메뉴 건너뛰기




Volumn 2, Issue , 2009, Pages 847-850

Feature selection for hyperspectral data based on modified recursive support vector machines

Author keywords

Automatic modal selection (AMS); Feature selection; Hyperspectral data; Recursive support vector machines (RSVM); Support vector machines recursive feature elimination (SVM RFE)

Indexed keywords

COMPUTATIONAL EFFICIENCY; EFFICIENCY; FEATURE EXTRACTION; GEOLOGY; INFRARED SPECTROMETERS; REMOTE SENSING; THERMOGRAPHY (IMAGING); VECTORS;

EID: 77951122331     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IGARSS.2009.5418228     Document Type: Conference Paper
Times cited : (6)

References (10)
  • 2
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • G. Hughes, "On the mean accuracy of statistical pattern recognizers," Information Theory, IEEE Transactions on, vol. 14, pp. 55-63, 1968.
    • (1968) Information Theory, IEEE Transactions on , vol.14 , pp. 55-63
    • Hughes, G.1
  • 3
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Machine Learning, vol.46, pp. 389-422, 2002. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 5
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • Nov
    • Y. Bazi and F. Melgani, "Toward an optimal SVM classification system for hyperspectral remote sensing images," IEEE Transactions on Geoscience and Remote Sensing, vol. 44, pp. 3374-3385, Nov 2006.
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 6
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Machine Learning, vol.46, pp. 131-159, 2002. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 8
    • 26644466101 scopus 로고    scopus 로고
    • Multiple SVM-RFE for gene selection in cancer classification with expression data
    • Sep
    • K. B. Duan, J. C. Rajapakse, H. Y. Wang, and F. Azuaje, "Multiple SVM-RFE for gene selection in cancer classification with expression data," IEEE Transactions on Nanobioscience, vol. 4, pp. 228-234, Sep 2005.
    • (2005) IEEE Transactions on Nanobioscience , vol.4 , pp. 228-234
    • Duan, K.B.1    Rajapakse, J.C.2    Wang, H.Y.3    Azuaje, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.