메뉴 건너뛰기




Volumn 7, Issue 4, 2014, Pages 1089-1102

Ensemble learning in hyperspectral image classification: Toward selecting a favorable bias-variance tradeoff

Author keywords

Bagging; bias variance; classification; ensemble methods; hyperspectral image (HIS); random forest; segmentation

Indexed keywords

CHAINS; CLASSIFICATION (OF INFORMATION); DECISION TREES; FEATURE EXTRACTION; IMAGE SEGMENTATION; INDEPENDENT COMPONENT ANALYSIS; OPTIMIZATION; SPECTROSCOPY;

EID: 84899943917     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2013.2295513     Document Type: Article
Times cited : (58)

References (91)
  • 1
    • 33750819585 scopus 로고    scopus 로고
    • Processing of FORMOSAT-2 daily revisit imagery for site surveillance
    • DOI 10.1109/TGRS.2006.880625, 1717709
    • C.-C. Liu, "Processing of FORMOSAT-2 daily revisit imagery for site surveillance," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3206-3214, Nov. 2006. (Pubitemid 44711663)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3206-3214
    • Liu, C.-C.1
  • 2
    • 1642290713 scopus 로고    scopus 로고
    • Automatic spectral target recognition in hyperspectral imagery
    • Oct.
    • C. Ren and C.-I. Chang, "Automatic spectral target recognition in hyperspectral imagery," IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1232-1249, Oct. 2003.
    • (2003) IEEE Trans. Aerosp. Electron. Syst. , vol.39 , Issue.4 , pp. 1232-1249
    • Ren, C.1    Chang, C.-I.2
  • 4
    • 77955682014 scopus 로고    scopus 로고
    • A tutorial overview of anomaly detection in hyperspectral images
    • Jul.
    • S. Matteoli, M. Diani, and G. Corsini, "A tutorial overview of anomaly detection in hyperspectral images," IEEE Aerosp. Electron. Syst. Mag., vol. 25, no. 7, pp. 5-28, Jul. 2010.
    • (2010) IEEE Aerosp. Electron. Syst. Mag. , vol.25 , Issue.7 , pp. 5-28
    • Matteoli, S.1    Diani, M.2    Corsini, G.3
  • 6
    • 1842431418 scopus 로고    scopus 로고
    • Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
    • DOI 10.1016/j.rse.2003.12.013, PII S0034425704000264
    • D. Haboudane, J. R. Miller, E. Pattey, P.-J. Zarco-Tejada, and I. B. Strachan, "Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture," Remote Sens. Environ., vol. 90, no. 3, pp. 337-352, 2004. (Pubitemid 38431251)
    • (2004) Remote Sensing of Environment , vol.90 , Issue.3 , pp. 337-352
    • Haboudane, D.1    Miller, J.R.2    Pattey, E.3    Zarco-Tejada, P.J.4    Strachan, I.B.5
  • 7
    • 77649102371 scopus 로고    scopus 로고
    • Detection of gaseous plumes in IR hyperspectral images, performance analysis
    • Mar.
    • E. Hirsch and E. Agassi, "Detection of gaseous plumes in IR hyperspectral images, performance analysis," IEEE Sensors J., vol. 10, no. 3, pp. 732-736, Mar. 2010.
    • (2010) IEEE Sensors J. , vol.10 , Issue.3 , pp. 732-736
    • Hirsch, E.1    Agassi, E.2
  • 9
    • 4544272727 scopus 로고    scopus 로고
    • Evaluation of hyperspectral remote sensing as a means of environmental monitoring in the St. Austell China clay (kaolin) region, Cornwall, UK
    • DOI 10.1016/j.rse.2004.07.004, PII S0034425704002081
    • R. J. Ellis and P. W. Scott, "Evaluation of hyperspectral remote sensing as a means of environmental monitoring in the St. Austell China clay (kaolin) region, Cornwall, UK," Remote Sens. Environ., vol. 93, no. 1-2, pp. 118-130, 2004. (Pubitemid 39239282)
    • (2004) Remote Sensing of Environment , vol.93 , Issue.1-2 , pp. 118-130
    • Ellis, R.J.1    Scott, P.W.2
  • 11
    • 35548953824 scopus 로고    scopus 로고
    • Hyperspectral imaging - an emerging process analytical tool for food quality and safety control
    • DOI 10.1016/j.tifs.2007.06.001, PII S0924224407002026
    • A. A. Gowen, C. P. O'Donnell, P. J. Cullen, G. Downey, and J. M. Frias, "Hyperspectral imaging-An emerging process analytical tool for food quality and safety control," Trends Food Sci. Technol., vol. 18, no. 12, pp. 590-598, 2007. (Pubitemid 350017801)
    • (2007) Trends in Food Science and Technology , vol.18 , Issue.12 , pp. 590-598
    • Gowen, A.A.1    O'Donnell, C.P.2    Cullen, P.J.3    Downey, G.4    Frias, J.M.5
  • 12
    • 80052365614 scopus 로고    scopus 로고
    • Characterization of postconsumer polyolefin wastes by hyperspectral imaging for quality control in recycling processes
    • S. Serranti, A. Gargiulo, and G. Bonifazi, "Characterization of postconsumer polyolefin wastes by hyperspectral imaging for quality control in recycling processes," Waste Manag., vol. 31, no. 11, pp. 2217-2227, 2011.
    • (2011) Waste Manag. , vol.31 , Issue.11 , pp. 2217-2227
    • Serranti, S.1    Gargiulo, A.2    Bonifazi, G.3
  • 13
    • 77950803993 scopus 로고    scopus 로고
    • Hyperspectral imaging based recognition procedures in particulate solid waste recycling
    • S. Serranti and G. Bonifazi, "Hyperspectral imaging based recognition procedures in particulate solid waste recycling," World Rev. Sci. Technol. Sustain. Develop., vol. 7, no. 3, pp. 271-281, 2010.
    • (2010) World Rev. Sci. Technol. Sustain. Develop. , vol.7 , Issue.3 , pp. 271-281
    • Serranti, S.1    Bonifazi, G.2
  • 15
    • 77958603422 scopus 로고    scopus 로고
    • Special issue on hyperspectral image and signal processing
    • Nov.
    • J. Chanussot, M. M. Crawford, and B.-C. Kuo, "Special issue on hyperspectral image and signal processing," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 3871-3876, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 3871-3876
    • Chanussot, J.1    Crawford, M.M.2    Kuo, B.-C.3
  • 16
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar.
    • M. Fauvel, Y. Tarabalka, J. Benediktsson, J. Chanussot, and J. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.3    Chanussot, J.4    Tilton, J.5
  • 17
    • 66549109209 scopus 로고    scopus 로고
    • Data fusion study between polarimetric SAR, hyperspectral and Lidar data for forest information
    • D. G. Goodenough, H. Chen, A. Dyk, A. Richardson, and G. Hobart, "Data fusion study between polarimetric SAR, hyperspectral and Lidar data for forest information," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2008, vol. 2, 2008, pp. II-281-II-284.
    • (2008) Proc. IEEE Int. Geosci. Remote Sens. Symp. , vol.2 , Issue.2008
    • Goodenough, D.G.1    Chen, H.2    Dyk, A.3    Richardson, A.4    Hobart, G.5
  • 18
    • 78649286257 scopus 로고    scopus 로고
    • Fusion of hyperspectral images and LiDAR data for civil engineering structure monitoring
    • Hannover, Germany
    • A. Brook, E. Ben-Dor, and R. Richter, "Fusion of hyperspectral images and LiDAR data for civil engineering structure monitoring," in Proc. Hyperspectral Workshop, Hannover, Germany, 2010.
    • (2010) Proc. Hyperspectral Workshop
    • Brook, A.1    Ben-Dor, E.2    Richter, R.3
  • 19
    • 53349084895 scopus 로고    scopus 로고
    • Fusion of hyperspectral and LiDAR remote sensing data for classification of complex forest areas
    • May
    • M. Dalponte, L. Bruzzone, and D. Gianelle, "Fusion of hyperspectral and LiDAR remote sensing data for classification of complex forest areas," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1416-1427, May 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.5 , pp. 1416-1427
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 20
    • 80052354356 scopus 로고    scopus 로고
    • Fusion of airborne hyperspectral and LiDAR data for tree species classification in the temperate forest of northeast China
    • L. Liu, Y. Pang, W. Fan, Z. Li, and M. Li, "Fusion of airborne hyperspectral and LiDAR data for tree species classification in the temperate forest of northeast China," in Proc. 19th Int. Conf. Geoinf., 2011, pp. 1-5.
    • (2011) Proc. 19th Int. Conf. Geoinf , pp. 1-5
    • Liu, L.1    Pang, Y.2    Fan, W.3    Li, Z.4    Li, M.5
  • 21
    • 79952041437 scopus 로고    scopus 로고
    • Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage
    • Mar.
    • G. Chen and S.-E. Qian, "Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 973-980, Mar. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.3 , pp. 973-980
    • Chen, G.1    Qian, S.-E.2
  • 22
    • 84875739450 scopus 로고    scopus 로고
    • Multiple-spectral-band CRFs for denoising junk bands of hyperspectral imagery
    • Apr.
    • P. Zhong and R. Wang, "Multiple-spectral-band CRFs for denoising junk bands of hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 4, pp. 2260-2275, Apr. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.4 , pp. 2260-2275
    • Zhong, P.1    Wang, R.2
  • 24
    • 84861725237 scopus 로고    scopus 로고
    • A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification
    • Apr.
    • I. Dopido, A. Villa, A. Plaza, and P. Gamba, "A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 421-435, Apr. 2012.
    • (2012) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 421-435
    • Dopido, I.1    Villa, A.2    Plaza, A.3    Gamba, P.4
  • 25
    • 80955168737 scopus 로고    scopus 로고
    • Automated hyperspectral imagery analysis via support vector machines based multi-classifier system with non-uniform random feature selection
    • S. Samiappan, S. Prasad, and L. M. Bruce, "Automated hyperspectral imagery analysis via support vector machines based multi-classifier system with non-uniform random feature selection," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2011, pp. 3915-3918.
    • (2011) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 3915-3918
    • Samiappan, S.1    Prasad, S.2    Bruce, L.M.3
  • 26
    • 77951122331 scopus 로고    scopus 로고
    • Feature selection for hyperspectral data based on modified recursive support vector machines
    • R. Zhang, J. Ma, X. Chen, and Q. Tong, "Feature selection for hyperspectral data based on modified recursive support vector machines," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2009, vol. 2, pp. II-847-II-850.
    • (2009) Proc. IEEE Int. Geosci. Remote Sens. Symp. , vol.2
    • Zhang, R.1    Ma, J.2    Chen, X.3    Tong, Q.4
  • 27
    • 84879317733 scopus 로고    scopus 로고
    • Resampling methods for quality assessment of classifier performance and optimal number of features
    • R. Fandos, C. Debes, and A. M. Zoubir, "Resampling methods for quality assessment of classifier performance and optimal number of features," Signal Process., vol. 93, no. 11, pp. 2956-2968, 2013.
    • (2013) Signal Process. , vol.93 , Issue.11 , pp. 2956-2968
    • Fandos, R.1    Debes, C.2    Zoubir, A.M.3
  • 28
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, "Segmentation and classification of hyperspectral images using watershed transformation," Pattern Recognit., vol. 43, no. 7, pp. 2367-2379, 2010.
    • (2010) Pattern Recognit. , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 29
    • 65449136419 scopus 로고    scopus 로고
    • Two lattice computing approaches for the unsupervised segmentation of hyperspectral images
    • M. Grana, I. Villaverde, J. O. Maldonado, and C. Hernandez, "Two lattice computing approaches for the unsupervised segmentation of hyperspectral images," Neurocomputing, vol. 72, no. 10-12, pp. 2111-2120, 2009.
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2111-2120
    • Grana, M.1    Villaverde, I.2    Maldonado, J.O.3    Hernandez, C.4
  • 30
    • 84864768761 scopus 로고    scopus 로고
    • Classification of hyperspectral data over urban areas using directional morphological profiles and semi-supervised feature extraction
    • Aug.
    • W. Liao, R. Bellens, A. Pizurica, W. Philips, and Y. Pi, "Classification of hyperspectral data over urban areas using directional morphological profiles and semi-supervised feature extraction," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 5, no. 4, pp. 1177-1190, Aug. 2012.
    • (2012) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.5 , Issue.4 , pp. 1177-1190
    • Liao, W.1    Bellens, R.2    Pizurica, A.3    Philips, W.4    Pi, Y.5
  • 31
    • 84869491853 scopus 로고    scopus 로고
    • SVM-based boosting of active learning strategies for efficient domain adaptation
    • Oct.
    • G. Matasci, D. Tuia, and M. Kanevski, "SVM-based boosting of active learning strategies for efficient domain adaptation," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 5, no. 5, pp. 1335-1343, Oct. 2012.
    • (2012) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.5 , Issue.5 , pp. 1335-1343
    • Matasci, G.1    Tuia, D.2    Kanevski, M.3
  • 32
    • 77956694762 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers
    • Oct.
    • Y. Tarabalka, J. Chanussot, and J. Benediktsson, "Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers," IEEE Trans. Syst. Man Cybern. B Cybern., vol. 40, no. 5, pp. 1267-1279, Oct. 2010.
    • (2010) IEEE Trans. Syst. Man Cybern. B Cybern. , vol.40 , Issue.5 , pp. 1267-1279
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.3
  • 33
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery
    • Jan.
    • X. Huang and L. Zhang, "An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 257-272, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 257-272
    • Huang, X.1    Zhang, L.2
  • 34
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • DOI 10.1109/TGRS.2004.842481
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005. (Pubitemid 40320271)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 35
    • 79953094686 scopus 로고    scopus 로고
    • Urban image classification with semisupervised multiscale cluster kernels
    • Mar.
    • D. Tuia and G. Camps-Valls, "Urban image classification with semisupervised multiscale cluster kernels," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 4, no. 1, pp. 65-74, Mar. 2011.
    • (2011) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.4 , Issue.1 , pp. 65-74
    • Tuia, D.1    Camps-Valls, G.2
  • 36
    • 79955521136 scopus 로고    scopus 로고
    • Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis
    • May
    • M. D. Mura, A. Villa, J. A. Benediktsson, J. Chanussot, and L. Bruzzone, "Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 542-546, May 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.3 , pp. 542-546
    • Mura, M.D.1    Villa, A.2    Benediktsson, J.A.3    Chanussot, J.4    Bruzzone, L.5
  • 37
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • E. Bienenstock, S. Geman, and R. Doursat, "Neural networks and the bias/variance dilemma," Neural Comput., vol. 4, pp. 1-58, 1992.
    • (1992) Neural Comput. , vol.4 , pp. 1-58
    • Bienenstock, E.1    Geman, S.2    Doursat, R.3
  • 38
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curse-of-dimensionality
    • J. Friedman, "On bias, variance, 0/1-loss, and the curse-of-dimensionality," Data Min. Knowl. Discov., vol. 1, pp. 55-77, 1997. (Pubitemid 127721236)
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.1 , pp. 55-77
    • Friedman, J.H.1
  • 39
    • 0002872346 scopus 로고    scopus 로고
    • Bias plus variance decomposition for zero-one loss functions
    • R. Kohavi and D. H. Wolpert, "Bias plus variance decomposition for zero-one loss functions," in Proc. 13th Int. Conf. Mach. Learn., 1996, pp. 275-283.
    • (1996) Proc. 13th Int. Conf. Mach. Learn. , pp. 275-283
    • Kohavi, R.1    Wolpert, D.H.2
  • 40
    • 0003619255 scopus 로고    scopus 로고
    • Statistics Dept., Univ. California, Berkeley, CA, Tech. Rep. 460
    • L. Breiman, "Bias, variance, and arcing classifiers," Statistics Dept., Univ. California, Berkeley, CA, Tech. Rep. 460, 1996.
    • (1996) Bias, Variance, and Arcing Classifiers
    • Breiman, L.1
  • 41
    • 0012937288 scopus 로고    scopus 로고
    • Aunified bias-variance decomposition and its applications
    • P. Domingos, "Aunified bias-variance decomposition and its applications," in Proc. 17th Int. Conf. Mach. Learn., 2000, pp. 231-238.
    • (2000) Proc. 17th Int. Conf. Mach. Learn. , pp. 231-238
    • Domingos, P.1
  • 42
    • 0037403462 scopus 로고    scopus 로고
    • Variance and bias for general loss functions
    • G. M. James, "Variance and bias for general loss functions," Mach. Learn., vol. 51, pp. 115-135, 2003.
    • (2003) Mach. Learn. , vol.51 , pp. 115-135
    • James, G.M.1
  • 43
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 44
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • San Francisco, CA, USA: Morgan Kaufmann (Publishers Inc.)
    • R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection," in Proc. 14th Int. Joint Conf. Artif. Intell. (IJCAI'95), San Francisco, CA, USA: Morgan Kaufmann (Publishers Inc.), vol. 2, 1995, pp. 1137-1143.
    • (1995) Proc. 14th Int. Joint Conf. Artif. Intell. (IJCAI'95) , vol.2 , pp. 1137-1143
    • Kohavi, R.1
  • 46
    • 33947220823 scopus 로고    scopus 로고
    • Feature subset selection and ranking for data dimensionality reduction
    • DOI 10.1109/TPAMI.2007.250607
    • H. L. Wei and S. A. Billings, "Feature subset selection and ranking for data dimensionality reduction," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 162-166, Jan. 2007. (Pubitemid 46415953)
    • (2007) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.29 , Issue.1 , pp. 162-166
    • Wei, H.-L.1    Billings, S.A.2
  • 48
    • 77957741951 scopus 로고    scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Sep.
    • G. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. 14, no. 1, pp. 55-63, Sep. 2006.
    • (2006) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 50
    • 0023854011 scopus 로고
    • Transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • DOI 10.1109/36.3001
    • P. Switzer, A. A. Green, M. Berman, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, Jan. 1988. (Pubitemid 18596008)
    • (1988) IEEE Transactions on Geoscience and Remote Sensing , vol.26 , Issue.1 , pp. 65-74
    • Green Andrew, A.1    Berman Mark2    Switzer Paul3    Craig Maurice, D.4
  • 51
    • 0001290987 scopus 로고
    • Automated spectral analysis: A geological example using AVIRIS data, north grapevine mountains, Nevada
    • San Antonio, TX, USA
    • J. W. Boardman and F. A. Kruse, "Automated spectral analysis: A geological example using AVIRIS data, north grapevine mountains, Nevada," in Proc. 10th Thematic Conf. Geologic Remote Sens., San Antonio, TX, USA, 1994.
    • (1994) Proc. 10th Thematic Conf. Geologic Remote Sens
    • Boardman, J.W.1    Kruse, F.A.2
  • 52
    • 79951820684 scopus 로고    scopus 로고
    • Kernel maximum autocorrelation factor and minimum noise fraction transformations
    • Mar.
    • A. A. Nielsen, "Kernel maximum autocorrelation factor and minimum noise fraction transformations," IEEE Trans. Image Process., vol. 20, no. 3, pp. 612-624, Mar. 2011.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.3 , pp. 612-624
    • Nielsen, A.A.1
  • 55
    • 0003476369 scopus 로고
    • 3rd ed. Philadelphia, PA: Society for Industrial and Applied Mathematics
    • C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, 3rd ed. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1995.
    • (1995) Solving Least Squares Problems
    • Lawson, C.L.1    Hanson, R.J.2
  • 57
    • 2642530204 scopus 로고    scopus 로고
    • Nonparametric weighted feature extraction for classification
    • May
    • B. C. Kuo and D. A. Landgrebe, "Nonparametric weighted feature extraction for classification," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 5, pp. 1096-1105, May 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.5 , pp. 1096-1105
    • Kuo, B.C.1    Landgrebe, D.A.2
  • 59
    • 3242765279 scopus 로고    scopus 로고
    • A bias-variance analysis of a real world learning problem: The coil challenge 2000
    • P. Van Der Putten and M. Van Someren, "A bias-variance analysis of a real world learning problem: The coil challenge 2000," Mach. Learn., vol. 57, pp. 177-195, 2004.
    • (2004) Mach. Learn. , vol.57 , pp. 177-195
    • Putten Der P.Van1    Van Someren, M.2
  • 60
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. Wolpert, "Stacked generalization," Neural Netw., vol. 5, no. 2, pp. 241-259, 1992.
    • (1992) Neural Netw. , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.1
  • 62
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • L. Kuncheva and C. Whitaker, "Measures of diversity in classifier ensembles," Mach. Learn., vol. 51, pp. 181-207, 2003.
    • (2003) Mach. Learn. , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 63
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the Jackknife
    • B. Efron, "Bootstrap methods: Another look at the Jackknife," Ann. Stat., vol. 7, no. 1, pp. 1-26, 1979.
    • (1979) Ann. Stat. , vol.7 , Issue.1 , pp. 1-26
    • Efron, B.1
  • 64
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • R. Harris, G. Brown, J. Wyatt, and X. Yao, "Diversity creation methods: A survey and categorisation," Inf. Fusion, vol. 6, no. 1, pp. 5-20, 2005.
    • (2005) Inf. Fusion , vol.6 , Issue.1 , pp. 5-20
    • Harris, R.1    Brown, G.2    Wyatt, J.3    Yao, X.4
  • 65
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, pp. 123-140, 1996. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 67
    • 84899983754 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • San Francisco, CA, USA
    • P. Bartlett, R. E. Schapire, Y. Freund, and W. S. Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods," in Proc. 14th Int. Conf. Mach. Learn., San Francisco, CA, USA, 1997.
    • (1997) Proc. 14th Int. Conf. Mach. Learn
    • Bartlett, P.1    Schapire, R.E.2    Freund, Y.3    Lee, W.S.4
  • 68
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998. (Pubitemid 128741345)
    • (1998) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 69
    • 0001823341 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
    • T. Dietterich, "An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization," Mach. Learn., vol. 40, pp. 1-22, 1999.
    • (1999) Mach. Learn. , vol.40 , pp. 1-22
    • Dietterich, T.1
  • 70
    • 0345548657 scopus 로고    scopus 로고
    • Random forest: A classification and regression tool for compound classification and QSAR modeling
    • V. Svetnik, A. Liaw, C. Tong, J. Culberson, R. Sheridan, and B. Feuston, "Random forest: A classification and regression tool for compound classification and QSAR modeling," J. Chem. Inf. Comput. Sci., vol. 43, pp. 1947-1958, 2003.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1947-1958
    • Svetnik, V.1    Liaw, A.2    Tong, C.3    Culberson, J.4    Sheridan, R.5    Feuston, B.6
  • 71
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • R. Diaz-Uriarte and S. Alvarez de Andres, "Gene selection and classification of microarray data using random forest," BMC Bioinformat., vol. 7, no. 3, pp. 1-13, 2006.
    • (2006) BMC Bioinformat. , vol.7 , Issue.3 , pp. 1-13
    • Diaz-Uriarte, R.1    Andres De S.Alvarez2
  • 74
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Mach. Learn., L. Saitta, Ed., San Francisco, CA, USA
    • Y. Freund and R. Shapire, "Experiments with a new boosting algorithm," in Proc. 13th Int. Conf. Mach. Learn., L. Saitta, Ed., San Francisco, CA, USA, 1996, pp. 14-156.
    • (1996) Proc. 13th Int. Conf , pp. 14-156
    • Freund, Y.1    Shapire, R.2
  • 76
    • 84865426634 scopus 로고    scopus 로고
    • The origins of the Gini index: Extracts from variabilità e mutabilità (1912) by Corrado Gini
    • Sep.
    • L. Ceriani and P. Verme, "The origins of the Gini index: Extracts from variabilità e mutabilità (1912) by Corrado Gini," J. Econ. Inequality, vol. 10, no. 3, pp. 421-443, Sep. 2012.
    • (2012) J. Econ. Inequality , vol.10 , Issue.3 , pp. 421-443
    • Ceriani, L.1    Verme, P.2
  • 77
    • 33745653724 scopus 로고    scopus 로고
    • Random forests and adaptive nearest neighbors
    • DOI 10.1198/016214505000001230
    • Y. Lin and Y. Jeon, "Random forests and adaptive nearest neighbors," J. Amer. Stat. Assoc., vol. 101, pp. 578-590, 2006. (Pubitemid 43972300)
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.474 , pp. 578-590
    • Lin, Y.1    Jeon, Y.2
  • 78
    • 77956747417 scopus 로고    scopus 로고
    • On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification
    • G. Biau and L. Devroye, "On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification," J. Multivariate Anal., vol. 101, pp. 2499-2518, 2010.
    • (2010) J. Multivariate Anal. , vol.101 , pp. 2499-2518
    • Biau, G.1    Devroye, L.2
  • 80
    • 54249099241 scopus 로고    scopus 로고
    • Consistency of random forests and other averaging classifiers
    • G. Biau, L. Devroye, and G. Lugosi, "Consistency of random forests and other averaging classifiers," J. Mach. Learn. Res., vol. 9, pp. 2015-2033, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2015-2033
    • Biau, G.1    Devroye, L.2    Lugosi, G.3
  • 83
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besag, "On the statistical analysis of dirty pictures," J. Roy. Stat. Soc., vol. 48, pp. 259-302, 1986.
    • (1986) J. Roy. Stat. Soc. , vol.48 , pp. 259-302
    • Besag, J.1
  • 84
    • 80052874015 scopus 로고    scopus 로고
    • Target discrimination and classification in through-the-wall radar imaging
    • C. Debes, J. Hahn, A. M. Zoubir, and M. G. Amin, "Target discrimination and classification in through-the-wall radar imaging," IEEE Trans. Signal Process., vol. 59, no. 10, pp. 4664-4676, 2011.
    • (2011) IEEE Trans. Signal Process. , vol.59 , Issue.10 , pp. 4664-4676
    • Debes, C.1    Hahn, J.2    Zoubir, A.M.3    Amin, M.G.4
  • 86
    • 0001300994 scopus 로고
    • Solution of incorrectly formulated problems and the regularization method
    • A. N. Tikhonov, "Solution of incorrectly formulated problems and the regularization method," Soviet. Math. Dokl., vol. 5, pp. 1035-1038, 1963.
    • (1963) Soviet. Math. Dokl. , vol.5 , pp. 1035-1038
    • Tikhonov, A.N.1
  • 88
    • 70350322123 scopus 로고    scopus 로고
    • Augmented tikhonov regularization
    • B. Jin and J. Zou, "Augmented tikhonov regularization," Inverse Probl., vol. 25, no. 2, p. 025001, 2009.
    • (2009) Inverse Probl. , vol.25 , Issue.2 , pp. 025001
    • Jin, B.1    Zou, J.2
  • 89
    • 80053537067 scopus 로고    scopus 로고
    • A new approach to nonlinear constrained Tikhonov regularization
    • K. Ito and B. Jin, "A new approach to nonlinear constrained Tikhonov regularization," Inverse Probl., vol. 27, no. 10, p. 105005, 2011.
    • (2011) Inverse Probl. , vol.27 , Issue.10 , pp. 105005
    • Ito, K.1    Jin, B.2
  • 90
    • 3142775716 scopus 로고    scopus 로고
    • Minimum variance in biased estimation: Bounds and asymptotically optimal estimators
    • Jul.
    • Y. C. Eldar, "Minimum variance in biased estimation: Bounds and asymptotically optimal estimators," IEEE Trans. Signal Process., vol. 52, no. 7, pp. 1915-1930, Jul. 2004.
    • (2004) IEEE Trans. Signal Process. , vol.52 , Issue.7 , pp. 1915-1930
    • Eldar, Y.C.1
  • 91
    • 0030215043 scopus 로고    scopus 로고
    • Exploring estimator bias-variance tradeoffs using the uniform CR bound
    • PII S1053587X96052932
    • A. O. Hero, J. A. Fessler, and M. Usman, "Exploring estimator bias-variance tradeoffs using the uniform CR bound," IEEE Trans. Signal Process., vol. 44, no. 8, pp. 2026-2041, Aug. 1996. (Pubitemid 126778023)
    • (1996) IEEE Transactions on Signal Processing , vol.44 , Issue.8 , pp. 2026-2041
    • Hero III, A.O.1    Fessler, J.A.2    Usman, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.