메뉴 건너뛰기




Volumn 93, Issue 11, 2013, Pages 2956-2968

Resampling methods for quality assessment of classifier performance and optimal number of features

Author keywords

Classifier design and evaluation; Feature evaluation and selection; Optimal dimensionality; Pattern recognition; Resampling Bootstrap

Indexed keywords

CLASSIFICATION SYSTEM; CLASSIFIER DESIGN AND EVALUATION; CLASSIFIER PERFORMANCE; FEATURE EVALUATION AND SELECTION; FEATURE SELECTION ALGORITHM; MISCLASSIFICATION RATES; OPTIMAL DIMENSIONALITY; RESAMPLING;

EID: 84879317733     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2013.05.004     Document Type: Article
Times cited : (6)

References (57)
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Machine Learning 20 3 1995 273 297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 0029409393 scopus 로고
    • Comparisons of a neural network and a nearest-neighbor classifier via the numeric handprint recognition problem
    • W.E. Weideman, M.T. Manry, H.-C. Yau, and W. Gong Comparisons of a neural network and a nearest-neighbor classifier via the numeric handprint recognition problem IEEE Transactions on Neural Networks 6 6 1995 1524 1530
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.6 , pp. 1524-1530
    • Weideman, W.E.1    Manry, M.T.2    Yau, H.-C.3    Gong, W.4
  • 11
    • 0029341018 scopus 로고
    • A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification
    • J.D. Paola, and R.A. Schowengerdt A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification IEEE Transactions on Geoscience and Remote Sensing 33 4 1995 981 996
    • (1995) IEEE Transactions on Geoscience and Remote Sensing , vol.33 , Issue.4 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 16
    • 77955381133 scopus 로고    scopus 로고
    • Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods
    • S. Borra, and A. Di Ciaccio Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods Computational Statistics & Data Analysis 54 2010 2976 2989
    • (2010) Computational Statistics & Data Analysis , vol.54 , pp. 2976-2989
    • Borra, S.1    Di Ciaccio, A.2
  • 17
    • 69449096940 scopus 로고    scopus 로고
    • Conditional confidence intervals for classification error rate
    • H.-C. Chung, and C.-P. Han Conditional confidence intervals for classification error rate Computational Statistics & Data Analysis 53 12 2009 4358 4369
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.12 , pp. 4358-4369
    • Chung, H.-C.1    Han, C.-P.2
  • 18
    • 53549129519 scopus 로고    scopus 로고
    • A bootstrap-based aggregate classifier for model-based clustering
    • J. Dias, and J. Vermunt A bootstrap-based aggregate classifier for model-based clustering Computational Statistics 23 4 2008 643 659
    • (2008) Computational Statistics , vol.23 , Issue.4 , pp. 643-659
    • Dias, J.1    Vermunt, J.2
  • 22
    • 0033346113 scopus 로고    scopus 로고
    • Bootstrapping nonparametric feature selection algorithms for mining small data sets
    • J.-L. Yuan, Bootstrapping nonparametric feature selection algorithms for mining small data sets, in: International Joint Conference on Neural Networks, vol. 4, 1999, pp. 2526-2529.
    • (1999) International Joint Conference on Neural Networks , vol.4 , pp. 2526-2529
    • Yuan, J.-L.1
  • 24
    • 0001995592 scopus 로고    scopus 로고
    • A three-step method for choosing the number of bootstrap repetitions
    • D.W.K. Andrews, and M. Buchinsky A three-step method for choosing the number of bootstrap repetitions Econometrica 68 1 2000 23 51
    • (2000) Econometrica , vol.68 , Issue.1 , pp. 23-51
    • Andrews, D.W.K.1    Buchinsky, M.2
  • 28
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • A.W. Whitney A direct method of nonparametric measurement selection IEEE Transactions on Computers 20 1971 1100 1103
    • (1971) IEEE Transactions on Computers , vol.20 , pp. 1100-1103
    • Whitney, A.W.1
  • 29
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • G. Hughes On the mean accuracy of statistical pattern recognizers IEEE Transactions on Information Theory 14 1 1968 55 63
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 30
    • 0008863274 scopus 로고
    • On some problems arising out of discrimination with multiple characters
    • C.R. Rao On some problems arising out of discrimination with multiple characters Sankhya The Indian Journal of Statistics (1933-1960) 9 4 1949 343 366
    • (1949) Sankhya the Indian Journal of Statistics (1933-1960) , vol.9 , Issue.4 , pp. 343-366
    • Rao, C.R.1
  • 31
    • 63249112814 scopus 로고
    • Dimensionality and sample size considerations in pattern recognition practice
    • P. Krishnaiah, L. Kanal, Classification Pattern Recognition and Reduction of Dimensionality, Elsevier
    • A.K. Jain, and B. Chandrasekaran Dimensionality and sample size considerations in pattern recognition practice P. Krishnaiah, L. Kanal, Classification Pattern Recognition and Reduction of Dimensionality, Handbook of Statistics vol. 2 1982 Elsevier 835 855
    • (1982) Handbook of Statistics , vol.2 , pp. 835-855
    • Jain, A.K.1    Chandrasekaran, B.2
  • 32
    • 0016553994 scopus 로고
    • Estimating the probability of misclassification and variate selection
    • T.L. Boullion, P.L. Odell, and B.S. Duran Estimating the probability of misclassification and variate selection Pattern Recognition 7 3 1975 139 145
    • (1975) Pattern Recognition , vol.7 , Issue.3 , pp. 139-145
    • Boullion, T.L.1    Odell, P.L.2    Duran, B.S.3
  • 33
    • 0016958529 scopus 로고
    • On the effects of dimension in discriminant analysis
    • J. van Ness On the effects of dimension in discriminant analysis Technometrics 18 1979 175 187
    • (1979) Technometrics , vol.18 , pp. 175-187
    • Van Ness, J.1
  • 34
    • 0018253340 scopus 로고
    • On the optimal number of features in the classification of multivariate Gaussian data
    • A.K. Jain, and R. Duber On the optimal number of features in the classification of multivariate Gaussian data Pattern Recognition 10 1978 365 374
    • (1978) Pattern Recognition , vol.10 , pp. 365-374
    • Jain, A.K.1    Duber, R.2
  • 35
    • 0019020917 scopus 로고
    • On dimensionality, sample size, classification error, and complexity of classification algorithm in pattern recognition
    • S. Raudys, and V. Pikelis On dimensionality, sample size, classification error, and complexity of classification algorithm in pattern recognition IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-2 3 1980 242 252
    • (1980) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-2 , Issue.3 , pp. 242-252
    • Raudys, S.1    Pikelis, V.2
  • 36
    • 0002215069 scopus 로고
    • On a measure of divergence between two statistical populations defined by their probability distributions
    • A. Bhattacharyya On a measure of divergence between two statistical populations defined by their probability distributions Bulletin of the Calcutta Mathematical Society 35 1943 99 109
    • (1943) Bulletin of the Calcutta Mathematical Society , vol.35 , pp. 99-109
    • Bhattacharyya, A.1
  • 41
    • 84869422991 scopus 로고    scopus 로고
    • On preserving original variables in Bayesian pca with application to image analysis
    • J. Li, and D. Tao On preserving original variables in Bayesian pca with application to image analysis IEEE Transactions on Image Processing 21 12 2012 4830 4843
    • (2012) IEEE Transactions on Image Processing , vol.21 , Issue.12 , pp. 4830-4843
    • Li, J.1    Tao, D.2
  • 42
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection frequentist and Bayesian strategies
    • H. Ishwaran, and J.S. Rao Spike and slab variable selection frequentist and Bayesian strategies The Annals of Statistics 33 2 2005 730 773
    • (2005) The Annals of Statistics , vol.33 , Issue.2 , pp. 730-773
    • Ishwaran, H.1    Rao, J.S.2
  • 43
    • 54549099006 scopus 로고    scopus 로고
    • Performance of feature-selection methods in the classification of high-dimension data
    • J. Hua, W.D. Tembe, and E.R. Dougherty Performance of feature-selection methods in the classification of high-dimension data Pattern Recognition 42 3 2009 409 424
    • (2009) Pattern Recognition , vol.42 , Issue.3 , pp. 409-424
    • Hua, J.1    Tembe, W.D.2    Dougherty, E.R.3
  • 44
    • 68949155378 scopus 로고    scopus 로고
    • Feature subset selection in large dimensionality domains
    • I.A. Gheyas, and L.S. Smith Feature subset selection in large dimensionality domains Pattern Recognition 43 1 2010 5 13
    • (2010) Pattern Recognition , vol.43 , Issue.1 , pp. 5-13
    • Gheyas, I.A.1    Smith, L.S.2
  • 45
    • 48749109333 scopus 로고    scopus 로고
    • Particle swarm optimization for parameter determination and feature selection of support vector machines
    • S.-W. Lin, K.-C. Ying, S.-C. Chen, and Z.-J. Lee Particle swarm optimization for parameter determination and feature selection of support vector machines Expert Systems with Applications 35 4 2008 1817 1824
    • (2008) Expert Systems with Applications , vol.35 , Issue.4 , pp. 1817-1824
    • Lin, S.-W.1    Ying, K.-C.2    Chen, S.-C.3    Lee, Z.-J.4
  • 46
    • 53449092759 scopus 로고    scopus 로고
    • A new feature selection method for Gaussian mixture clustering
    • Learning Semantics from Multimedia Content
    • H. Zeng, and Y.-M. Cheung A new feature selection method for Gaussian mixture clustering Pattern Recognition 42 2 2009 243 250 Learning Semantics from Multimedia Content
    • (2009) Pattern Recognition , vol.42 , Issue.2 , pp. 243-250
    • Zeng, H.1    Cheung, Y.-M.2
  • 47
    • 77954565155 scopus 로고    scopus 로고
    • Discriminative semi-supervised feature selection via manifold regularization
    • Z. Xu, I. King, M.-T. Lyu, and R. Jin Discriminative semi-supervised feature selection via manifold regularization IEEE Transactions on Neural Networks 21 7 2010 1033 1047
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.7 , pp. 1033-1047
    • Xu, Z.1    King, I.2    Lyu, M.-T.3    Jin, R.4
  • 48
    • 62349118015 scopus 로고    scopus 로고
    • Feature selection with dynamic mutual information
    • H. Liu, J. Sun, L. Liu, and H. Zhang Feature selection with dynamic mutual information Pattern Recognition 42 7 2009 1330 1339
    • (2009) Pattern Recognition , vol.42 , Issue.7 , pp. 1330-1339
    • Liu, H.1    Sun, J.2    Liu, L.3    Zhang, H.4
  • 50
    • 79957992972 scopus 로고    scopus 로고
    • Feature selection using probabilistic prediction of support vector regression
    • J.-B. Yang, and C.-J. Ong Feature selection using probabilistic prediction of support vector regression IEEE Transactions on Neural Networks 22 6 2011 954 962
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.6 , pp. 954-962
    • Yang, J.-B.1    Ong, C.-J.2
  • 55
    • 84879285807 scopus 로고    scopus 로고
    • Unified design of a feature based ADAC system for mine hunting using synthetic aperture sonar
    • accepted for publication
    • R. Fandos, A.M. Zoubir, K. Siantidis, Unified design of a feature based ADAC system for mine hunting using synthetic aperture sonar, IEEE Transactions on Geoscience and Remote Sensing, accepted for publication.
    • IEEE Transactions on Geoscience and Remote Sensing
    • Fandos, R.1    Zoubir, A.M.2    Siantidis, K.3
  • 57
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • E. Parzen On estimation of a probability density function and mode Annals of Mathematical Statistics 33 1962 1065 1076
    • (1962) Annals of Mathematical Statistics , vol.33 , pp. 1065-1076
    • Parzen, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.