-
1
-
-
0032157956
-
Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)
-
R. O. Green et al., “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ., vol. 65, no. 3, pp. 227–248, 1998.
-
(1998)
Remote Sens. Environ.
, vol.65
, Issue.3
, pp. 227-248
-
-
Green, R.O.1
-
2
-
-
0003408420
-
-
Cambridge, MA: MIT Press
-
B. Scholkopf and A. Smola, Learning With Kernels-Support Vector Machines, Regularization, Optimization and Beyond. Cambridge, MA: MIT Press, 2002.
-
(2002)
Learning With Kernels-Support Vector Machines, Regularization, Optimization and Beyond
-
-
Scholkopf, B.1
Smola, A.2
-
3
-
-
4344614511
-
Classification of hyperspectral remote sensing images with support vector machines
-
F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with support vector machines,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778–1790, 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
4
-
-
20444432773
-
Kernel-based methods for hyper-spectral image classification
-
Jun.
-
G. Camps-Valls and L. Bruzzone, “Kernel-based methods for hyper-spectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351–1362, Jun. 2005.
-
(2005)
IEEE Trans. Geosci. Remote Sens.
, vol.43
, Issue.6
, pp. 1351-1362
-
-
Camps-Valls, G.1
Bruzzone, L.2
-
5
-
-
33750798496
-
Toward an optimal SVM classification system for hyperspectral remote sensing images
-
A. Bazi and F. Melgani, “Toward an optimal SVM classification system for hyperspectral remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3374–3376, 2006.
-
(2006)
IEEE Trans. Geosci. Remote Sens.
, vol.44
, Issue.11
, pp. 3374-3376
-
-
Bazi, A.1
Melgani, F.2
-
6
-
-
44049084715
-
Kernel-based framework for multi-temporal and multi-source remote sensing data classification and change detection
-
Jun.
-
G. Camps-Valls, L. Gomez-Chova, M. Muñoz Mari, J. Martínez-Ramón, and J. L. Rojo-Alvarez, “Kernel-based framework for multi-temporal and multi-source remote sensing data classification and change detection,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1822–1835, Jun. 2008.
-
(2008)
IEEE Trans. Geosci. Remote Sens.
, vol.46
, Issue.6
, pp. 1822-1835
-
-
Camps-Valls, G.1
Gomez-Chova, L.2
Muñoz Mari, M.3
Martínez-Ramón, J.4
Rojo-Alvarez, J.L.5
-
7
-
-
41849112041
-
Customizing kernel functions for SVM-based hyperspectral image classification
-
Apr.
-
G. Baofeng, S. R. Gunn, R. I. Damper, and J. D. B. Nelson, “Customizing kernel functions for SVM-based hyperspectral image classification,” IEEE Trans. Image Process., vol. 17, no. 4, pp. 622–629, Apr. 2008.
-
(2008)
IEEE Trans. Image Process.
, vol.17
, Issue.4
, pp. 622-629
-
-
Baofeng, G.1
Gunn, S.R.2
Damper, R.I.3
Nelson, J.D.B.4
-
8
-
-
41849112041
-
Customizing kernel functions for SVM-based hyperspectral image classification
-
B. Guo, S. R. Gunn, R. I. Damper, and J. D. B. Nelson, “Customizing kernel functions for SVM-based hyperspectral image classification,” IEEE Trans. Image Process., vol. 17, no. 4, pp. 622–629, 2008.
-
(2008)
IEEE Trans. Image Process.
, vol.17
, Issue.4
, pp. 622-629
-
-
Guo, B.1
Gunn, S.R.2
Damper, R.I.3
Nelson, J.D.B.4
-
9
-
-
56849127860
-
Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
-
M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, “Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804–3814, 2008.
-
(2008)
IEEE Trans. Geosci. Remote Sens.
, vol.46
, Issue.11
, pp. 3804-3814
-
-
Fauvel, M.1
Benediktsson, J.A.2
Chanussot, J.3
Sveinsson, J.R.4
-
10
-
-
67650436064
-
Recent advances in techniques for hyperspectral image processing
-
A. Plaza, J. A. Benediktsson, J. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ., vol. 113, no. Supplement 1, pp. S110–S122, 2009.
-
(2009)
Remote Sens. Environ.
, vol.113
, pp. S110-S122
-
-
Plaza, A.1
Benediktsson, J.A.2
Boardman, J.3
Brazile, J.4
Bruzzone, L.5
Camps-Valls, G.6
Chanussot, J.7
Fauvel, M.8
Gamba, P.9
Gualtieri, A.10
Marconcini, M.11
Tilton, J.C.12
Trianni, G.13
-
11
-
-
70350655559
-
Classification of very high spatial resolution imagery using mathematical morphology and support vector machines
-
D. Tuia, F. Pacifici, M. Kanevski, and W. J. Emery, “Classification of very high spatial resolution imagery using mathematical morphology and support vector machines,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 11, pp. 3866–3879, 2009.
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, vol.47
, Issue.11
, pp. 3866-3879
-
-
Tuia, D.1
Pacifici, F.2
Kanevski, M.3
Emery, W.J.4
-
12
-
-
34247394279
-
Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery
-
X. Huang and L. Zhang, “Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery,” IEEE Geosci. Remote Sens. Lett., vol. 4, no. 2, pp. 260–264, 2007.
-
(2007)
IEEE Geosci. Remote Sens. Lett.
, vol.4
, Issue.2
, pp. 260-264
-
-
Huang, X.1
Zhang, L.2
-
13
-
-
70449433268
-
A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia city, northern of italy
-
X. Huang and L. Zhang, “A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia city, northern of italy,” Int. J. Remote Sens., vol. 30, no. 12, pp. 3205–3221, 2009.
-
(2009)
Int. J. Remote Sens.
, vol.30
, Issue.12
, pp. 3205-3221
-
-
Huang, X.1
Zhang, L.2
-
14
-
-
33749252873
-
-
1st ed. Cambridge, MA: MIT Press
-
O. Chapelle, B. Scholkopf, and A. Zien, Semi-Supervised Learning, 1st ed. Cambridge, MA: MIT Press, 2006.
-
(2006)
Semi-Supervised Learning
-
-
Chapelle, O.1
Scholkopf, B.2
Zien, A.3
-
15
-
-
33745456231
-
-
Dept. Comput. Sci., Univ. Wisconsin-Madison, USA, Tech. Rep. 1530
-
X. Zhu, “Semi-Supervised Learning Literature Survey,” Dept. Comput. Sci., Univ. Wisconsin-Madison, USA, Tech. Rep. 1530, 2008.
-
(2008)
Semi-Supervised Learning Literature Survey
-
-
Zhu, X.1
-
16
-
-
0035694667
-
An adaptive classifier design for high-dimensional data analysis with a limited training data set
-
Dec.
-
Q. Jackson and D. A. Landgrebe, “An adaptive classifier design for high-dimensional data analysis with a limited training data set,” IEEE Trans. Geosci. Remote Sens., pp. 2664–2679, Dec. 2001.
-
(2001)
IEEE Trans. Geosci. Remote Sens.
, pp. 2664-2679
-
-
Jackson, Q.1
Landgrebe, D.A.2
-
18
-
-
33750819329
-
A novel transductive SVM for the semisupervised classification of remote-sensing images
-
L. Bruzzone, M. Chi, and M. Marconcini, “A novel transductive SVM for the semisupervised classification of remote-sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363–3373, 2006.
-
(2006)
IEEE Trans. Geosci. Remote Sens.
, vol.44
, Issue.11
, pp. 3363-3373
-
-
Bruzzone, L.1
Chi, M.2
Marconcini, M.3
-
19
-
-
85008021578
-
-
presented at the European Conf. Machine Learning (ECML), Pisa, Italy
-
Z. H. Zhou, K. J. Chen, and Y. Jiang, “Exploiting unlabeled data in content-based image retrieval,” presented at the European Conf. Machine Learning (ECML), Pisa, Italy, 2004.
-
(2004)
Exploiting unlabeled data in content-based image retrieval
-
-
Zhou, Z.H.1
Chen, K.J.2
Jiang, Y.3
-
20
-
-
39049145967
-
Semi-supervised graph-based hyperspectral image classification
-
G. Camps-Valls, T. Bandos, and D. Zhou, “Semi-supervised graph-based hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 45, pp. 3044–3054, 2007.
-
(2007)
IEEE Trans. Geosci. Remote Sens.
, vol.45
, pp. 3044-3054
-
-
Camps-Valls, G.1
Bandos, T.2
Zhou, D.3
-
21
-
-
31844440904
-
Beyond the point cloud: From transductive to semi-supervised learning
-
New York, NY
-
V. Sindhwani, P. Niyogi, and M. Belkin, “Beyond the point cloud: From transductive to semi-supervised learning,” in Proc. 22nd Int. Conf. Machine Learning (ICML'05), New York, NY, 2005, pp. 824–831.
-
(2005)
Proc. 22nd Int. Conf. Machine Learning (ICML'05)
, pp. 824-831
-
-
Sindhwani, V.1
Niyogi, P.2
Belkin, M.3
-
22
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A geometric framework for learning from labeled and unlabeled examples,” J. Machine Learning Res., vol. 7, pp. 2399–2434, 2006.
-
(2006)
J. Machine Learning Res.
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
23
-
-
47849095828
-
Semi-supervised image classification with Laplacian support vector machines
-
L. Gomez-Chova, G. Camps-Valls, J. Muñoz-Marí, and J. Calpe-Maravilla, “Semi-supervised image classification with Laplacian support vector machines,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 3, pp. 336–340, 2008.
-
(2008)
IEEE Geosci. Remote Sens. Lett.
, vol.5
, Issue.3
, pp. 336-340
-
-
Gomez-Chova, L.1
Camps-Valls, G.2
Muñoz-Marí, J.3
Calpe-Maravilla, J.4
-
24
-
-
67349269946
-
Multiobjective genetic SVM approach for classification problems with limited training samples
-
N. Ghoggali, F. Melgani, and Y. Bazi, “Multiobjective genetic SVM approach for classification problems with limited training samples,” IEEE Trans. Geosc. Remote Sens., vol. 47, no. 6, pp. 1707–1718, 2009.
-
(2009)
IEEE Trans. Geosc. Remote Sens.
, vol.47
, Issue.6
, pp. 1707-1718
-
-
Ghoggali, N.1
Melgani, F.2
Bazi, Y.3
-
25
-
-
65049090023
-
A composite semisupervised SVM for classification of hyperspectral images
-
M. Marconcini, G. Camps-Valls, and L. Bruzzone, “A composite semisupervised SVM for classification of hyperspectral images,” IEEE Geosci. Remote Sens. Lett., vol. 6, no. 2, pp. 234–238, 2009.
-
(2009)
IEEE Geosci. Remote Sens. Lett.
, vol.6
, Issue.2
, pp. 234-238
-
-
Marconcini, M.1
Camps-Valls, G.2
Bruzzone, L.3
-
26
-
-
31144448472
-
Composite kernels for hyperspectral image classification
-
Jan.
-
G. Camps-Valls, L. Gomez-Chova, J. Muñoz-Marí, J. Vila-Frances, and J. Calpe-Maravilla, “Composite kernels for hyperspectral image classification,” IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 93–97, Jan. 2006.
-
(2006)
IEEE Geosci. Remote Sens. Lett.
, vol.3
, Issue.1
, pp. 93-97
-
-
Camps-Valls, G.1
Gomez-Chova, L.2
Muñoz-Marí, J.3
Vila-Frances, J.4
Calpe-Maravilla, J.5
-
27
-
-
67651166635
-
A novel context-sensitive semisupervised SVM classifier robust tomislabeled training samples
-
L. Bruzzone and C. Persello, “A novel context-sensitive semisupervised SVM classifier robust tomislabeled training samples,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2142–2154, 2009.
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, vol.47
, Issue.7
, pp. 2142-2154
-
-
Bruzzone, L.1
Persello, C.2
-
28
-
-
32844455952
-
Cluster kernels for semi-supervised learning
-
Vancouver, BC, Canada, Dec.
-
O. Chapelle, J. Weston, and B. Scholkopf, “Cluster kernels for semi-supervised learning,” in Proc. Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, Dec. 2002, vol. 15, pp. 601–608.
-
(2002)
Proc. Neural Information Processing Systems (NIPS)
, vol.15
, pp. 601-608
-
-
Chapelle, O.1
Weston, J.2
Scholkopf, B.3
-
29
-
-
25144481906
-
Semi-supervised protein classification using cluster kernels
-
J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff, and W. S. Noble, “Semi-supervised protein classification using cluster kernels,” Bioin-formatics, vol. 21, pp. 3241–3247, 2005.
-
(2005)
Bioin-formatics
, vol.21
, pp. 3241-3247
-
-
Weston, J.1
Leslie, C.2
Ie, E.3
Zhou, D.4
Elisseeff, A.5
Noble, W.S.6
-
31
-
-
33747128180
-
Large scale transductive SVMS
-
R. Collobert, F. Sinz, J. Weston, L. Bottou, and T. Joachims, “Large scale transductive SVMS,” J. Machine Learning Res., vol. 7, pp. 1687–1712, 2006.
-
(2006)
J. Machine Learning Res.
, vol.7
, pp. 1687-1712
-
-
Collobert, R.1
Sinz, F.2
Weston, J.3
Bottou, L.4
Joachims, T.5
-
32
-
-
65049084094
-
Semi-supervised remote sensing image classification with cluster kernels
-
D. Tuia and G. Camps-Valls, “Semi-supervised remote sensing image classification with cluster kernels,” IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp. 224–228, 2009.
-
(2009)
IEEE Geosci. Remote Sens. Lett.
, vol.6
, Issue.1
, pp. 224-228
-
-
Tuia, D.1
Camps-Valls, G.2
-
33
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Pittsburgh, PA
-
B. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal margin classifiers,” in Proc. 5th ACM Workshop on Computational Learning Theory, Pittsburgh, PA, 1992, pp. 144–152.
-
(1992)
Proc. 5th ACM Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.1
Guyon, I.2
Vapnik, V.3
-
35
-
-
39049088613
-
Functions of positive and negative type and their connection with the theory of integral equations
-
May
-
J. Mercer, “Functions of positive and negative type and their connection with the theory of integral equations,” Philosophical Trans. Royal Society of London, vol. CCIX, no. A456, pp. 215–228, May 1905.
-
(1905)
Philosophical Trans. Royal Society of London
, vol.209
, Issue.A456
, pp. 215-228
-
-
Mercer, J.1
-
36
-
-
84899013108
-
On spectral clustering: Analysis and an algorithm
-
T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press
-
A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,” in Advances in Neural Information Processing Systems (NIPS), T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002, vol. 14, pp. 849–856.
-
(2002)
Advances in Neural Information Processing Systems (NIPS)
, vol.14
, pp. 849-856
-
-
Ng, A.Y.1
Jordan, M.I.2
Weiss, Y.3
-
37
-
-
0035248508
-
A new approach for the morphological segmentation of high-resolution satellite images
-
M. Pesaresi and J. A. Benediktsson, “A new approach for the morphological segmentation of high-resolution satellite images,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 309–320, 2001.
-
(2001)
IEEE Trans. Geosci. Remote Sens.
, vol.39
, Issue.2
, pp. 309-320
-
-
Pesaresi, M.1
Benediktsson, J.A.2
-
38
-
-
0142009648
-
Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
-
J. A. Benediktsson, M. Pesaresi, and K. Arnason, “Classification and feature extraction for remote sensing images from urban areas based on morphological transformations,” IEEE Trans. Geosci. Remote Sens., vol. 41, pp. 1940–1949, 2003.
-
(2003)
IEEE Trans. Geosci. Remote Sens.
, vol.41
, pp. 1940-1949
-
-
Benediktsson, J.A.1
Pesaresi, M.2
Arnason, K.3
-
39
-
-
75449115228
-
Multi-source composite kernels for urban image classification
-
D. Tuia, F. Ratle, A. Pozdnoukhov, and G. Camps-Valls, “Multi-source composite kernels for urban image classification,” IEEE Geosci. Remote Sens. Lett., vol. 7, no. 1, pp. 88–92, 2010.
-
(2010)
IEEE Geosci. Remote Sens. Lett.
, vol.7
, Issue.1
, pp. 88-92
-
-
Tuia, D.1
Ratle, F.2
Pozdnoukhov, A.3
Camps-Valls, G.4
-
40
-
-
2142816603
-
A new approach to mixed pixel classification of hyperspectral imagery based on extended mor-phological profiles
-
A. Plaza, P. Martinez, R. Perez, and J. Plaza, “A new approach to mixed pixel classification of hyperspectral imagery based on extended mor-phological profiles,” Pattern Recogn., vol. 37, no. 6, pp. 1097–1116, 2004.
-
(2004)
Pattern Recogn.
, vol.37
, Issue.6
, pp. 1097-1116
-
-
Plaza, A.1
Martinez, P.2
Perez, R.3
Plaza, J.4
-
41
-
-
59249100334
-
Multi-channel morphological profiles for classification of hyperspectral image data using support vector machines
-
J. Plaza, A. Plaza, and C. Barra, “Multi-channel morphological profiles for classification of hyperspectral image data using support vector machines,” Sensors, vol. 9, no. 1, pp. 196–218, 2009.
-
(2009)
Sensors
, vol.9
, Issue.1
, pp. 196-218
-
-
Plaza, J.1
Plaza, A.2
Barra, C.3
-
42
-
-
66549094932
-
Towards the definition of a flexible hyperspectral processing chain: Preliminary case study using high-resolution urban data
-
Boston, MA
-
J. Nairoukh, G. Trianni, P. Gamba, and F. Dell'Acqua, “Towards the definition of a flexible hyperspectral processing chain: Preliminary case study using high-resolution urban data,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Boston, MA, 2008.
-
(2008)
Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS)
-
-
Nairoukh, J.1
Trianni, G.2
Gamba, P.3
Dell'Acqua, F.4
-
43
-
-
77957741951
-
On the mean accuracy of statistical pattern recognition
-
G. F. Hughes, “On the mean accuracy of statistical pattern recognition,” IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55–63, 1968.
-
(1968)
IEEE Trans. Inf. Theory
, vol.IT-14
, Issue.1
, pp. 55-63
-
-
Hughes, G.F.1
-
44
-
-
70350646904
-
Decision fusion for the classification of hyperspectral data: Outcome of the 2008 GRS-S data fusion contest
-
G. Licciardi, F. Pacifici, D. Tuia, S. Prasad, T. West, F. Giacco, J. Inglada, E. Christophe, J. Chanussot, and P. Gamba, “Decision fusion for the classification of hyperspectral data: Outcome of the 2008 GRS-S data fusion contest,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 11, pp. 3857–3865, 2009.
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, vol.47
, Issue.11
, pp. 3857-3865
-
-
Licciardi, G.1
Pacifici, F.2
Tuia, D.3
Prasad, S.4
West, T.5
Giacco, F.6
Inglada, J.7
Christophe, E.8
Chanussot, J.9
Gamba, P.10
-
45
-
-
0029195475
-
On the exponential value of labeled samples
-
V. Castelli and T. M. Cover, “On the exponential value of labeled samples,” Pattern Recogn. Lett., vol. 16, no. 1, pp. 105–111, 1995.
-
(1995)
Pattern Recogn. Lett.
, vol.16
, Issue.1
, pp. 105-111
-
-
Castelli, V.1
Cover, T.M.2
-
46
-
-
0001662441
-
The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter
-
V. Castelli and T. Cover, “The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter,” IEEE Trans. Inf. Theory, vol. 42, pp. 2101–2117, 1996.
-
(1996)
IEEE Trans. Inf. Theory
, vol.42
, pp. 2101-2117
-
-
Castelli, V.1
Cover, T.2
|