , pp. 7687-7693
    • Akiyama, Y.1    Ito, K.2
  • 6
    • 0038043180 scopus 로고    scopus 로고
    • Reconstitution of membrane proteolysis by FtsH
    • Akiyama Y, Ito K. 2003. Reconstitution of membrane proteolysis by FtsH. J. Biol. Chem. 278:18146-53
    • (2003) J. Biol. Chem. , vol.278 , pp. 18146-18153
    • Akiyama, Y.1    Ito, K.2
  • 7
    • 84944047110 scopus 로고    scopus 로고
    • FtsH protease
    • ed. AJ Barrett, ND Rawlings, JF Woessner. San Diego: Academic. 2nd ed.
    • Akiyama Y, Ito K, Ogura T. 2004. FtsH protease. Handbook of Proteolytic Enzymes, ed. AJ Barrett, ND Rawlings, JF Woessner, pp. 794-98. San Diego: Academic. 2nd ed.
    • (2004) Handbook of Proteolytic Enzymes , pp. 794-798
    • Akiyama, Y.1    Ito, K.2    Ogura, T.3
  • 8
    • 0030577385 scopus 로고    scopus 로고
    • Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coli
    • Akiyama Y, Kihara A, Ito K. 1996. Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coli. FEBS Lett. 399:26-28
    • (1996) FEBS Lett. , vol.399 , pp. 26-28
    • Akiyama, Y.1    Kihara, A.2    Ito, K.3
  • 9
    • 0032575554 scopus 로고    scopus 로고
    • Roles of the periplasmic domain of Escherichia coli FtsH (HflB) in protein interactions and activity modulation
    • Akiyama Y, Kihara A, Mori H, Ogura T, Ito K. 1998. Roles of the periplasmic domain of Escherichia coli FtsH (HflB) in protein interactions and activity modulation. J. Biol. Chem. 273:22326-33
    • (1998) J. Biol. Chem. , vol.273 , pp. 22326-22333
    • Akiyama, Y.1    Kihara, A.2    Mori, H.3    Ogura, T.4    Ito, K.5
  • 10
    • 0029989855 scopus 로고    scopus 로고
    • FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins
    • Akiyama Y, Kihara A, Tokuda H, Ito K. 1996. FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins. J. Biol. Chem. 271:31196-201
    • (1996) J. Biol. Chem. , vol.271 , pp. 31196-31201
    • Akiyama, Y.1    Kihara, A.2    Tokuda, H.3    Ito, K.4
  • 11
    • 0027983603 scopus 로고
    • Involvement of FtsH in protein assembly into and through the membrane. I. Mutations that reduce retention efficiency of a cytoplasmic reporter
    • Akiyama Y, Ogura T, Ito K. 1994. Involvement of FtsH in protein assembly into and through the membrane. I. Mutations that reduce retention efficiency of a cytoplasmic reporter. J. Biol Chem. 269:5218-24
    • (1994) J. Biol Chem. , vol.269 , pp. 5218-5224
    • Akiyama, Y.1    Ogura, T.2    Ito, K.3
  • 12
    • 0028033333 scopus 로고
    • Involvement of FtsH in protein assembly into and through the membrane. II. Dominant mutations affecting FtsH functions
    • Akiyama Y, Shirai Y, Ito K. 1994. Involvement of FtsH in protein assembly into and through the membrane. II. Dominant mutations affecting FtsH functions. J. Biol. Chem. 269:5225-29
    • (1994) J. Biol. Chem. , vol.269 , pp. 5225-5229
    • Akiyama, Y.1    Shirai, Y.2    Ito, K.3
  • 13
    • 0028840312 scopus 로고
    • FtsH, a membrane-bound ATPase, forms a complex in the cytoplasmic membrane of Escherichia coli
    • Akiyama Y, Yoshihisa T, Ito K. 1995. FtsH, a membrane-bound ATPase, forms a complex in the cytoplasmic membrane of Escherichia coli. J. Biol. Chem. 270:23485-90
    • (1995) J. Biol. Chem. , vol.270 , pp. 23485-23490
    • Akiyama, Y.1    Yoshihisa, T.2    Ito, K.3
  • 14
    • 0037009120 scopus 로고    scopus 로고
    • Membrane protein degradation by AAA proteases in mitochondria
    • Arnold I, Langer T. 2002. Membrane protein degradation by AAA proteases in mitochondria. Biochim. Biophys. Acta 1592:89-96
    • (2002) Biochim. Biophys. Acta , vol.1592 , pp. 89-96
    • Arnold, I.1    Langer, T.2
  • 15
    • 0034079766 scopus 로고    scopus 로고
    • FtsH recognizes proteins with unfolded structure and hydrolyzes the carboxyl side of hydrophobic residues
    • Asahara Y, Atsuta K, Motohashi K, Taguchi H, Yohda M, Yoshida M. 2000. FtsH recognizes proteins with unfolded structure and hydrolyzes the carboxyl side of hydrophobic residues. J. Biochem. 127:931-37
    • (2000) J. Biochem. , vol.127 , pp. 931-937
    • Asahara, Y.1    Atsuta, K.2    Motohashi, K.3    Taguchi, H.4    Yohda, M.5    Yoshida, M.6
  • 16
    • 0036785582 scopus 로고    scopus 로고
    • A structure for the yeast prohibitin complex: Structure prediction and evidence from chemical crosslinking and mass spectrometry
    • Back JW, Sanz MA, De Jong L, De Koning LJ, Nijtmans LG, et al. 2002. A structure for the yeast prohibitin complex: structure prediction and evidence from chemical crosslinking and mass spectrometry. Protein Sci. 11:2471-78
    • (2002) Protein Sci. , vol.11 , pp. 2471-2478
    • Back, J.W.1    Sanz, M.A.2    De Jong, L.3    De Koning, L.J.4    Nijtmans, L.G.5
  • 17
    • 0022477617 scopus 로고
    • HflB, a new Escherichia coli locus regulating lysogeny and the level of bacteriophage lambda CII protein
    • Banuett F, Hoyt MA, McFarlane L, Echols H, Herskowitz I. 1986. hflB, a new Escherichia coli locus regulating lysogeny and the level of bacteriophage lambda CII protein. J. Mol. Biol. 187:213-24
    • (1986) J. Mol. Biol. , vol.187 , pp. 213-224
    • Banuett, F.1    Hoyt, M.A.2    McFarlane, L.3    Echols, H.4    Herskowitz, I.5
  • 18
    • 0026544881 scopus 로고
    • Escherichia coli mutant Y16 is a double mutant carrying thermosensitive ftsH and ftsI mutations
    • Begg KJ, Tomoyasu T, Donachie WD, Khattar M, Niki H, et al. 1992. Escherichia coli mutant Y16 is a double mutant carrying thermosensitive ftsH and ftsI mutations. J. Bacteriol. 174:2416-17
    • (1992) J. Bacteriol. , vol.174 , pp. 2416-2417
    • Begg, K.J.1    Tomoyasu, T.2    Donachie, W.D.3    Khattar, M.4    Niki, H.5
  • 19
    • 0035937480 scopus 로고    scopus 로고
    • An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease
    • Bertani D, Oppenheim AB, Narberhaus F. 2001. An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease. FEBS Lett. 493:17-20
    • (2001) FEBS Lett. , vol.493 , pp. 17-20
    • Bertani, D.1    Oppenheim, A.B.2    Narberhaus, F.3
  • 20
    • 0042318746 scopus 로고    scopus 로고
    • Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease
    • Bruckner RC, Gunyuzlu PL, Stein RL. 2003. Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease. Biochemistry 42:10843-52
    • (2003) Biochemistry , vol.42 , pp. 10843-10852
    • Bruckner, R.C.1    Gunyuzlu, P.L.2    Stein, R.L.3
  • 21
    • 0034596029 scopus 로고    scopus 로고
    • The FtsJ/RrmJ heat shock protein of Escherichia coli is a 2 3 S ribosomal RNA methyltransferase
    • Caldas T, Binet E, Bouloc P, Costa A, Desgres J, Richarme G. 2000. The FtsJ/RrmJ heat shock protein of Escherichia coli is a 2 3 S ribosomal RNA methyltransferase. J. Biol. Chem. 275:16414-19
    • (2000) J. Biol. Chem. , vol.275 , pp. 16414-16419
    • Caldas, T.1    Binet, E.2    Bouloc, P.3    Costa, A.4    Desgres, J.5    Richarme, G.6
  • 22
    • 0024110776 scopus 로고
    • Cleavage of the cII protein of phage lambda by purified HflA protease: Control of the switch between lysis and lysogeny
    • Cheng HH, Muhlrad PJ, Hoyt MA, Echols H. 1988. Cleavage of the cII protein of phage lambda by purified HflA protease: control of the switch between lysis and lysogeny. Proc. Natl. Acad. Sci. USA 85:7882-86
    • (1988) Proc. Natl. Acad. Sci. USA , vol.85 , pp. 7882-7886
    • Cheng, H.H.1    Muhlrad, P.J.2    Hoyt, M.A.3    Echols, H.4
  • 23
    • 0036720126 scopus 로고    scopus 로고
    • Membrane protein degradation by FtsH can be initiated from either end
    • Chiba S, Akiyama Y, Ito K. 2002. Membrane protein degradation by FtsH can be initiated from either end. J. Bacteriol. 184:4775-82
    • (2002) J. Bacteriol. , vol.184 , pp. 4775-4782
    • Chiba, S.1    Akiyama, Y.2    Ito, K.3
  • 24
    • 0034231476 scopus 로고    scopus 로고
    • Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis
    • Chiba S, Akiyama Y, Mori H, Matsuo E, Ito K. 2000. Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis. EMBO Rep. 1:47-52
    • (2000) EMBO Rep. , vol.1 , pp. 47-52
    • Chiba, S.1    Akiyama, Y.2    Mori, H.3    Matsuo, E.4    Ito, K.5
  • 25
    • 0030928663 scopus 로고    scopus 로고
    • SpoVM, a small protein essential to development in Bacillus subtilis, interacts with the ATP-dependent protease FtsH
    • Cutting S, Anderson M, Lysenko E, Page A, Tomoyasu T, et al. 1997. SpoVM, a small protein essential to development in Bacillus subtilis, interacts with the ATP-dependent protease FtsH. J. Bacteriol. 179:5534-42
    • (1997) J. Bacteriol. , vol.179 , pp. 5534-5542
    • Cutting, S.1    Anderson, M.2    Lysenko, E.3    Page, A.4    Tomoyasu, T.5
  • 26
    • 0031033658 scopus 로고    scopus 로고
    • The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion
    • Deuerling E, Mogk A, Richter C, Purucker M, Schumann W. 1997. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Mol. Microbiol. 23:921-33
    • (1997) Mol. Microbiol. , vol.23 , pp. 921-933
    • Deuerling, E.1    Mogk, A.2    Richter, C.3    Purucker, M.4    Schumann, W.5
  • 27
    • 0037010120 scopus 로고    scopus 로고
    • AAA+ proteins and substrate recognition, it all depends on their partner in crime
    • Dougan DA, Mogk A, Zeth K, Turgay K, Bukau B. 2002. AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett. 529:6-10
    • (2002) FEBS Lett. , vol.529 , pp. 6-10
    • Dougan, D.A.1    Mogk, A.2    Zeth, K.3    Turgay, K.4    Bukau, B.5
  • 28
    • 0036225047 scopus 로고    scopus 로고
    • The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus
    • Fischer B, Rummel G, Aldridge P, Jenal U. 2002. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus. Mol. Microbiol. 44:461-78
    • (2002) Mol. Microbiol. , vol.44 , pp. 461-478
    • Fischer, B.1    Rummel, G.2    Aldridge, P.3    Jenal, U.4
  • 29
    • 0016198523 scopus 로고
    • Fine structure mapping, complementation, and physiology of Escherichia coli hfl mutants
    • Gautsch JW, Wulff DL. 1974. Fine structure mapping, complementation, and physiology of Escherichia coli hfl mutants. Genetics 77:435-48
    • (1974) Genetics , vol.77 , pp. 435-448
    • Gautsch, J.W.1    Wulff, D.L.2
  • 30
    • 1642524483 scopus 로고    scopus 로고
    • Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons
    • Griffith KL, Shah IM, Wolf RE Jr. 2004. Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. Mol. Microbiol. 51:1801-16
    • (2004) Mol. Microbiol. , vol.51 , pp. 1801-1816
    • Griffith, K.L.1    Shah, I.M.2    Wolf Jr., R.E.3
  • 31
    • 0028853562 scopus 로고
    • Regulation of the heat-shock response depends on divalent metal ions in an hflB mutant of Escherichia coli
    • Herman C, Lecat S, D'Ari R, Bouloc P. 1995. Regulation of the heat-shock response depends on divalent metal ions in an hflB mutant of Escherichia coli. Mol. Microbiol. 18:247-55
    • (1995) Mol. Microbiol. , vol.18 , pp. 247-255
    • Herman, C.1    Lecat, S.2    D'Ari, R.3    Bouloc, P.4
  • 32
    • 0027364005 scopus 로고
    • Cell growth and lambda phage development controlled by the same essential Escherichia coli gene, ftsH/hflB
    • Herman C, Ogura T, Tomoyasu T, Hiraga S, Akiyama Y, et al. 1993. Cell growth and lambda phage development controlled by the same essential Escherichia coli gene, ftsH/hflB. Proc. Natl. Acad. Sci. USA 90:10861-65
    • (1993) Proc. Natl. Acad. Sci. USA , vol.90 , pp. 10861-10865
    • Herman, C.1    Ogura, T.2    Tomoyasu, T.3    Hiraga, S.4    Akiyama, Y.5
  • 33
    • 0344211512 scopus 로고    scopus 로고
    • Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH
    • Herman C, Prakash S, Lu CZ, Matouschek A, Gross CA. 2003. Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol. Cell 11:659-69
    • (2003) Mol. Cell , vol.11 , pp. 659-669
    • Herman, C.1    Prakash, S.2    Lu, C.Z.3    Matouschek, A.4    Gross, C.A.5
  • 34
    • 2642666491 scopus 로고    scopus 로고
    • Degradation of carboxyterminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH)
    • Herman C, Thevenet D, Bouloc P, Walker GC, D'Ari R. 1998. Degradation of carboxyterminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 12:1348-55
    • (1998) Genes Dev. , vol.12 , pp. 1348-1355
    • Herman, C.1    Thevenet, D.2    Bouloc, P.3    Walker, G.C.4    D'Ari, R.5
  • 35
    • 0028985616 scopus 로고
    • Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB
    • Herman C, Thevenet D, D'Ari R, Bouloc P. 1995. Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc. Natl. Acad. Sci. USA 92:3516-20
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 3516-3520
    • Herman, C.1    Thevenet, D.2    D'Ari, R.3    Bouloc, P.4
  • 36
    • 0031036515 scopus 로고    scopus 로고
    • The HflB protease of Escherichia coli degrades its inhibitor lambda cIII
    • Herman C, Thevenet D, D'Ari R, Bouloc P. 1997. The HflB protease of Escherichia coli degrades its inhibitor lambda cIII. J. Bacteriol. 179:358-63
    • (1997) J. Bacteriol. , vol.179 , pp. 358-363
    • Herman, C.1    Thevenet, D.2    D'Ari, R.3    Bouloc, P.4
  • 37
    • 0020428339 scopus 로고
    • Control of phage lambda development by stability and synthesis of cII protein: Role of the viral cIII and host hflA, himA and himD genes
    • Hoyt MA, Knight DM, Das A, Miller HI, Echols H. 1982. Control of phage lambda development by stability and synthesis of cII protein: role of the viral cIII and host hflA, himA and himD genes. Cell 31:565-73
    • (1982) Cell , vol.31 , pp. 565-573
    • Hoyt, M.A.1    Knight, D.M.2    Das, A.3    Miller, H.I.4    Echols, H.5
  • 39
    • 0030613795 scopus 로고    scopus 로고
    • Synergistic roles of HsIVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli
    • Kanemori M, Nishihara K, Yanagi H, Yura T. 1997. Synergistic roles of HsIVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J. Bacteriol. 179:7219-25
    • (1997) J. Bacteriol. , vol.179 , pp. 7219-7225
    • Kanemori, M.1    Nishihara, K.2    Yanagi, H.3    Yura, T.4
  • 40
    • 0033618309 scopus 로고    scopus 로고
    • Marked instability of the sigma(32) heat shock transcription factor at high temperature. Implications for heat shock regulation
    • Kanemori M, Yanagi H, Yura T. 1999. Marked instability of the sigma(32) heat shock transcription factor at high temperature. Implications for heat shock regulation. J. Biol. Chem. 274:22002-7
    • (1999) J. Biol. Chem. , vol.274 , pp. 22002-22007
    • Kanemori, M.1    Yanagi, H.2    Yura, T.3
  • 41
    • 0033543650 scopus 로고    scopus 로고
    • Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsH
    • Karata K, Inagawa T, Wilkinson AJ, Tatsuta T, Ogura T. 1999. Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsH. J. Biol. Chem. 274:26225-32
    • (1999) J. Biol. Chem. , vol.274 , pp. 26225-26232
    • Karata, K.1    Inagawa, T.2    Wilkinson, A.J.3    Tatsuta, T.4    Ogura, T.5
  • 42
    • 0035116848 scopus 로고    scopus 로고
    • Probing the mechanism of ATP hydrolysis and substrate translocation in the AAA protease FtsH by modelling and mutagenesis
    • Karata K, Verma CS, Wilkinson AJ, Ogura T. 2001. Probing the mechanism of ATP hydrolysis and substrate translocation in the AAA protease FtsH by modelling and mutagenesis. Mol. Microbiol. 39:890-903
    • (2001) Mol. Microbiol. , vol.39 , pp. 890-903
    • Karata, K.1    Verma, C.S.2    Wilkinson, A.J.3    Ogura, T.4
  • 43
    • 0344012569 scopus 로고    scopus 로고
    • Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease
    • Kaser M, Kambacheld M, Kisters-Woike B, Langer T. 2003. Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease. J. Biol. Chem. 278:46414-45
    • (2003) J. Biol. Chem. , vol.278 , pp. 46414-46445
    • Kaser, M.1    Kambacheld, M.2    Kisters-Woike, B.3    Langer, T.4
  • 44
    • 0029017127 scopus 로고
    • FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit
    • Kihara A, Akiyama Y, Ito K. 1995. FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. Proc. Natl. Acad. Sci. USA 92:4532-36
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 4532-4536
    • Kihara, A.1    Akiyama, Y.2    Ito, K.3
  • 45
    • 0029910627 scopus 로고    scopus 로고
    • A protease complex in the Escherichia coli plasma membrane: HflKC (HflA) forms a complex with FtsH (HflB), regulating its proteolytic activity against SecY
    • Kihara A, Akiyama Y, Ito K. 1996. A protease complex in the Escherichia coli plasma membrane: HflKC (HflA) forms a complex with FtsH (HflB), regulating its proteolytic activity against SecY. EMBO J. 15:6122-31
    • (1996) EMBO J. , vol.15 , pp. 6122-6131
    • Kihara, A.1    Akiyama, Y.2    Ito, K.3
  • 46
    • 0030914642 scopus 로고    scopus 로고
    • Host regulation of lysogenic decision in bacteriophage lambda: Transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA)
    • Kihara A, Akiyama Y, Ito K. 1997. Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA). Proc. Natl. Acad. Sci. USA 94:5544-49
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 5544-5549
    • Kihara, A.1    Akiyama, Y.2    Ito, K.3
  • 47
    • 0032577263 scopus 로고    scopus 로고
    • Different pathways for protein degradation by the FtsH/HflKC membrane-embedded protease complex: An implication from the interference by a mutant form of a new substrate protein, YccA
    • Kihara A, Akiyama Y, Ito K. 1998. Different pathways for protein degradation by the FtsH/HflKC membrane-embedded protease complex: an implication from the interference by a mutant form of a new substrate protein, YccA. J. Mol. Biol. 279:175-88
    • (1998) J. Mol. Biol. , vol.279 , pp. 175-188
    • Kihara, A.1    Akiyama, Y.2    Ito, K.3
  • 48
    • 0033153237 scopus 로고    scopus 로고
    • Dislocation of membrane proteins in FtsH-mediated proteolysis
    • Kihara A, Akiyama Y, Ito K. 1999. Dislocation of membrane proteins in FtsH-mediated proteolysis. EMBO J. 18:2970-81
    • (1999) EMBO J. , vol.18 , pp. 2970-2981
    • Kihara, A.1    Akiyama, Y.2    Ito, K.3
  • 49
    • 0035957955 scopus 로고    scopus 로고
    • Revisiting the lysogenization control of bacteriophage lambda. Identification and characterization of a new host component, HflD
    • Kihara A, Akiyama Y, Ito K. 2001. Revisiting the lysogenization control of bacteriophage lambda. Identification and characterization of a new host component, HflD. J. Biol. Chem. 276:13695-700
    • (2001) J. Biol. Chem. , vol.276 , pp. 13695-13700
    • Kihara, A.1    Akiyama, Y.2    Ito, K.3
  • 50
    • 0032491523 scopus 로고    scopus 로고
    • Translocation, folding, and stability of the HflKC complex with signal anchor topogenic sequences
    • Kihara A, Ito K. 1998. Translocation, folding, and stability of the HflKC complex with signal anchor topogenic sequences. J. Biol. Chem. 273:29770-75
    • (1998) J. Biol. Chem. , vol.273 , pp. 29770-29775
    • Kihara, A.1    Ito, K.2
  • 51
    • 0037069332 scopus 로고    scopus 로고
    • The phage lambda CII transcriptional activator carries a C-terminal domain signaling for rapid proteolysis
    • Kobiler O, Koby S, Teff D, Court D, Oppenheim AB. 2002. The phage lambda CII transcriptional activator carries a C-terminal domain signaling for rapid proteolysis. Proc. Natl. Acad. Sci. USA 99:14964-69
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 14964-14969
    • Kobiler, O.1    Koby, S.2    Teff, D.3    Court, D.4    Oppenheim, A.B.5
  • 52
    • 4444332721 scopus 로고    scopus 로고
    • Membrane protein turnover by the m-AAA protease in mitochondria depends on the transmembrane domains of its subunits
    • Korbel D, Wurth S, Kaser M, Langer T. 2004. Membrane protein turnover by the m-AAA protease in mitochondria depends on the transmembrane domains of its subunits. EMBO Rep. 5:698-703
    • (2004) EMBO Rep. , vol.5 , pp. 698-703
    • Korbel, D.1    Wurth, S.2    Kaser, M.3    Langer, T.4
  • 53
    • 0036054289 scopus 로고    scopus 로고
    • The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 Å resolution
    • Krzywda S, Brzozowski AM, Verma C, Karata K, Ogura T, Wilkinson AJ. 2002. The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 Å resolution. Structure 10:1073-83
    • (2002) Structure , vol.10 , pp. 1073-1083
    • Krzywda, S.1    Brzozowski, A.M.2    Verma, C.3    Karata, K.4    Ogura, T.5    Wilkinson, A.J.6
  • 54
    • 0034874791 scopus 로고    scopus 로고
    • AAA proteases of mitochondria: Quality control of membrane proteins and regulatory functions during mitochondrial biogenesis
    • Langer T, Kaser M, Klanner C, Leonhard K. 2001. AAA proteases of mitochondria: quality control of membrane proteins and regulatory functions during mitochondrial biogenesis. Biochem. Soc. Trans. 29:431-36
    • (2001) Biochem. Soc. Trans. , vol.29 , pp. 431-436
    • Langer, T.1    Kaser, M.2    Klanner, C.3    Leonhard, K.4
  • 55
    • 0031894923 scopus 로고    scopus 로고
    • Lambda Xis degradation in vivo by Lon and FtsH
    • Leffers GG Jr, Gottesman S. 1998. Lambda Xis degradation in vivo by Lon and FtsH. J. Bacteriol. 180:1573-77
    • (1998) J. Bacteriol. , vol.180 , pp. 1573-1577
    • Leffers Jr., G.G.1    Gottesman, S.2
  • 56
    • 0033602381 scopus 로고    scopus 로고
    • Chaperone-like activity of the AAA domain of the Yeast Yme1 AAA protease
    • Leonhard K, Stiegler A, Neupert W, Langer T. 1999. Chaperone-like activity of the AAA domain of the Yeast Yme1 AAA protease. Nature 398:348-51
    • (1999) Nature , vol.398 , pp. 348-351
    • Leonhard, K.1    Stiegler, A.2    Neupert, W.3    Langer, T.4
  • 57
    • 0032748086 scopus 로고    scopus 로고
    • Second transmembrane segment of FtsH plays a role in its proteolytic activity and homo-oligomerization
    • Makino S, Makino T, Abe K, Hashimoto J, Tatsuta T, et al. 1999. Second transmembrane segment of FtsH plays a role in its proteolytic activity and homo-oligomerization. FEBS Lett. 460:554-58
    • (1999) FEBS Lett. , vol.460 , pp. 554-558
    • Makino, S.1    Makino, T.2    Abe, K.3    Hashimoto, J.4    Tatsuta, T.5
  • 58
    • 0030926241 scopus 로고    scopus 로고
    • A silent mutation in the ftsH gene of Escherichia coli that affects FtsH protein production and colicin tolerance
    • Makino S, Qu JN, Uemori K, Ichikawa H, Ogura T, Matsuzawa H. 1997. A silent mutation in the ftsH gene of Escherichia coli that affects FtsH protein production and colicin tolerance. Mol. Gen. Genet. 254:578-83
    • (1997) Mol. Gen. Genet. , vol.254 , pp. 578-583
    • Makino, S.1    Qu, J.N.2    Uemori, K.3    Ichikawa, H.4    Ogura, T.5    Matsuzawa, H.6
  • 60
    • 0032969563 scopus 로고    scopus 로고
    • AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes
    • Neuwald AF, Aravind L, Spouge JL, Koonin EV. 1999. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9:27-43
    • (1999) Genome Res. , vol.9 , pp. 27-43
    • Neuwald, A.F.1    Aravind, L.2    Spouge, J.L.3    Koonin, E.V.4
  • 61
    • 0034213904 scopus 로고    scopus 로고
    • Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins
    • 60a. Nijtmans LG, de Jong L, Artal Sanz M, Coates PJ, Berden JA, et al. 2000. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J. 19:2444-51
    • (2000) EMBO J. , vol.19 , pp. 2444-2451
    • Nijtmans, L.G.1    De Jong, L.2    Artal Sanz, M.3    Coates, P.J.4    Berden, J.A.5
  • 62
    • 0034293329 scopus 로고    scopus 로고
    • Role of the non-essential region encompassing the N-terminal two transmembrane stretches of Escherichia coli SecE
    • Nishiyama K, Suzuki H, Tokuda H. 2000. Role of the non-essential region encompassing the N-terminal two transmembrane stretches of Escherichia coli SecE. Biosci. Biotechnol. Biochem. 64:2121-27
    • (2000) Biosci. Biotechnol. Biochem. , vol.64 , pp. 2121-2127
    • Nishiyama, K.1    Suzuki, H.2    Tokuda, H.3
  • 63
    • 0036773132 scopus 로고    scopus 로고
    • Hexameric ring structure of the ATPase domain of the membrane-integrated metalloprotease FtsH from Thermus thermophilus HB8
    • Niwa H, Tsuchiya D, Makyio H, Yoshida M, Morikawa K. 2002. Hexameric ring structure of the ATPase domain of the membrane-integrated metalloprotease FtsH from Thermus thermophilus HB8. Structure 10:1415-23
    • (2002) Structure , vol.10 , pp. 1415-1423
    • Niwa, H.1    Tsuchiya, D.2    Makyio, H.3    Yoshida, M.4    Morikawa, K.5
  • 64
    • 0027436841 scopus 로고
    • The Escherichia coli hflA locus encodes a putative GTP-binding protein and two membrane proteins, one of which contains a protease-like domain
    • Noble JA, Innis MA, Koonin EV, Rudd KE, Banuett F, Herskowitz I. 1993. The Escherichia coli hflA locus encodes a putative GTP-binding protein and two membrane proteins, one of which contains a protease-like domain. Proc. Natl. Acad. Sci. USA 90:10866-70
    • (1993) Proc. Natl. Acad. Sci. USA , vol.90 , pp. 10866-10870
    • Noble, J.A.1    Innis, M.A.2    Koonin, E.V.3    Rudd, K.E.4    Banuett, F.5    Herskowitz, I.6
  • 65
    • 0014138330 scopus 로고
    • Interaction of colicins with bacterial cells. III. Colicin-tolerant mutations in Escherichia coli mutant
    • Nomura M, Witten C. 1967. Interaction of colicins with bacterial cells. III. Colicin-tolerant mutations in Escherichia coli mutant. J. Bacteriol. 94:1093-111
    • (1967) J. Bacteriol. , vol.94 , pp. 1093-1111
    • Nomura, M.1    Witten, C.2
  • 66
    • 0345523771 scopus 로고    scopus 로고
    • Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid a biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli
    • Ogura T, Inoue K, Tatsuta T, Suzaki T, Karata K, et al. 1999. Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol. Microbiol. 31:833-44
    • (1999) Mol. Microbiol. , vol.31 , pp. 833-844
    • Ogura, T.1    Inoue, K.2    Tatsuta, T.3    Suzaki, T.4    Karata, K.5
  • 68
    • 0034885052 scopus 로고    scopus 로고
    • AAA+ superfamily ATPases: Common structure-diverse function
    • Ogura T, Wilkinson AJ. 2001. AAA+ superfamily ATPases: common structure-diverse function. Genes Cells 6:575-97
    • (2001) Genes Cells , vol.6 , pp. 575-597
    • Ogura, T.1    Wilkinson, A.J.2
  • 69
    • 1642333987 scopus 로고    scopus 로고
    • Spectrometric analysis of degradation of a physiological substrate sigma32 by Escherichia coli AAA protease FtsH
    • Okuno T, Yamada-Inagawa T, Karata K, Yamanaka K, Ogura T. 2004. Spectrometric analysis of degradation of a physiological substrate sigma32 by Escherichia coli AAA protease FtsH. J. Struct. Biol. 146:148-54
    • (2004) J. Struct. Biol. , vol.146 , pp. 148-154
    • Okuno, T.1    Yamada-Inagawa, T.2    Karata, K.3    Yamanaka, K.4    Ogura, T.5
  • 70
    • 4344577287 scopus 로고    scopus 로고
    • Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis
    • Park S, Rodermel SR. 2004. Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis. Proc. Natl. Acad. Sci. USA 101:12765-70
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 12765-12770
    • Park, S.1    Rodermel, S.R.2
  • 71
    • 0034718116 scopus 로고    scopus 로고
    • Structural and functional studies on an FtsH inhibitor from Bacillus subtilis
    • Prajapati RS, Ogura T, Cutting SM. 2000. Structural and functional studies on an FtsH inhibitor from Bacillus subtilis. Biochim. Biophys. Acta 1475:353-59
    • (2000) Biochim. Biophys. Acta , vol.1475 , pp. 353-359
    • Prajapati, R.S.1    Ogura, T.2    Cutting, S.M.3
  • 72
    • 0029896059 scopus 로고    scopus 로고
    • The tolZ gene of Escherichia coli is identified as the ftsH gene
    • Qu JN, Makino SI, Adachi H, Koyama Y, Akiyama Y, et al. 1996. The tolZ gene of Escherichia coli is identified as the ftsH gene. J. Bacteriol. 178:3457-61
    • (1996) J. Bacteriol. , vol.178 , pp. 3457-3461
    • Qu, J.N.1    Makino, S.I.2    Adachi, H.3    Koyama, Y.4    Akiyama, Y.5
  • 73
    • 0345803934 scopus 로고    scopus 로고
    • Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange
    • Rist W, Jorgensen TJ, Roepstorff P, Bukau B, Mayer MP. 2003. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange. J. Biol. Chem. 278:51415-21
    • (2003) J. Biol. Chem. , vol.278 , pp. 51415-51421
    • Rist, W.1    Jorgensen, T.J.2    Roepstorff, P.3    Bukau, B.4    Mayer, M.P.5
  • 74
    • 1642356725 scopus 로고    scopus 로고
    • FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli
    • Saikawa N, Akiyama Y, Ito K. 2004. FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli. J. Struct. Biol. 146:123-29
    • (2004) J. Struct. Biol. , vol.146 , pp. 123-129
    • Saikawa, N.1    Akiyama, Y.2    Ito, K.3
  • 75
    • 0037065698 scopus 로고    scopus 로고
    • Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB)
    • Saikawa N, Ito K, Akiyama Y. 2002. Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB). Biochemistry 41:1861-68
    • (2002) Biochemistry , vol.41 , pp. 1861-1868
    • Saikawa, N.1    Ito, K.2    Akiyama, Y.3
  • 76
    • 0016627718 scopus 로고
    • Isolation and characterization of a new temperature-sensitive cell division mutant of Escherichia coli K-12
    • Santos D, De Almeida DF. 1975. Isolation and characterization of a new temperature-sensitive cell division mutant of Escherichia coli K-12. J. Bacteriol. 124:1502-7
    • (1975) J. Bacteriol. , vol.124 , pp. 1502-1507
    • Santos, D.1    De Almeida, D.F.2
  • 77
    • 0032965905 scopus 로고    scopus 로고
    • FtsH: A single-chain charonin?
    • Schumann W. 1999. FtsH: a single-chain charonin? FEMS Microbiol. Rev. 23:1-11
    • (1999) FEMS Microbiol. Rev. , vol.23 , pp. 1-11
    • Schumann, W.1
  • 78
    • 0035985049 scopus 로고    scopus 로고
    • The Cpx stress response system of Escherichia coli senses plasma membrane proteins and controls HtpX, a membrane protease with a cytosolic active site
    • Shimohata N, Chiba S, Saikawa N, Ito K, Akiyama Y. 2002. The Cpx stress response system of Escherichia coli senses plasma membrane proteins and controls HtpX, a membrane protease with a cytosolic active site. Genes Cells 7:653-62
    • (2002) Genes Cells , vol.7 , pp. 653-662
    • Shimohata, N.1    Chiba, S.2    Saikawa, N.3    Ito, K.4    Akiyama, Y.5
  • 79
    • 0030025784 scopus 로고    scopus 로고
    • Suppression of ftsH mutant phenotypes by overproduction of molecular chaperones
    • Shirai Y, Akiyama Y, Ito K. 1996. Suppression of ftsH mutant phenotypes by overproduction of molecular chaperones. J. Bacteriol. 178:1141-45
    • (1996) J. Bacteriol. , vol.178 , pp. 1141-1145
    • Shirai, Y.1    Akiyama, Y.2    Ito, K.3
  • 80
    • 8544283778 scopus 로고    scopus 로고
    • Proteolysis of the phage lambda CII regulatory protein by FtsH (HflB) of Escherichia coli
    • Shetland Y, Koby S, Teff D, Mansur N, Oren DA, et al. 1997. Proteolysis of the phage lambda CII regulatory protein by FtsH (HflB) of Escherichia coli. Mol. Microbiol. 24:1303-10
    • (1997) Mol. Microbiol. , vol.24 , pp. 1303-1310
    • Shetland, Y.1    Koby, S.2    Teff, D.3    Mansur, N.4    Oren, D.A.5
  • 81
    • 0034109114 scopus 로고    scopus 로고
    • Proteolysis of bacteriophage lambda CH by Escherichia coli FtsH (HflB)
    • Shotland Y, Shifrin A, Ziv T, Teff D, Koby S, et al. 2000. Proteolysis of bacteriophage lambda CH by Escherichia coli FtsH (HflB). J. Bacteriol. 182:3111-16
    • (2000) J. Bacteriol. , vol.182 , pp. 3111-3116
    • Shotland, Y.1    Shifrin, A.2    Ziv, T.3    Teff, D.4    Koby, S.5
  • 82
    • 0034674173 scopus 로고    scopus 로고
    • Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli
    • Shotland Y, Teff D, Koby S, Kobiler O, Oppenheim AB. 2000. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli. J. Mol. Biol. 299:953-64
    • (2000) J. Mol. Biol. , vol.299 , pp. 953-964
    • Shotland, Y.1    Teff, D.2    Koby, S.3    Kobiler, O.4    Oppenheim, A.B.5
  • 83
    • 0344631696 scopus 로고    scopus 로고
    • Regulation of bacteriophage lambda development by guanosine 5′-diphosphate-3′-diphosphate
    • Slominska M, Neubauer P, Wegrzyn G. 1999. Regulation of bacteriophage lambda development by guanosine 5′-diphosphate-3′-diphosphate. Virology 262:431-41
    • (1999) Virology , vol.262 , pp. 431-441
    • Slominska, M.1    Neubauer, P.2    Wegrzyn, G.3
  • 84
    • 0032954927 scopus 로고    scopus 로고
    • Prohibions regulate membrane protein degradation by the m-AAA protease in mitochondria
    • 82a. Steglich G, Neupert W, Langer T. 1999. Prohibions regulate membrane protein degradation by the m-AAA protease in mitochondria. Mol. Cell Biol. 19:3435-42
    • (1999) Mol. Cell Biol. , vol.19 , pp. 3435-3442
    • Steglich, G.1    Neupert, W.2    Langer, T.3
  • 86
    • 0034604704 scopus 로고    scopus 로고
    • Evidence for an active role of the DnaK chaperone system in the degradation of sigma(32)
    • Tatsuta T, Joo DM, Calendar R, Akiyama Y, Ogura T. 2000. Evidence for an active role of the DnaK chaperone system in the degradation of sigma(32). FEBS Lett. 478:271-75
    • (2000) FEBS Lett. , vol.478 , pp. 271-275
    • Tatsuta, T.1    Joo, D.M.2    Calendar, R.3    Akiyama, Y.4    Ogura, T.5
  • 87
    • 0031737263 scopus 로고    scopus 로고
    • Heat shock regulation in the ftsH null mutant of Escherichia coli: Dissection of stability and activity control mechanisms of sigma32 in vivo
    • Tatsuta T, Tomoyasu T, Bukau B, Kitagawa M, Mori H, et al. 1998. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Mol. Microbiol. 30:583-93
    • (1998) Mol. Microbiol. , vol.30 , pp. 583-593
    • Tatsuta, T.1    Tomoyasu, T.2    Bukau, B.3    Kitagawa, M.4    Mori, H.5
  • 88
    • 0027131290 scopus 로고
    • Determinants of the quantity of the stable SecY complex in the Escherichia coli cell
    • Taura T, Baba T, Akiyama Y, Ito K. 1993. Determinants of the quantity of the stable SecY complex in the Escherichia coli cell. J. Bacteriol. 175:7771-75
    • (1993) J. Bacteriol. , vol.175 , pp. 7771-7775
    • Taura, T.1    Baba, T.2    Akiyama, Y.3    Ito, K.4
  • 89
    • 0033959174 scopus 로고    scopus 로고
    • A colicin-tolerant Escherichia coli mutant that confers hfl phenotype carries two mutations in the region coding for the C-terminal domain of FtsH (HflB)
    • Teff D, Koby S, Shotland Y, Ogura T, Oppenheim AB. 2000. A colicin-tolerant Escherichia coli mutant that confers hfl phenotype carries two mutations in the region coding for the C-terminal domain of FtsH (HflB). FEMS Microbiol. Lett. 183:115-17
    • (2000) FEMS Microbiol. Lett. , vol.183 , pp. 115-117
    • Teff, D.1    Koby, S.2    Shotland, Y.3    Ogura, T.4    Oppenheim, A.B.5
  • 90
    • 0034805893 scopus 로고    scopus 로고
    • The C terminus of sigma(32) is not essential for degradation by FtsH
    • Tomoyasu T, Arsene F, Ogura T, Bukau B. 2001. The C terminus of sigma(32) is not essential for degradation by FtsH. J. Bacteriol. 183:5911-17
    • (2001) J. Bacteriol. , vol.183 , pp. 5911-5917
    • Tomoyasu, T.1    Arsene, F.2    Ogura, T.3    Bukau, B.4
  • 91
    • 0029060112 scopus 로고
    • Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32
    • Tomoyasu T, Gamer J, Bukau B, Kanemori M, Mori H, et al. 1995. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO J. 14:2551-60
    • (1995) EMBO J. , vol.14 , pp. 2551-2560
    • Tomoyasu, T.1    Gamer, J.2    Bukau, B.3    Kanemori, M.4    Mori, H.5
  • 92
    • 0031793242 scopus 로고    scopus 로고
    • Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli
    • Tomoyasu T, Ogura T, Tatsuta T, Bukau B. 1998. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol. Microbiol. 30:567-81
    • (1998) Mol. Microbiol. , vol.30 , pp. 567-581
    • Tomoyasu, T.1    Ogura, T.2    Tatsuta, T.3    Bukau, B.4
  • 93
    • 0027514035 scopus 로고
    • Topology and subcellular localization of FtsH protein in Escherichia coli
    • Tomoyasu T, Yamanaka K, Murata K, Suzaki T, Bouloc P, et al. 1993. Topology and subcellular localization of FtsH protein in Escherichia coli. J. Bacteriol. 175:1352-57
    • (1993) J. Bacteriol. , vol.175 , pp. 1352-1357
    • Tomoyasu, T.1    Yamanaka, K.2    Murata, K.3    Suzaki, T.4    Bouloc, P.5
  • 94
    • 0027535381 scopus 로고
    • The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression
    • Tomoyasu T, Yuki T, Morimura S, Mori H, Yamanaka K, et al. 1993. The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J. Bacteriol. 175:1344-51
    • (1993) J. Bacteriol. , vol.175 , pp. 1344-1351
    • Tomoyasu, T.1    Yuki, T.2    Morimura, S.3    Mori, H.4    Yamanaka, K.5
  • 95
    • 0029824724 scopus 로고    scopus 로고
    • Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock
    • Tsui HC, Feng G, Winkler ME. 1996. Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock. J. Bacteriol. 178:5719-31
    • (1996) J. Bacteriol. , vol.178 , pp. 5719-5731
    • Tsui, H.C.1    Feng, G.2    Winkler, M.E.3
  • 97
    • 0035096082 scopus 로고    scopus 로고
    • Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism
    • Wang J, Song JJ, Franklin MC, Kamtekar S, Im YJ, et al. 2001. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9:177-84
    • (2001) Structure , vol.9 , pp. 177-184
    • Wang, J.1    Song, J.J.2    Franklin, M.C.3    Kamtekar, S.4    Im, Y.J.5
  • 98
    • 0031894053 scopus 로고    scopus 로고
    • Escherichia coli mrsC is an allele of hflB, encoding a membrane-associated ATPase and protease that is required for mRNA decay
    • Wang RF, O'Hara EB, Aldea M, Bargmann CI, Gromley H, Kushner SR. 1998. Escherichia coli mrsC is an allele of hflB, encoding a membrane-associated ATPase and protease that is required for mRNA decay. J. Bacteriol. 180:1929-38
    • (1998) J. Bacteriol. , vol.180 , pp. 1929-1938
    • Wang, R.F.1    O'Hara, E.B.2    Aldea, M.3    Bargmann, C.I.4    Gromley, H.5    Kushner, S.R.6
  • 99
    • 8844251486 scopus 로고    scopus 로고
    • Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB
    • Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z, et al. 2004. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119:653-65
    • (2004) Cell , vol.119 , pp. 653-665
    • Weibezahn, J.1    Tessarz, P.2    Schlieker, C.3    Zahn, R.4    Maglica, Z.5
  • 100
    • 0348010363 scopus 로고    scopus 로고
    • Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis
    • Yamada-Inagawa T, Okuno T, Karata K, Yamanaka K, Ogura T. 2003. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J. Biol. Chem. 278:50182-87
    • (2003) J. Biol. Chem. , vol.278 , pp. 50182-50187
    • Yamada-Inagawa, T.1    Okuno, T.2    Karata, K.3    Yamanaka, K.4    Ogura, T.5
  • 101
    • 3042677637 scopus 로고    scopus 로고
    • A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol
    • Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA. 2004. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841-47
    • (2004) Nature , vol.429 , pp. 841-847
    • Ye, Y.1    Shibata, Y.2    Yun, C.3    Ron, D.4    Rapoport, T.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.