-
1
-
-
0018987976
-
Intracellular protein topogenesis
-
Blobel G. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. U. S. A. 1980, 77:1496-1500.
-
(1980)
Proc. Natl. Acad. Sci. U. S. A.
, vol.77
, pp. 1496-1500
-
-
Blobel, G.1
-
3
-
-
0033008601
-
Protein targeting to the bacterial cytoplasmic membrane
-
Fekkes P., Driessen A.J.M. Protein targeting to the bacterial cytoplasmic membrane. Microbiol. Mol. Biol. Rev. 1999, 63:161-173.
-
(1999)
Microbiol. Mol. Biol. Rev.
, vol.63
, pp. 161-173
-
-
Fekkes, P.1
Driessen, A.J.M.2
-
4
-
-
62849101877
-
Delivering proteins for export from the cytosol
-
Cross B.C.S., Sinning I., Luirink J., High S. Delivering proteins for export from the cytosol. Nat. Rev. Mol. Cell Biol. 2009, 10:255-264.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 255-264
-
-
Cross, B.C.S.1
Sinning, I.2
Luirink, J.3
High, S.4
-
5
-
-
33748937555
-
The surprising complexity of signal sequences
-
Hegde R.S., Bernstein H.D. The surprising complexity of signal sequences. Trends Biochem. Sci. 2006, 31:563-571.
-
(2006)
Trends Biochem. Sci.
, vol.31
, pp. 563-571
-
-
Hegde, R.S.1
Bernstein, H.D.2
-
6
-
-
0034923677
-
The signal recognition particle
-
Keenan R.J., Freymann D.M., Stroud R.M., Walter P. The signal recognition particle. Ann. Rev. Biochem. 2001, 70:755-775.
-
(2001)
Ann. Rev. Biochem.
, vol.70
, pp. 755-775
-
-
Keenan, R.J.1
Freymann, D.M.2
Stroud, R.M.3
Walter, P.4
-
7
-
-
79851503908
-
Inserting membrane proteins: The YidC/Oxa1/Alb3 machinery in bacteria, mitochondria, and chloroplasts
-
Wang P., Dalbey R.E. Inserting membrane proteins: The YidC/Oxa1/Alb3 machinery in bacteria, mitochondria, and chloroplasts. Biochim. Biophys. Acta Biomembr. 2011, 1808:866-875.
-
(2011)
Biochim. Biophys. Acta Biomembr.
, vol.1808
, pp. 866-875
-
-
Wang, P.1
Dalbey, R.E.2
-
8
-
-
0034651753
-
YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase
-
Scotti P.A., Urbanus M.L., Brunner J., de Gier J.W.L., von Heijne G., van der Does C., Driessen A.J.M., Oudega B., Luirink J. YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J. 2000, 19:542-549.
-
(2000)
EMBO J.
, vol.19
, pp. 542-549
-
-
Scotti, P.A.1
Urbanus, M.L.2
Brunner, J.3
de Gier, J.W.L.4
von Heijne, G.5
van der Does, C.6
Driessen, A.J.M.7
Oudega, B.8
Luirink, J.9
-
9
-
-
0036015653
-
SecDFyajC forms a heterotetrameric complex with YidC
-
Nouwen N., Driessen A.J.M. SecDFyajC forms a heterotetrameric complex with YidC. Mol. Microbiol. 2002, 44:1397-1405.
-
(2002)
Mol. Microbiol.
, vol.44
, pp. 1397-1405
-
-
Nouwen, N.1
Driessen, A.J.M.2
-
10
-
-
33744958176
-
Subunit a of cytochrome o oxidase requires both YidC and SecYEG for membrane insertion
-
du Plessis D.J.F., Nouwen N., Driessen A.J.M. Subunit a of cytochrome o oxidase requires both YidC and SecYEG for membrane insertion. J. Biol. Chem. 2006, 281:12248-12252.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 12248-12252
-
-
du Plessis, D.J.F.1
Nouwen, N.2
Driessen, A.J.M.3
-
11
-
-
67649840687
-
Subunit a of the F1F0 ATP Synthase Requires YidC and SecYEG for Membrane Insertion
-
Kol S., Majczak W., Heerlien R., van der Berg J.P., Nouwen N., Driessen A.J.M. Subunit a of the F1F0 ATP Synthase Requires YidC and SecYEG for Membrane Insertion. J. Mol. Biol. 2009, 390:893-901.
-
(2009)
J. Mol. Biol.
, vol.390
, pp. 893-901
-
-
Kol, S.1
Majczak, W.2
Heerlien, R.3
van der Berg, J.P.4
Nouwen, N.5
Driessen, A.J.M.6
-
12
-
-
0034632819
-
YidC mediates membrane protein insertion in bacteria
-
Samuelson J.C., Chen M.Y., Jiang F.L., Moller I., Wiedmann M., Kuhn A., Phillips G.J., Dalbey R.E. YidC mediates membrane protein insertion in bacteria. Nature 2000, 406:637-641.
-
(2000)
Nature
, vol.406
, pp. 637-641
-
-
Samuelson, J.C.1
Chen, M.Y.2
Jiang, F.L.3
Moller, I.4
Wiedmann, M.5
Kuhn, A.6
Phillips, G.J.7
Dalbey, R.E.8
-
13
-
-
2142705713
-
F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis
-
van der Laan M., Bechtluft P., Kol S., Nouwen N., Driessen A.J.M. F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J. Cell Biol. 2004, 165:213-222.
-
(2004)
J. Cell Biol.
, vol.165
, pp. 213-222
-
-
van der Laan, M.1
Bechtluft, P.2
Kol, S.3
Nouwen, N.4
Driessen, A.J.M.5
-
14
-
-
0037947833
-
A conserved function of YidC in the biogenesis of respiratory chain complexes
-
van der Laan M., Urbanus M.L., ten Hagen-Jongman C.M., Nouwen N., Oudega B., Harms N., Driessen A.J.M., Luirink J. A conserved function of YidC in the biogenesis of respiratory chain complexes. Proc. Natl. Acad. Sci. U. S. A. 2003, 100:5801-5806.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 5801-5806
-
-
van der Laan, M.1
Urbanus, M.L.2
ten Hagen-Jongman, C.M.3
Nouwen, N.4
Oudega, B.5
Harms, N.6
Driessen, A.J.M.7
Luirink, J.8
-
15
-
-
84863407242
-
Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle
-
Welte T., Kudva R., Kuhn P., Sturm L., Braig D., Mueller M., Warscheid B., Drepper F., Koch H.-G. Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle. Mol. Biol. Cell 2012, 23:464-479.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 464-479
-
-
Welte, T.1
Kudva, R.2
Kuhn, P.3
Sturm, L.4
Braig, D.5
Mueller, M.6
Warscheid, B.7
Drepper, F.8
Koch, H.-G.9
-
16
-
-
84886728407
-
Elucidating the native architecture of the YidC:Ribosome complex
-
Kedrov A., Sustarsic M., de Keyzer J., Caumanns J.J., Wu Z.C., Driessen A.J.M. Elucidating the native architecture of the YidC:Ribosome complex. J. Mol. Biol. 2013, 10.1016/j.jmb.2013.1007.1042.
-
(2013)
J. Mol. Biol.
-
-
Kedrov, A.1
Sustarsic, M.2
de Keyzer, J.3
Caumanns, J.J.4
Wu, Z.C.5
Driessen, A.J.M.6
-
17
-
-
65549152827
-
YidC and Oxa1 form dimeric insertion pores on the translating ribosome
-
Kohler R., Boehringer D., Greber B., Bingel-Erienmeyer R., Collinson I., Schaffitzel C., Ban N. YidC and Oxa1 form dimeric insertion pores on the translating ribosome. Mol. Cell 2009, 34:344-353.
-
(2009)
Mol. Cell
, vol.34
, pp. 344-353
-
-
Kohler, R.1
Boehringer, D.2
Greber, B.3
Bingel-Erienmeyer, R.4
Collinson, I.5
Schaffitzel, C.6
Ban, N.7
-
18
-
-
0034959718
-
Reconstitution of Sec-dependent membrane protein insertion: nascent FtsQ interacts with YidC in a SecYEG-dependent manner
-
van der Laan M., Houben E.N.G., Nouwen N., Luirink J., Driessen A.J.M. Reconstitution of Sec-dependent membrane protein insertion: nascent FtsQ interacts with YidC in a SecYEG-dependent manner. EMBO Rep. 2001, 2:519-523.
-
(2001)
EMBO Rep.
, vol.2
, pp. 519-523
-
-
van der Laan, M.1
Houben, E.N.G.2
Nouwen, N.3
Luirink, J.4
Driessen, A.J.M.5
-
19
-
-
0024291341
-
SecA protein is required for secretory protein translocation into Escherichia-coli membrane-vesicles
-
Cabelli R.J., Chen L.L., Tai P.C., Oliver D.B. SecA protein is required for secretory protein translocation into Escherichia-coli membrane-vesicles. Cell 1988, 55:683-692.
-
(1988)
Cell
, vol.55
, pp. 683-692
-
-
Cabelli, R.J.1
Chen, L.L.2
Tai, P.C.3
Oliver, D.B.4
-
20
-
-
79251576465
-
SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria
-
Huber D., Rajagopalan N., Preissler S., Rocco M.A., Merz F., Kramer G., Bukau B. SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria. Mol. Cell 2011, 41:343-353.
-
(2011)
Mol. Cell
, vol.41
, pp. 343-353
-
-
Huber, D.1
Rajagopalan, N.2
Preissler, S.3
Rocco, M.A.4
Merz, F.5
Kramer, G.6
Bukau, B.7
-
21
-
-
84862501228
-
The twin-arginine translocation (Tat) protein export pathway
-
Palmer T., Berks B.C. The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol. 2012, 10:483-496.
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 483-496
-
-
Palmer, T.1
Berks, B.C.2
-
22
-
-
33847396185
-
An essential role for the DnaK molecular chaperone in stabilizing over-expressed substrate proteins of the bacterial twin-arginine translocation pathway
-
Perez-Rodriguez R., Fisher A.C., Perlmutter J.D., Hicks M.G., Chanal A., Santini C.-L., Wu L.-F., Palmer T., DeLisa M.P. An essential role for the DnaK molecular chaperone in stabilizing over-expressed substrate proteins of the bacterial twin-arginine translocation pathway. J. Mol. Biol. 2007, 367:715-730.
-
(2007)
J. Mol. Biol.
, vol.367
, pp. 715-730
-
-
Perez-Rodriguez, R.1
Fisher, A.C.2
Perlmutter, J.D.3
Hicks, M.G.4
Chanal, A.5
Santini, C.-L.6
Wu, L.-F.7
Palmer, T.8
DeLisa, M.P.9
-
23
-
-
77954378286
-
Remote origins of tail-anchored proteins
-
Borgese N., Righi M. Remote origins of tail-anchored proteins. Traffic 2010, 11:877-885.
-
(2010)
Traffic
, vol.11
, pp. 877-885
-
-
Borgese, N.1
Righi, M.2
-
24
-
-
79952066011
-
Translation-independent localization of mRNA in E. coli
-
Nevo-Dinur K., Nussbaum-Shochat A., Ben-Yehuda S., Amster-Choder O. Translation-independent localization of mRNA in E. coli. Science 2011, 331:1081-1084.
-
(2011)
Science
, vol.331
, pp. 1081-1084
-
-
Nevo-Dinur, K.1
Nussbaum-Shochat, A.2
Ben-Yehuda, S.3
Amster-Choder, O.4
-
25
-
-
0027288333
-
Functional substitution of the signal recognition particle 54-KDa subunit by its Escherichia-coli homolog
-
Bernstein H.D., Zopf D., Freymann D.M., Walter P. Functional substitution of the signal recognition particle 54-KDa subunit by its Escherichia-coli homolog. Proc. Natl. Acad. Sci. U. S. A. 1993, 90:5229-5233.
-
(1993)
Proc. Natl. Acad. Sci. U. S. A.
, vol.90
, pp. 5229-5233
-
-
Bernstein, H.D.1
Zopf, D.2
Freymann, D.M.3
Walter, P.4
-
26
-
-
0030832397
-
Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor
-
Powers T., Walter P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 1997, 16:4880-4886.
-
(1997)
EMBO J.
, vol.16
, pp. 4880-4886
-
-
Powers, T.1
Walter, P.2
-
27
-
-
0034681490
-
Crystal structure of the ribonucleoprotein core of the signal recognition particle
-
Batey R.T., Rambo R.P., Lucast L., Rha B., Doudna J.A. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 2000, 287:1232-1239.
-
(2000)
Science
, vol.287
, pp. 1232-1239
-
-
Batey, R.T.1
Rambo, R.P.2
Lucast, L.3
Rha, B.4
Doudna, J.A.5
-
28
-
-
79952363483
-
Structural basis of signal-sequence recognition by the signal recognition particle
-
Hainzl T., Huang S.H., Merilainen G., Brannstrom K., Sauer-Eriksson A.E. Structural basis of signal-sequence recognition by the signal recognition particle. Nat. Struct. Mol. Biol. 2011, 18:389-391.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 389-391
-
-
Hainzl, T.1
Huang, S.H.2
Merilainen, G.3
Brannstrom, K.4
Sauer-Eriksson, A.E.5
-
29
-
-
77953025666
-
Recognition of a signal peptide by the signal recognition particle
-
Janda C.Y., Li J., Oubridge C., Hernandez H., Robinson C.V., Nagai K. Recognition of a signal peptide by the signal recognition particle. Nature 2010, 465:507-510.
-
(2010)
Nature
, vol.465
, pp. 507-510
-
-
Janda, C.Y.1
Li, J.2
Oubridge, C.3
Hernandez, H.4
Robinson, C.V.5
Nagai, K.6
-
30
-
-
0032563163
-
Crystal structure of the signal sequence binding subunit of the signal recognition particle
-
Keenan R.J., Freymann D.M., Walter P., Stroud R.M. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 1998, 94:181-191.
-
(1998)
Cell
, vol.94
, pp. 181-191
-
-
Keenan, R.J.1
Freymann, D.M.2
Walter, P.3
Stroud, R.M.4
-
31
-
-
84878941023
-
Signal recognition particle: an essential protein-targeting machine
-
Akopian D., Shen K., Zhang X., Shan S.-O. Signal recognition particle: an essential protein-targeting machine. Ann. Rev. Biochem. 2013, 82:693-721.
-
(2013)
Ann. Rev. Biochem.
, vol.82
, pp. 693-721
-
-
Akopian, D.1
Shen, K.2
Zhang, X.3
Shan, S.-O.4
-
32
-
-
0030595327
-
Signal sequences: The same yet different
-
Zheng N., Gierasch L.M. Signal sequences: The same yet different. Cell 1996, 86:849-852.
-
(1996)
Cell
, vol.86
, pp. 849-852
-
-
Zheng, N.1
Gierasch, L.M.2
-
33
-
-
0005614190
-
Photo-cross-linking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle
-
Krieg U.C., Walter P., Johnson A.E. Photo-cross-linking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle. Proc. Natl. Acad. Sci. U. S. A. 1986, 83:8604-8608.
-
(1986)
Proc. Natl. Acad. Sci. U. S. A.
, vol.83
, pp. 8604-8608
-
-
Krieg, U.C.1
Walter, P.2
Johnson, A.E.3
-
34
-
-
0022527444
-
The signal sequence of nascent preprolactin interacts with the 54k polypeptide of the signal recognition particle
-
Kurzchalia T.V., Wiedmann M., Girshovich A.S., Bochkareva E.S., Bielka H., Rapoport T.A. The signal sequence of nascent preprolactin interacts with the 54k polypeptide of the signal recognition particle. Nature 1986, 320:634-636.
-
(1986)
Nature
, vol.320
, pp. 634-636
-
-
Kurzchalia, T.V.1
Wiedmann, M.2
Girshovich, A.S.3
Bochkareva, E.S.4
Bielka, H.5
Rapoport, T.A.6
-
35
-
-
0025601549
-
The methionine-rich domain of the 54 Kd protein subunit of the signal recognition particle contains an rna-binding site and can be cross-linked to a signal sequence
-
Zopf D., Bernstein H.D., Johnson A.E., Walter P. The methionine-rich domain of the 54 Kd protein subunit of the signal recognition particle contains an rna-binding site and can be cross-linked to a signal sequence. EMBO J. 1990, 9:4511-4517.
-
(1990)
EMBO J.
, vol.9
, pp. 4511-4517
-
-
Zopf, D.1
Bernstein, H.D.2
Johnson, A.E.3
Walter, P.4
-
36
-
-
0024966540
-
Model for signal sequence recognition from amino-acid-sequence of 54K subunit of signal recognition particle
-
Bernstein H.D., Poritz M.A., Strub K., Hoben P.J., Brenner S., Walter P. Model for signal sequence recognition from amino-acid-sequence of 54K subunit of signal recognition particle. Nature 1989, 340:482-486.
-
(1989)
Nature
, vol.340
, pp. 482-486
-
-
Bernstein, H.D.1
Poritz, M.A.2
Strub, K.3
Hoben, P.J.4
Brenner, S.5
Walter, P.6
-
37
-
-
0344304454
-
Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication
-
Rosendal K.R., Wild K., Montoya G., Sinning L. Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication. Proc. Natl. Acad. Sci. U. S. A. 2003, 100:14701-14706.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 14701-14706
-
-
Rosendal, K.R.1
Wild, K.2
Montoya, G.3
Sinning, L.4
-
38
-
-
34347399347
-
The signal recognition particle (SRP) RNA links conformational changes in the SRP to protein targeting
-
Bradshaw N., Walter P. The signal recognition particle (SRP) RNA links conformational changes in the SRP to protein targeting. Mol. Biol. Cell 2007, 18:2728-2734.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 2728-2734
-
-
Bradshaw, N.1
Walter, P.2
-
39
-
-
84872339013
-
Fingerloop activates cargo delivery and unloading during cotranslational protein targeting
-
Ariosa A.R., Duncan S.S., Saraogi I., Lu X., Brown A., Phillips G.J., Shan S.-O. Fingerloop activates cargo delivery and unloading during cotranslational protein targeting. Mol. Biol. Cell 2013, 24:63-73.
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 63-73
-
-
Ariosa, A.R.1
Duncan, S.S.2
Saraogi, I.3
Lu, X.4
Brown, A.5
Phillips, G.J.6
Shan, S.-O.7
-
40
-
-
58149264965
-
Signal sequences activate the catalytic switch of SRP RNA
-
Bradshaw N., Neher S.B., Booth D.S., Walter P. Signal sequences activate the catalytic switch of SRP RNA. Science 2009, 323:127-130.
-
(2009)
Science
, vol.323
, pp. 127-130
-
-
Bradshaw, N.1
Neher, S.B.2
Booth, D.S.3
Walter, P.4
-
41
-
-
43249083239
-
Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel
-
Bornemann T., Jockel J., Rodnina M.V., Wintermeyer W. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat. Struct. Mol. Biol. 2008, 15:494-499.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 494-499
-
-
Bornemann, T.1
Jockel, J.2
Rodnina, M.V.3
Wintermeyer, W.4
-
42
-
-
0038719738
-
Signal recognition particle binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens
-
Flanagan J.J., Chen J.C., Miao Y.W., Shao Y.L., Lin J.L., Bock P.E., Johnson A.E. Signal recognition particle binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens. J. Biol. Chem. 2003, 278:18628-18637.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 18628-18637
-
-
Flanagan, J.J.1
Chen, J.C.2
Miao, Y.W.3
Shao, Y.L.4
Lin, J.L.5
Bock, P.E.6
Johnson, A.E.7
-
43
-
-
77952127782
-
Sequential checkpoints govern substrate selection during cotranslational protein targeting
-
Zhang X., Rashid R., Wang K., Shan S.O. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 2010, 328:757-760.
-
(2010)
Science
, vol.328
, pp. 757-760
-
-
Zhang, X.1
Rashid, R.2
Wang, K.3
Shan, S.O.4
-
44
-
-
0037406142
-
The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome
-
Gu S.Q., Peske F., Wieden H.J., Rodnina M.V., Wintermeyer W. The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome. RNA 2003, 9:566-573.
-
(2003)
RNA
, vol.9
, pp. 566-573
-
-
Gu, S.Q.1
Peske, F.2
Wieden, H.J.3
Rodnina, M.V.4
Wintermeyer, W.5
-
45
-
-
0037162838
-
Distinct modes of signal recognition particle interaction with the ribosome
-
Pool M.R., Stumm J., Fulga T.A., Sinning I., Dobberstein B. Distinct modes of signal recognition particle interaction with the ribosome. Science 2002, 297:1345-1348.
-
(2002)
Science
, vol.297
, pp. 1345-1348
-
-
Pool, M.R.1
Stumm, J.2
Fulga, T.A.3
Sinning, I.4
Dobberstein, B.5
-
46
-
-
33751325296
-
Following the signal sequence from ribosomal tunnel exit to signal recognition particle
-
Halic M., Blau M., Becker T., Mielke T., Pool M.R., Wild K., Sinning I., Beckmann R. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 2006, 444:507-511.
-
(2006)
Nature
, vol.444
, pp. 507-511
-
-
Halic, M.1
Blau, M.2
Becker, T.3
Mielke, T.4
Pool, M.R.5
Wild, K.6
Sinning, I.7
Beckmann, R.8
-
47
-
-
33751325833
-
Structure of the E-coli signal recognition particle bound to a translating ribosome
-
Schaffitzel C., Oswald M., Berger I., Ishikawa T., Abrahams J.P., Koerten H.K., Koning R.I., Ban N. Structure of the E-coli signal recognition particle bound to a translating ribosome. Nature 2006, 444:503-506.
-
(2006)
Nature
, vol.444
, pp. 503-506
-
-
Schaffitzel, C.1
Oswald, M.2
Berger, I.3
Ishikawa, T.4
Abrahams, J.P.5
Koerten, H.K.6
Koning, R.I.7
Ban, N.8
-
48
-
-
80053079082
-
Site-specific fluorescent labeling of nascent proteins on the translating ribosome
-
Saraogi I., Zhang D., Chandrasekaran S., Shan S. Site-specific fluorescent labeling of nascent proteins on the translating ribosome. J. Amer. Chem. Soc. 2011, 133:14936-14939.
-
(2011)
J. Amer. Chem. Soc.
, vol.133
, pp. 14936-14939
-
-
Saraogi, I.1
Zhang, D.2
Chandrasekaran, S.3
Shan, S.4
-
49
-
-
84870817496
-
Dynamic switch of the signal recognition particle from scanning to targeting
-
Holtkamp W., Lee S., Bornemann T., Senyushkina T., Rodnina M.V., Wintermeyer W. Dynamic switch of the signal recognition particle from scanning to targeting. Nat. Struct. Mol. Biol. 2012, 19:1332-1337.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 1332-1337
-
-
Holtkamp, W.1
Lee, S.2
Bornemann, T.3
Senyushkina, T.4
Rodnina, M.V.5
Wintermeyer, W.6
-
50
-
-
0347584006
-
Substrate twinning activates the signal recognition particle and its receptor
-
Egea P.F., Shan S.O., Napetschnig J., Savage D.F., Walter P., Stroud R.M. Substrate twinning activates the signal recognition particle and its receptor. Nature 2004, 427:215-221.
-
(2004)
Nature
, vol.427
, pp. 215-221
-
-
Egea, P.F.1
Shan, S.O.2
Napetschnig, J.3
Savage, D.F.4
Walter, P.5
Stroud, R.M.6
-
51
-
-
0346373753
-
Heterodimeric GTPase core of the SRP targeting complex
-
Focia P.J., Shepotinovskaya I.V., Seidler J.A., Freymann D.M. Heterodimeric GTPase core of the SRP targeting complex. Science 2004, 303:373-377.
-
(2004)
Science
, vol.303
, pp. 373-377
-
-
Focia, P.J.1
Shepotinovskaya, I.V.2
Seidler, J.A.3
Freymann, D.M.4
-
52
-
-
0028338954
-
An alternative protein targeting pathway in Escherichia-coli - studies on the role of FtsY
-
Luirink J., Tenhagenjongman C.M., Vanderweijden C.C., Oudega B., High S., Dobberstein B., Kusters R. An alternative protein targeting pathway in Escherichia-coli - studies on the role of FtsY. EMBO J. 1994, 13:2289-2296.
-
(1994)
EMBO J.
, vol.13
, pp. 2289-2296
-
-
Luirink, J.1
Tenhagenjongman, C.M.2
Vanderweijden, C.C.3
Oudega, B.4
High, S.5
Dobberstein, B.6
Kusters, R.7
-
53
-
-
21844459467
-
Localization of translocation complex components in Bacillus subtilis: enrichment of the signal recognition particle receptor at early sporulation septa
-
Rubio A., Jiang X., Pogliano K. Localization of translocation complex components in Bacillus subtilis: enrichment of the signal recognition particle receptor at early sporulation septa. J. Bacteriol. 2005, 187:5000-5002.
-
(2005)
J. Bacteriol.
, vol.187
, pp. 5000-5002
-
-
Rubio, A.1
Jiang, X.2
Pogliano, K.3
-
54
-
-
71049179930
-
Predominant membrane localization is an essential feature of the bacterial signal recognition particle receptor
-
Mircheva M., Boy D., Weiche B., Hucke F., Graumann P., Koch H.-G. Predominant membrane localization is an essential feature of the bacterial signal recognition particle receptor. BMC Biol. 2009, 7:76.
-
(2009)
BMC Biol.
, vol.7
, pp. 76
-
-
Mircheva, M.1
Boy, D.2
Weiche, B.3
Hucke, F.4
Graumann, P.5
Koch, H.-G.6
-
55
-
-
77955881180
-
Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting
-
Lam V.Q., Akopian D., Rome M., Henningsen D., Shan S. Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting. J. Cell Biol. 2010, 190:623-635.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 623-635
-
-
Lam, V.Q.1
Akopian, D.2
Rome, M.3
Henningsen, D.4
Shan, S.5
-
56
-
-
36148937889
-
Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix
-
Parlitz R., Eitan A., Stjepanovic G., Bahari L., Bange G., Bibi E., Sinning I. Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J. Biol. Chem. 2007, 282:32176-32184.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 32176-32184
-
-
Parlitz, R.1
Eitan, A.2
Stjepanovic, G.3
Bahari, L.4
Bange, G.5
Bibi, E.6
Sinning, I.7
-
57
-
-
40649093985
-
A cleavable N-terminal membrane anchor is involved in membrane binding of the Escherichia coli SRP receptor
-
Weiche B., Buerk J., Angelini S., Schiltz E., Thumfart J.O., Koch H.-G. A cleavable N-terminal membrane anchor is involved in membrane binding of the Escherichia coli SRP receptor. J. Mol. Biol. 2008, 377:761-773.
-
(2008)
J. Mol. Biol.
, vol.377
, pp. 761-773
-
-
Weiche, B.1
Buerk, J.2
Angelini, S.3
Schiltz, E.4
Thumfart, J.O.5
Koch, H.-G.6
-
58
-
-
79953737877
-
The bacterial SRP receptor, SecA and the ribosome use overlapping binding sites on the SecY translocon
-
Kuhn P., Weiche B., Sturm L., Sommer E., Drepper F., Warscheid B., Sourjik V., Koch H.-G. The bacterial SRP receptor, SecA and the ribosome use overlapping binding sites on the SecY translocon. Traffic 2011, 12:563-578.
-
(2011)
Traffic
, vol.12
, pp. 563-578
-
-
Kuhn, P.1
Weiche, B.2
Sturm, L.3
Sommer, E.4
Drepper, F.5
Warscheid, B.6
Sourjik, V.7
Koch, H.-G.8
-
59
-
-
33750190340
-
Crystal structure of the 'NG' GTPase of the prokaryotic SRP54 homolog Ffh
-
Freymann D., Keenan R., Stroud R., Walter P. Crystal structure of the 'NG' GTPase of the prokaryotic SRP54 homolog Ffh. FASEB J. 1997, 11:A1063-A.
-
(1997)
FASEB J.
, vol.11
-
-
Freymann, D.1
Keenan, R.2
Stroud, R.3
Walter, P.4
-
60
-
-
0031030085
-
Crystal structure of the NG domain from the signal-recognition particle receptor FtsY
-
Montoya G., Svensson C., Luirink J., Sinning I. Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature 1997, 385:365-368.
-
(1997)
Nature
, vol.385
, pp. 365-368
-
-
Montoya, G.1
Svensson, C.2
Luirink, J.3
Sinning, I.4
-
61
-
-
0031017523
-
Structure of the conserved GTPase domain of the signal recognition particle
-
Freymann D.M., Keenan R.J., Stroud R.M., Walter P. Structure of the conserved GTPase domain of the signal recognition particle. Nature 1997, 385:361-364.
-
(1997)
Nature
, vol.385
, pp. 361-364
-
-
Freymann, D.M.1
Keenan, R.J.2
Stroud, R.M.3
Walter, P.4
-
62
-
-
0032813781
-
Functional changes in the structure of the SRP GTPase on binding GDP and Mg(2+)GDP
-
Freymann D.M., Keenan R.J., Stroud R.M., Walter P. Functional changes in the structure of the SRP GTPase on binding GDP and Mg(2+)GDP. Nat. Struct. Biol. 1999, 6:793-801.
-
(1999)
Nat. Struct. Biol.
, vol.6
, pp. 793-801
-
-
Freymann, D.M.1
Keenan, R.J.2
Stroud, R.M.3
Walter, P.4
-
63
-
-
0035909810
-
Role of SRP RNA in the GTPase cycles of ffh and FtsY
-
Peluso P., Shan S.O., Nock S., Herschlag D., Walter P. Role of SRP RNA in the GTPase cycles of ffh and FtsY. Biochemistry 2001, 40:15224-15233.
-
(2001)
Biochemistry
, vol.40
, pp. 15224-15233
-
-
Peluso, P.1
Shan, S.O.2
Nock, S.3
Herschlag, D.4
Walter, P.5
-
64
-
-
67349250817
-
It takes two to tango: regulation of G proteins by dimerization
-
Gasper R., Meyer S., Gotthardt K., Sirajuddin M., Wittinghofer A. It takes two to tango: regulation of G proteins by dimerization. Nat. Rev. Mol. Cell Biol. 2009, 10:423-429.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 423-429
-
-
Gasper, R.1
Meyer, S.2
Gotthardt, K.3
Sirajuddin, M.4
Wittinghofer, A.5
-
65
-
-
0036295212
-
Classification and evolution of P-loop GTPases and related ATPases
-
Leipe D.D., Wolf Y.I., Koonin E.V., Aravind L. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 2002, 317:41-72.
-
(2002)
J. Mol. Biol.
, vol.317
, pp. 41-72
-
-
Leipe, D.D.1
Wolf, Y.I.2
Koonin, E.V.3
Aravind, L.4
-
66
-
-
82955232389
-
Structural basis for the molecular evolution of SRP-GTPase activation by protein
-
Bange G., Kuemmerer N., Grudnik P., Lindner R., Petzold G., Kressler D., Hurt E., Wild K., Sinning I. Structural basis for the molecular evolution of SRP-GTPase activation by protein. Nat. Struct. Mol. Biol. 2011, 18:1376-U1390.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
-
-
Bange, G.1
Kuemmerer, N.2
Grudnik, P.3
Lindner, R.4
Petzold, G.5
Kressler, D.6
Hurt, E.7
Wild, K.8
Sinning, I.9
-
67
-
-
77953023419
-
G domain dimerization controls dynamin's assembly-stimulated GTPase activity
-
Chappie J.S., Acharya S., Leonard M., Schmid S.L., Dyda F. G domain dimerization controls dynamin's assembly-stimulated GTPase activity. Nature 2010, 465:435-440.
-
(2010)
Nature
, vol.465
, pp. 435-440
-
-
Chappie, J.S.1
Acharya, S.2
Leonard, M.3
Schmid, S.L.4
Dyda, F.5
-
68
-
-
47849117948
-
Demonstration of a multistep mechanism for assembly of the SRP.SRP receptor complex: implications for the catalytic role of SRP RNA
-
Zhang X., Kung S., Shan S.O. Demonstration of a multistep mechanism for assembly of the SRP.SRP receptor complex: implications for the catalytic role of SRP RNA. J. Mol. Biol. 2008, 381:581-593.
-
(2008)
J. Mol. Biol.
, vol.381
, pp. 581-593
-
-
Zhang, X.1
Kung, S.2
Shan, S.O.3
-
69
-
-
79955585362
-
Direct visualization reveals dynamics of a transient intermediate during protein assembly
-
Zhang X., Lam V.Q., Mou Y., Kimura T., Chung J., Chandrasekar S., Winkler J.R., Mayo S.L., Shan S. Direct visualization reveals dynamics of a transient intermediate during protein assembly. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:6450-6455.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 6450-6455
-
-
Zhang, X.1
Lam, V.Q.2
Mou, Y.3
Kimura, T.4
Chung, J.5
Chandrasekar, S.6
Winkler, J.R.7
Mayo, S.L.8
Shan, S.9
-
70
-
-
60549083291
-
Multiple conformational switches in a GTPase complex control co-translational protein targeting
-
Zhang X., Schaffitzel C., Ban N., Shan S.O. Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:1754-1759.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 1754-1759
-
-
Zhang, X.1
Schaffitzel, C.2
Ban, N.3
Shan, S.O.4
-
71
-
-
78650974443
-
Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor
-
Estrozi L.F., Boehringer D., Shan S., Ban N., Schaffitzel C. Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor. Nat. Struct. Mol. Biol. 2011, 18:88-90.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 88-90
-
-
Estrozi, L.F.1
Boehringer, D.2
Shan, S.3
Ban, N.4
Schaffitzel, C.5
-
72
-
-
8844253060
-
Mechanism of association and reciprocal activation of two GTPases
-
Shan S.O., Stroud R.M., Walter P. Mechanism of association and reciprocal activation of two GTPases. PLoS Biol. 2004, 2:1572-1581.
-
(2004)
PLoS Biol.
, vol.2
, pp. 1572-1581
-
-
Shan, S.O.1
Stroud, R.M.2
Walter, P.3
-
74
-
-
51349165658
-
SRP RNA controls a conformational switch regulating the SRP-SRP receptor interaction
-
Neher S.B., Bradshaw N., Floor S.N., Gross J.D., Walter P. SRP RNA controls a conformational switch regulating the SRP-SRP receptor interaction. Nat. Struct. Mol. Biol. 2008, 15:916-923.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 916-923
-
-
Neher, S.B.1
Bradshaw, N.2
Floor, S.N.3
Gross, J.D.4
Walter, P.5
-
75
-
-
33947320768
-
Structure of the GMPPNP-stabilized NG domain complex of the SRP GTPases Ffh and FtsY
-
Gawronski-Salerno J., Freymann D.M. Structure of the GMPPNP-stabilized NG domain complex of the SRP GTPases Ffh and FtsY. J. Struct. Biol. 2007, 158:122-128.
-
(2007)
J. Struct. Biol.
, vol.158
, pp. 122-128
-
-
Gawronski-Salerno, J.1
Freymann, D.M.2
-
76
-
-
0037140924
-
Conformational change of the N-domain on formation of the complex between the GTPase domains of Thermus aquaticus Ffh and FtsY
-
Shepotinovskaya I.V., Freymann D.M. Conformational change of the N-domain on formation of the complex between the GTPase domains of Thermus aquaticus Ffh and FtsY. Biochim. Biophys. Acta. Protein Struct. 2002, 1597:107-114.
-
(2002)
Biochim. Biophys. Acta. Protein Struct.
, vol.1597
, pp. 107-114
-
-
Shepotinovskaya, I.V.1
Freymann, D.M.2
-
77
-
-
0026326816
-
Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor
-
Connolly T., Rapiejko P.J., Gilmore R. Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor. Science 1991, 252:1171-1173.
-
(1991)
Science
, vol.252
, pp. 1171-1173
-
-
Connolly, T.1
Rapiejko, P.J.2
Gilmore, R.3
-
78
-
-
79959912257
-
Signal sequence-independent SRP-SR complex formation at the membrane suggests an alternative targeting pathway within the SRP cycle
-
Braig D., Mircheva M., Sachelaru I., van der Sluis E.O., Sturm L., Beckmann R., Koch H.-G. Signal sequence-independent SRP-SR complex formation at the membrane suggests an alternative targeting pathway within the SRP cycle. Mol. Biol. Cell 2011, 22:2309-2323.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 2309-2323
-
-
Braig, D.1
Mircheva, M.2
Sachelaru, I.3
van der Sluis, E.O.4
Sturm, L.5
Beckmann, R.6
Koch, H.-G.7
-
79
-
-
79959557410
-
Lipids trigger a conformational switch that regulates signal recognition particle (SRP)-mediated protein targeting
-
Stjepanovic G., Kapp K., Bange G., Graf C., Parlitz R., Wild K., Mayer M.P., Sinning I. Lipids trigger a conformational switch that regulates signal recognition particle (SRP)-mediated protein targeting. J. Biol. Chem. 2011, 286:23489-23497.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 23489-23497
-
-
Stjepanovic, G.1
Kapp, K.2
Bange, G.3
Graf, C.4
Parlitz, R.5
Wild, K.6
Mayer, M.P.7
Sinning, I.8
-
80
-
-
78650374338
-
Genetic evidence for functional interaction of the Escherichia coli signal recognition particle receptor with acidic lipids in vivo
-
Erez E., Stjepanovic G., Zelazny A.M., Brugger B., Sinning I., Bibi E. Genetic evidence for functional interaction of the Escherichia coli signal recognition particle receptor with acidic lipids in vivo. J. Biol. Chem. 2010, 285:40508-40514.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 40508-40514
-
-
Erez, E.1
Stjepanovic, G.2
Zelazny, A.M.3
Brugger, B.4
Sinning, I.5
Bibi, E.6
-
81
-
-
33646442605
-
Signal recognition particle receptor exposes the ribosomal translocon binding site
-
Halic M., Gartmann M., Schlenker O., Mielke T., Pool M.R., Sinning I., Beckmann R. Signal recognition particle receptor exposes the ribosomal translocon binding site. Science 2006, 312:745-747.
-
(2006)
Science
, vol.312
, pp. 745-747
-
-
Halic, M.1
Gartmann, M.2
Schlenker, O.3
Mielke, T.4
Pool, M.R.5
Sinning, I.6
Beckmann, R.7
-
82
-
-
34547929138
-
Conformational changes in the GTPase modules of the signal reception particle and its initiation of protein translocation
-
Shan S., Chandrasekar S., Walter P. Conformational changes in the GTPase modules of the signal reception particle and its initiation of protein translocation. J. Cell Biol. 2007, 178:611-620.
-
(2007)
J. Cell Biol.
, vol.178
, pp. 611-620
-
-
Shan, S.1
Chandrasekar, S.2
Walter, P.3
-
83
-
-
84874373992
-
SecYEG activates GTPases to drive the completion of cotranslational protein targeting
-
Akopian D., Dalal K., Shen K., Duong F., Shan S.-o. SecYEG activates GTPases to drive the completion of cotranslational protein targeting. J. Cell Biol. 2013, 200:397-405.
-
(2013)
J. Cell Biol.
, vol.200
, pp. 397-405
-
-
Akopian, D.1
Dalal, K.2
Shen, K.3
Duong, F.4
Shan, S.-O.5
-
84
-
-
0034651525
-
Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity
-
de Leeuw E., Kaat K.T., Moser C., Menestrina G., Demel R., de Kruijff B., Oudega B., Luirink J., Sinning I. Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO J. 2000, 19:531-541.
-
(2000)
EMBO J.
, vol.19
, pp. 531-541
-
-
de Leeuw, E.1
Kaat, K.T.2
Moser, C.3
Menestrina, G.4
Demel, R.5
de Kruijff, B.6
Oudega, B.7
Luirink, J.8
Sinning, I.9
-
85
-
-
36049049032
-
Membrane targeting of ribosomes and their release require distinct and separable functions of ftsy
-
Bahari L., Parlitz R., Eitan A., Stjepanovic G., Bochkareva E.S., Sinning I., Bibi E. Membrane targeting of ribosomes and their release require distinct and separable functions of ftsy. J. Biol. Chem. 2007, 282:32168-32175.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 32168-32175
-
-
Bahari, L.1
Parlitz, R.2
Eitan, A.3
Stjepanovic, G.4
Bochkareva, E.S.5
Sinning, I.6
Bibi, E.7
-
86
-
-
1842506682
-
The core Escherichia coli signal recognition particle receptor contains only the N and G domains of FtsY
-
Eitan A., Bibi E. The core Escherichia coli signal recognition particle receptor contains only the N and G domains of FtsY. J. Bacteriol. 2004, 186:2492-2494.
-
(2004)
J. Bacteriol.
, vol.186
, pp. 2492-2494
-
-
Eitan, A.1
Bibi, E.2
-
87
-
-
77953453090
-
The action of cardiolipin on the bacterial translocon
-
Gold V.A.M., Robson A., Bao H., Romantsov T., Duong F., Collinson I. The action of cardiolipin on the bacterial translocon. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:10044-10049.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 10044-10049
-
-
Gold, V.A.M.1
Robson, A.2
Bao, H.3
Romantsov, T.4
Duong, F.5
Collinson, I.6
-
88
-
-
0025019705
-
The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell
-
Lill R., Dowhan W., Wickner W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 1990, Cell 60:271-280.
-
(1990)
Cell
, Issue.60
, pp. 271-280
-
-
Lill, R.1
Dowhan, W.2
Wickner, W.3
-
89
-
-
20044388542
-
FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon
-
Angelini S., Deitermann S., Koch H.G. FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep. 2005, 6:476-481.
-
(2005)
EMBO Rep.
, vol.6
, pp. 476-481
-
-
Angelini, S.1
Deitermann, S.2
Koch, H.G.3
-
90
-
-
33748115860
-
Membrane binding of the bacterial signal recognition particle receptor involves two distinct binding sites
-
Angelini S., Boy D., Schiltz E., Koch H.-G. Membrane binding of the bacterial signal recognition particle receptor involves two distinct binding sites. J. Cell Biol. 2006, 174:715-724.
-
(2006)
J. Cell Biol.
, vol.174
, pp. 715-724
-
-
Angelini, S.1
Boy, D.2
Schiltz, E.3
Koch, H.-G.4
-
91
-
-
50649104037
-
Protein translocation across the bacterial cytoplasmic membrane
-
Driessen A.J.M., Nouwen N. Protein translocation across the bacterial cytoplasmic membrane. Ann. Rev. Biochem. 2008, 77:643-667.
-
(2008)
Ann. Rev. Biochem.
, vol.77
, pp. 643-667
-
-
Driessen, A.J.M.1
Nouwen, N.2
-
93
-
-
36749001066
-
Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes
-
Rapoport T.A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 2007, 450:663-669.
-
(2007)
Nature
, vol.450
, pp. 663-669
-
-
Rapoport, T.A.1
-
94
-
-
0033281074
-
The translocon: a dynamic gateway at the ER membrane
-
Johnson A.E., van Waes M.A. The translocon: a dynamic gateway at the ER membrane. Ann. Rev. Cell Dev. Biol. 1999, 15:799-842.
-
(1999)
Ann. Rev. Cell Dev. Biol.
, vol.15
, pp. 799-842
-
-
Johnson, A.E.1
van Waes, M.A.2
-
95
-
-
67949124778
-
Translocation of proteins through the Sec61 and SecYEG channels
-
Mandon E.C., Trueman S.F., Gilmore R. Translocation of proteins through the Sec61 and SecYEG channels. Curr. Opin. Cell Biol. 2009, 21:501-507.
-
(2009)
Curr. Opin. Cell Biol.
, vol.21
, pp. 501-507
-
-
Mandon, E.C.1
Trueman, S.F.2
Gilmore, R.3
-
96
-
-
0347192985
-
X-ray structure of a protein-conducting channel
-
van den Berg B., Clemons W.M., Collinson I., Modis Y., Hartmann E., Harrison S.C., Rapoport T.A. X-ray structure of a protein-conducting channel. Nature 2004, 427:36-44.
-
(2004)
Nature
, vol.427
, pp. 36-44
-
-
van den Berg, B.1
Clemons, W.M.2
Collinson, I.3
Modis, Y.4
Hartmann, E.5
Harrison, S.C.6
Rapoport, T.A.7
-
97
-
-
18544380083
-
Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY
-
Cannon K.S., Or E., Clemons W.M., Shibata Y., Rapoport T.A. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 2005, 169:219-225.
-
(2005)
J. Cell Biol.
, vol.169
, pp. 219-225
-
-
Cannon, K.S.1
Or, E.2
Clemons, W.M.3
Shibata, Y.4
Rapoport, T.A.5
-
98
-
-
0346099350
-
Interactions between Sec complex and prepro-alpha-factor during posttranslational protein transport into the endoplasmic reticulum
-
Plath K., Wilkinson B.M., Stirling C.J., Rapoport T.A. Interactions between Sec complex and prepro-alpha-factor during posttranslational protein transport into the endoplasmic reticulum. Mol. Biol. Cell 2004, 15:1-10.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 1-10
-
-
Plath, K.1
Wilkinson, B.M.2
Stirling, C.J.3
Rapoport, T.A.4
-
99
-
-
0032572529
-
Signal sequence recognition in cotranslational translocation by protein components of the endoplasmic reticulum membrane
-
Mothes W., Jungnickel B., Brunner J., Rapoport T.A. Signal sequence recognition in cotranslational translocation by protein components of the endoplasmic reticulum membrane. J. Cell Biol. 1998, 142:355-364.
-
(1998)
J. Cell Biol.
, vol.142
, pp. 355-364
-
-
Mothes, W.1
Jungnickel, B.2
Brunner, J.3
Rapoport, T.A.4
-
100
-
-
0034697967
-
The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain
-
Heinrich S.U., Mothes W., Brunner J., Rapoport T.A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 2000, 102:233-244.
-
(2000)
Cell
, vol.102
, pp. 233-244
-
-
Heinrich, S.U.1
Mothes, W.2
Brunner, J.3
Rapoport, T.A.4
-
101
-
-
12144272096
-
Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation
-
Cheng Z.L., Jiang Y., Mandon E.C., Gilmore R. Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation. J. Cell Biol. 2005, 168:67-77.
-
(2005)
J. Cell Biol.
, vol.168
, pp. 67-77
-
-
Cheng, Z.L.1
Jiang, Y.2
Mandon, E.C.3
Gilmore, R.4
-
102
-
-
37349107850
-
Ribosome binding of a single copy of the SecY complex: implications for protein translocation
-
Menetret J.-F., Schaletzky J., Clemons W.M., Osborne A.R., Skanland S.S., Denison C., Gygi S.P., Kirkpatrick D.S., Park E., Ludtke S.J., Rapoport T.A., Akey C.W. Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Mol. Cell 2007, 28:1083-1092.
-
(2007)
Mol. Cell
, vol.28
, pp. 1083-1092
-
-
Menetret, J.-F.1
Schaletzky, J.2
Clemons, W.M.3
Osborne, A.R.4
Skanland, S.S.5
Denison, C.6
Gygi, S.P.7
Kirkpatrick, D.S.8
Park, E.9
Ludtke, S.J.10
Rapoport, T.A.11
Akey, C.W.12
-
103
-
-
71549167617
-
Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome
-
Becker T., Bhushan S., Jarasch A., Armache J.-P., Funes S., Jossinet F., Gumbart J., Mielke T., Berninghausen O., Schulten K., Westhof E., Gilmore R., Mandon E.C., Beckmann R. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 2009, 326:1369-1373.
-
(2009)
Science
, vol.326
, pp. 1369-1373
-
-
Becker, T.1
Bhushan, S.2
Jarasch, A.3
Armache, J.-P.4
Funes, S.5
Jossinet, F.6
Gumbart, J.7
Mielke, T.8
Berninghausen, O.9
Schulten, K.10
Westhof, E.11
Gilmore, R.12
Mandon, E.C.13
Beckmann, R.14
-
104
-
-
0035798359
-
Architecture of the protein-conducting channel associated with the translating 80S ribosome
-
Beckmann R., Spahn C.M.T., Eswar N., Helmers J., Penczek P.A., Sali A., Frank J., Blobel G. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 2001, 107:361-372.
-
(2001)
Cell
, vol.107
, pp. 361-372
-
-
Beckmann, R.1
Spahn, C.M.T.2
Eswar, N.3
Helmers, J.4
Penczek, P.A.5
Sali, A.6
Frank, J.7
Blobel, G.8
-
105
-
-
85027919032
-
Cryo-EM structure of the ribosome-SecYE complex in the membrane environment
-
Frauenfeld J., Gumbart J., van der Sluis E.O., Funes S., Gartmann M., Beatrix B., Mielke T., Berninghausen O., Becker T., Schulten K., Beckmann R. Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat. Struct. Mol. Biol. 2011, 18:614-621.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 614-621
-
-
Frauenfeld, J.1
Gumbart, J.2
van der Sluis, E.O.3
Funes, S.4
Gartmann, M.5
Beatrix, B.6
Mielke, T.7
Berninghausen, O.8
Becker, T.9
Schulten, K.10
Beckmann, R.11
-
106
-
-
27844444793
-
Structure of the E-coli protein-conducting channel bound to a translating ribosome
-
Mitra K., Schaffitzel C., Shaikh T., Tama F., Jenni S., Brooks C.L., Ban N., Frank J. Structure of the E-coli protein-conducting channel bound to a translating ribosome. Nature 2005, 438:318-324.
-
(2005)
Nature
, vol.438
, pp. 318-324
-
-
Mitra, K.1
Schaffitzel, C.2
Shaikh, T.3
Tama, F.4
Jenni, S.5
Brooks, C.L.6
Ban, N.7
Frank, J.8
-
107
-
-
0025605808
-
An Escherichia-coli ribonucleoprotein containing 4.5S RNA resembles mammalian
-
Poritz M.A., Bernstein H.D., Strub K., Zopf D., Wilhelm H., Walter P. An Escherichia-coli ribonucleoprotein containing 4.5S RNA resembles mammalian. Signal Recognit. Part. Sci. 1990, 250:1111-1117.
-
(1990)
Signal Recognit. Part. Sci.
, vol.250
, pp. 1111-1117
-
-
Poritz, M.A.1
Bernstein, H.D.2
Strub, K.3
Zopf, D.4
Wilhelm, H.5
Walter, P.6
-
108
-
-
0024280925
-
Human SRP RNA and Escherichia-coli 4.5S RNA contain a highly homologous structural domain
-
Poritz M.A., Strub K., Walter P. Human SRP RNA and Escherichia-coli 4.5S RNA contain a highly homologous structural domain. Cell 1988, 55:4-6.
-
(1988)
Cell
, vol.55
, pp. 4-6
-
-
Poritz, M.A.1
Strub, K.2
Walter, P.3
-
109
-
-
35448950462
-
Interaction of signal-recognition particle 54 GTPase domain and signal-recognition particle RNA in the free signal-recognition particle
-
Hainzl T., Huang S., Sauer-Eriksson A.E. Interaction of signal-recognition particle 54 GTPase domain and signal-recognition particle RNA in the free signal-recognition particle. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:14911-14916.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 14911-14916
-
-
Hainzl, T.1
Huang, S.2
Sauer-Eriksson, A.E.3
-
110
-
-
21844456918
-
Domain rearrangement of SRP protein Ffh upon binding 4.5S RNA and the SRP receptor FtsY
-
Buskiewicz I., Kubarenko A., Peske F., Rodnina M.V., Wintermeyer W. Domain rearrangement of SRP protein Ffh upon binding 4.5S RNA and the SRP receptor FtsY. RNA 2005, 11:947-957.
-
(2005)
RNA
, vol.11
, pp. 947-957
-
-
Buskiewicz, I.1
Kubarenko, A.2
Peske, F.3
Rodnina, M.V.4
Wintermeyer, W.5
-
111
-
-
22444441692
-
Conformations of the signal recognition particle protein Ffh from Escherichia coli as determined by FRET
-
Buskiewicz I., Peske F., Wieden H.J., Gryczynski I., Rodnina M.V., Wintermeyer W. Conformations of the signal recognition particle protein Ffh from Escherichia coli as determined by FRET. J. Mol. Biol. 2005, 351:417-430.
-
(2005)
J. Mol. Biol.
, vol.351
, pp. 417-430
-
-
Buskiewicz, I.1
Peske, F.2
Wieden, H.J.3
Gryczynski, I.4
Rodnina, M.V.5
Wintermeyer, W.6
-
112
-
-
58149099504
-
Conformation of the signal recognition particle in ribosomal targeting complexes
-
Buskiewicz I.A., Jockel J., Rodnina M.V., Wintermeyer W. Conformation of the signal recognition particle in ribosomal targeting complexes. RNA 2009, 15:44-54.
-
(2009)
RNA
, vol.15
, pp. 44-54
-
-
Buskiewicz, I.A.1
Jockel, J.2
Rodnina, M.V.3
Wintermeyer, W.4
-
113
-
-
0035256512
-
Important role of the tetraloop region of 4.5S RNA in SRP binding to its receptor FtsY
-
Jagath J.R., Matassova N.B., De Leeuw E., Warnecke J.M., Lentzen G., Rodnina M.V., Luirink J., Wintermeyer W. Important role of the tetraloop region of 4.5S RNA in SRP binding to its receptor FtsY. RNA 2001, 7:293-301.
-
(2001)
RNA
, vol.7
, pp. 293-301
-
-
Jagath, J.R.1
Matassova, N.B.2
De Leeuw, E.3
Warnecke, J.M.4
Lentzen, G.5
Rodnina, M.V.6
Luirink, J.7
Wintermeyer, W.8
-
114
-
-
33846456974
-
SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting
-
Siu F.Y., Spanggord R.J., Doudna J.A. SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting. RNA 2007, 13:240-250.
-
(2007)
RNA
, vol.13
, pp. 240-250
-
-
Siu, F.Y.1
Spanggord, R.J.2
Doudna, J.A.3
-
115
-
-
77952331762
-
Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting
-
Shen K., Shan S. Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:7698-7703.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 7698-7703
-
-
Shen, K.1
Shan, S.2
-
116
-
-
28544445590
-
RNA-mediated interaction between the peptide-binding and GTPase domains of the signal recognition particle
-
Spanggord R.J., Siu F., Ke A.L., Doudna J.A. RNA-mediated interaction between the peptide-binding and GTPase domains of the signal recognition particle. Nat. Struct. Mol. Biol. 2005, 12:1116-1122.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 1116-1122
-
-
Spanggord, R.J.1
Siu, F.2
Ke, A.L.3
Doudna, J.A.4
-
117
-
-
79955005771
-
Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during cotranslational protein targeting
-
Shen K., Zhang X., Shan S. Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during cotranslational protein targeting. RNA 2011, 17:892-902.
-
(2011)
RNA
, vol.17
, pp. 892-902
-
-
Shen, K.1
Zhang, X.2
Shan, S.3
-
118
-
-
79951826865
-
The crystal structure of the signal recognition particle in complex with its receptor
-
Ataide S.F., Schmitz N., Shen K., Ke A., Shan S., Doudna J.A., Ban N. The crystal structure of the signal recognition particle in complex with its receptor. Science 2011, 331:881-886.
-
(2011)
Science
, vol.331
, pp. 881-886
-
-
Ataide, S.F.1
Schmitz, N.2
Shen, K.3
Ke, A.4
Shan, S.5
Doudna, J.A.6
Ban, N.7
-
119
-
-
84870979537
-
Activated GTPase movement on an RNA scaffold drives co-translational protein targeting
-
Shen K., Arslan S., Akopian D., Ha T., Shan S.-o. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 2012, 492:271-275.
-
(2012)
Nature
, vol.492
, pp. 271-275
-
-
Shen, K.1
Arslan, S.2
Akopian, D.3
Ha, T.4
Shan, S.-O.5
-
120
-
-
83055184248
-
New insights into the spliceosome by single molecule fluorescence microscopy
-
Hoskins A.A., Gelles J., Moore M.J. New insights into the spliceosome by single molecule fluorescence microscopy. Curr. Opin. Chem. Biol. 2011, 15:864-870.
-
(2011)
Curr. Opin. Chem. Biol.
, vol.15
, pp. 864-870
-
-
Hoskins, A.A.1
Gelles, J.2
Moore, M.J.3
-
121
-
-
0029893874
-
Mechanisms of helicase-catalyzed DNA unwinding
-
Lohman T.M., Bjornson K.P. Mechanisms of helicase-catalyzed DNA unwinding. Ann. Rev. Biochem. 1996, 65:169-214.
-
(1996)
Ann. Rev. Biochem.
, vol.65
, pp. 169-214
-
-
Lohman, T.M.1
Bjornson, K.P.2
-
122
-
-
0034130457
-
A Legacy of Bertani and Weigle
-
Murray N.E. Type I restriction systems: sophisticated molecular machines. Microbiol. Mol. Biol. Rev. 2000, 64:412-434.
-
(2000)
Microbiol. Mol. Biol. Rev.
, vol.64
, pp. 412-434
-
-
Murray, N.E.1
-
123
-
-
0031008221
-
Basic mechanisms of transcript elongation and its regulation
-
Uptain S.M., Kane C.M., Chamberlin M.J. Basic mechanisms of transcript elongation and its regulation. Ann. Rev. Biochem. 1997, 66:117-172.
-
(1997)
Ann. Rev. Biochem.
, vol.66
, pp. 117-172
-
-
Uptain, S.M.1
Kane, C.M.2
Chamberlin, M.J.3
-
125
-
-
84862865359
-
Staying on message: ensuring fidelity in pre-mRNA splicing
-
Semlow D.R., Staley J.P. Staying on message: ensuring fidelity in pre-mRNA splicing. Trends Biochem. Sci. 2012, 37:263-273.
-
(2012)
Trends Biochem. Sci.
, vol.37
, pp. 263-273
-
-
Semlow, D.R.1
Staley, J.P.2
-
126
-
-
0017072607
-
Enzyme hyper-specificity - rejection of threonine by valyl-transfer-RNA synthetase by mis-acylation and hydrolytic editing
-
Fersht A.R., Kaethner M.M. Enzyme hyper-specificity - rejection of threonine by valyl-transfer-RNA synthetase by mis-acylation and hydrolytic editing. Biochemistry 1976, 15:3342-3346.
-
(1976)
Biochemistry
, vol.15
, pp. 3342-3346
-
-
Fersht, A.R.1
Kaethner, M.M.2
-
127
-
-
0035252889
-
Ribosome fidelity: tRNA discrimination, proofreading and induced fit
-
Rodnina M.V., Wintermeyer W. Ribosome fidelity: tRNA discrimination, proofreading and induced fit. Trends Biochem. Sci. 2001, 26:124-130.
-
(2001)
Trends Biochem. Sci.
, vol.26
, pp. 124-130
-
-
Rodnina, M.V.1
Wintermeyer, W.2
-
128
-
-
0024024901
-
The affinity of signal recognition particle for presecretory proteins is dependent on nascent chain-length
-
Siegel V., Walter P. The affinity of signal recognition particle for presecretory proteins is dependent on nascent chain-length. EMBO J. 1988, 7:1769-1775.
-
(1988)
EMBO J.
, vol.7
, pp. 1769-1775
-
-
Siegel, V.1
Walter, P.2
-
129
-
-
42949161206
-
SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites
-
Lakkaraju A.K.K., Mary C., Scherrer A., Johnson A.E., Strub K. SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. Cell 2008, 133:440-451.
-
(2008)
Cell
, vol.133
, pp. 440-451
-
-
Lakkaraju, A.K.K.1
Mary, C.2
Scherrer, A.3
Johnson, A.E.4
Strub, K.5
-
130
-
-
0029068214
-
SRP samples nascent chains for the presence of signal sequences by interacting with ribosomes at a discrete step during translation elongation
-
Ogg S.C., Walter P. SRP samples nascent chains for the presence of signal sequences by interacting with ribosomes at a discrete step during translation elongation. Cell 1995, 81:1075-1084.
-
(1995)
Cell
, vol.81
, pp. 1075-1084
-
-
Ogg, S.C.1
Walter, P.2
-
131
-
-
84863288448
-
Translation elongation regulates substrate selection by the signal recognition particle
-
Zhang D., Shan S.-O. Translation elongation regulates substrate selection by the signal recognition particle. J. Biol. Chem. 2012, 287:7652-7660.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 7652-7660
-
-
Zhang, D.1
Shan, S.-O.2
-
132
-
-
66849109240
-
The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins
-
Kramer G., Boehringer D., Ban N., Bukau B. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 2009, 16:589-597.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 589-597
-
-
Kramer, G.1
Boehringer, D.2
Ban, N.3
Bukau, B.4
-
133
-
-
34247281027
-
Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence
-
Raue U., Oellerer S., Rospert S. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J. Biol. Chem. 2007, 282:7809-7816.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 7809-7816
-
-
Raue, U.1
Oellerer, S.2
Rospert, S.3
-
135
-
-
79960923840
-
Defining the Specificity of Cotranslationally Acting Chaperones by Systematic Analysis of mRNAs Associated with Ribosome-Nascent Chain Complexes
-
del Alamo M., Hogan D.J., Pechmann S., Albanese V., Brown P.O., Frydman J. Defining the Specificity of Cotranslationally Acting Chaperones by Systematic Analysis of mRNAs Associated with Ribosome-Nascent Chain Complexes. PLoS Biol. 2011, 9:e1001100.
-
(2011)
PLoS Biol.
, vol.9
-
-
del Alamo, M.1
Hogan, D.J.2
Pechmann, S.3
Albanese, V.4
Brown, P.O.5
Frydman, J.6
-
136
-
-
84865238560
-
NAC functions as a modulator of SRP during the early steps of protein targeting to the endoplasmic reticulum
-
Zhang Y., Berndt U., Goelz H., Tais A., Oellerer S., Woelfle T., Fitzke E., Rospert S. NAC functions as a modulator of SRP during the early steps of protein targeting to the endoplasmic reticulum. Mol. Biol. Cell 2012, 23:3027-3040.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 3027-3040
-
-
Zhang, Y.1
Berndt, U.2
Goelz, H.3
Tais, A.4
Oellerer, S.5
Woelfle, T.6
Fitzke, E.7
Rospert, S.8
|