메뉴 건너뛰기




Volumn 4, Issue 1, 2011, Pages 65-74

Urban Image Classification With Semisupervised Multiscale Cluster Kernels

Author keywords

Clustering; image classification; kernel methods; support vector machine (SVM); urban monitoring; very high resolution (VHR)

Indexed keywords

CLUSTERING; HYPER-SPECTRAL IMAGES; KERNEL METHODS; LINEAR COMBINATIONS; MULTI-SPECTRAL; MULTISCALES; SEMI-SUPERVISED; URBAN AREAS; URBAN MONITORING; VERY HIGH RESOLUTION; VERY HIGH RESOLUTION IMAGE;

EID: 79953094686     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2010.2069085     Document Type: Article
Times cited : (64)

References (46)
  • 1
    • 0032157956 scopus 로고    scopus 로고
    • Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)
    • R. O. Green et al., “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ., vol. 65, no. 3, pp. 227–248, 1998.
    • (1998) Remote Sens. Environ. , vol.65 , Issue.3 , pp. 227-248
    • Green, R.O.1
  • 3
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with support vector machines,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778–1790, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 4
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyper-spectral image classification
    • Jun.
    • G. Camps-Valls and L. Bruzzone, “Kernel-based methods for hyper-spectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351–1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 5
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • A. Bazi and F. Melgani, “Toward an optimal SVM classification system for hyperspectral remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3374–3376, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3374-3376
    • Bazi, A.1    Melgani, F.2
  • 6
    • 44049084715 scopus 로고    scopus 로고
    • Kernel-based framework for multi-temporal and multi-source remote sensing data classification and change detection
    • Jun.
    • G. Camps-Valls, L. Gomez-Chova, M. Muñoz Mari, J. Martínez-Ramón, and J. L. Rojo-Alvarez, “Kernel-based framework for multi-temporal and multi-source remote sensing data classification and change detection,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1822–1835, Jun. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.6 , pp. 1822-1835
    • Camps-Valls, G.1    Gomez-Chova, L.2    Muñoz Mari, M.3    Martínez-Ramón, J.4    Rojo-Alvarez, J.L.5
  • 7
    • 41849112041 scopus 로고    scopus 로고
    • Customizing kernel functions for SVM-based hyperspectral image classification
    • Apr.
    • G. Baofeng, S. R. Gunn, R. I. Damper, and J. D. B. Nelson, “Customizing kernel functions for SVM-based hyperspectral image classification,” IEEE Trans. Image Process., vol. 17, no. 4, pp. 622–629, Apr. 2008.
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.4 , pp. 622-629
    • Baofeng, G.1    Gunn, S.R.2    Damper, R.I.3    Nelson, J.D.B.4
  • 8
    • 41849112041 scopus 로고    scopus 로고
    • Customizing kernel functions for SVM-based hyperspectral image classification
    • B. Guo, S. R. Gunn, R. I. Damper, and J. D. B. Nelson, “Customizing kernel functions for SVM-based hyperspectral image classification,” IEEE Trans. Image Process., vol. 17, no. 4, pp. 622–629, 2008.
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.4 , pp. 622-629
    • Guo, B.1    Gunn, S.R.2    Damper, R.I.3    Nelson, J.D.B.4
  • 9
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, “Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804–3814, 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 11
    • 70350655559 scopus 로고    scopus 로고
    • Classification of very high spatial resolution imagery using mathematical morphology and support vector machines
    • D. Tuia, F. Pacifici, M. Kanevski, and W. J. Emery, “Classification of very high spatial resolution imagery using mathematical morphology and support vector machines,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 11, pp. 3866–3879, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.11 , pp. 3866-3879
    • Tuia, D.1    Pacifici, F.2    Kanevski, M.3    Emery, W.J.4
  • 12
    • 34247394279 scopus 로고    scopus 로고
    • Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery
    • X. Huang and L. Zhang, “Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery,” IEEE Geosci. Remote Sens. Lett., vol. 4, no. 2, pp. 260–264, 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.2 , pp. 260-264
    • Huang, X.1    Zhang, L.2
  • 13
    • 70449433268 scopus 로고    scopus 로고
    • A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia city, northern of italy
    • X. Huang and L. Zhang, “A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia city, northern of italy,” Int. J. Remote Sens., vol. 30, no. 12, pp. 3205–3221, 2009.
    • (2009) Int. J. Remote Sens. , vol.30 , Issue.12 , pp. 3205-3221
    • Huang, X.1    Zhang, L.2
  • 15
    • 33745456231 scopus 로고    scopus 로고
    • Dept. Comput. Sci., Univ. Wisconsin-Madison, USA, Tech. Rep. 1530
    • X. Zhu, “Semi-Supervised Learning Literature Survey,” Dept. Comput. Sci., Univ. Wisconsin-Madison, USA, Tech. Rep. 1530, 2008.
    • (2008) Semi-Supervised Learning Literature Survey
    • Zhu, X.1
  • 16
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • Dec.
    • Q. Jackson and D. A. Landgrebe, “An adaptive classifier design for high-dimensional data analysis with a limited training data set,” IEEE Trans. Geosci. Remote Sens., pp. 2664–2679, Dec. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , pp. 2664-2679
    • Jackson, Q.1    Landgrebe, D.A.2
  • 18
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for the semisupervised classification of remote-sensing images
    • L. Bruzzone, M. Chi, and M. Marconcini, “A novel transductive SVM for the semisupervised classification of remote-sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363–3373, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 20
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • G. Camps-Valls, T. Bandos, and D. Zhou, “Semi-supervised graph-based hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 45, pp. 3044–3054, 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 3044-3054
    • Camps-Valls, G.1    Bandos, T.2    Zhou, D.3
  • 22
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A geometric framework for learning from labeled and unlabeled examples,” J. Machine Learning Res., vol. 7, pp. 2399–2434, 2006.
    • (2006) J. Machine Learning Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 24
    • 67349269946 scopus 로고    scopus 로고
    • Multiobjective genetic SVM approach for classification problems with limited training samples
    • N. Ghoggali, F. Melgani, and Y. Bazi, “Multiobjective genetic SVM approach for classification problems with limited training samples,” IEEE Trans. Geosc. Remote Sens., vol. 47, no. 6, pp. 1707–1718, 2009.
    • (2009) IEEE Trans. Geosc. Remote Sens. , vol.47 , Issue.6 , pp. 1707-1718
    • Ghoggali, N.1    Melgani, F.2    Bazi, Y.3
  • 25
    • 65049090023 scopus 로고    scopus 로고
    • A composite semisupervised SVM for classification of hyperspectral images
    • M. Marconcini, G. Camps-Valls, and L. Bruzzone, “A composite semisupervised SVM for classification of hyperspectral images,” IEEE Geosci. Remote Sens. Lett., vol. 6, no. 2, pp. 234–238, 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.2 , pp. 234-238
    • Marconcini, M.1    Camps-Valls, G.2    Bruzzone, L.3
  • 27
    • 67651166635 scopus 로고    scopus 로고
    • A novel context-sensitive semisupervised SVM classifier robust tomislabeled training samples
    • L. Bruzzone and C. Persello, “A novel context-sensitive semisupervised SVM classifier robust tomislabeled training samples,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2142–2154, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.7 , pp. 2142-2154
    • Bruzzone, L.1    Persello, C.2
  • 29
    • 25144481906 scopus 로고    scopus 로고
    • Semi-supervised protein classification using cluster kernels
    • J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff, and W. S. Noble, “Semi-supervised protein classification using cluster kernels,” Bioin-formatics, vol. 21, pp. 3241–3247, 2005.
    • (2005) Bioin-formatics , vol.21 , pp. 3241-3247
    • Weston, J.1    Leslie, C.2    Ie, E.3    Zhou, D.4    Elisseeff, A.5    Noble, W.S.6
  • 32
    • 65049084094 scopus 로고    scopus 로고
    • Semi-supervised remote sensing image classification with cluster kernels
    • D. Tuia and G. Camps-Valls, “Semi-supervised remote sensing image classification with cluster kernels,” IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp. 224–228, 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.1 , pp. 224-228
    • Tuia, D.1    Camps-Valls, G.2
  • 34
    • 0003798635 scopus 로고    scopus 로고
    • Cambridge, U.K.: Cambridge University Press, [Online]. Available: http://www.support-vector.net
    • N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines. Cambridge, U.K.: Cambridge University Press, 2000 [Online]. Available: http://www.support-vector.net
    • (2000) An Introduction to Support Vector Machines
    • Cristianini, N.1    Shawe-Taylor, J.2
  • 35
    • 39049088613 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • May
    • J. Mercer, “Functions of positive and negative type and their connection with the theory of integral equations,” Philosophical Trans. Royal Society of London, vol. CCIX, no. A456, pp. 215–228, May 1905.
    • (1905) Philosophical Trans. Royal Society of London , vol.209 , Issue.A456 , pp. 215-228
    • Mercer, J.1
  • 36
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press
    • A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,” in Advances in Neural Information Processing Systems (NIPS), T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002, vol. 14, pp. 849–856.
    • (2002) Advances in Neural Information Processing Systems (NIPS) , vol.14 , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 37
    • 0035248508 scopus 로고    scopus 로고
    • A new approach for the morphological segmentation of high-resolution satellite images
    • M. Pesaresi and J. A. Benediktsson, “A new approach for the morphological segmentation of high-resolution satellite images,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 309–320, 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.2 , pp. 309-320
    • Pesaresi, M.1    Benediktsson, J.A.2
  • 38
    • 0142009648 scopus 로고    scopus 로고
    • Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
    • J. A. Benediktsson, M. Pesaresi, and K. Arnason, “Classification and feature extraction for remote sensing images from urban areas based on morphological transformations,” IEEE Trans. Geosci. Remote Sens., vol. 41, pp. 1940–1949, 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , pp. 1940-1949
    • Benediktsson, J.A.1    Pesaresi, M.2    Arnason, K.3
  • 40
    • 2142816603 scopus 로고    scopus 로고
    • A new approach to mixed pixel classification of hyperspectral imagery based on extended mor-phological profiles
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, “A new approach to mixed pixel classification of hyperspectral imagery based on extended mor-phological profiles,” Pattern Recogn., vol. 37, no. 6, pp. 1097–1116, 2004.
    • (2004) Pattern Recogn. , vol.37 , Issue.6 , pp. 1097-1116
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 41
    • 59249100334 scopus 로고    scopus 로고
    • Multi-channel morphological profiles for classification of hyperspectral image data using support vector machines
    • J. Plaza, A. Plaza, and C. Barra, “Multi-channel morphological profiles for classification of hyperspectral image data using support vector machines,” Sensors, vol. 9, no. 1, pp. 196–218, 2009.
    • (2009) Sensors , vol.9 , Issue.1 , pp. 196-218
    • Plaza, J.1    Plaza, A.2    Barra, C.3
  • 42
    • 66549094932 scopus 로고    scopus 로고
    • Towards the definition of a flexible hyperspectral processing chain: Preliminary case study using high-resolution urban data
    • Boston, MA
    • J. Nairoukh, G. Trianni, P. Gamba, and F. Dell'Acqua, “Towards the definition of a flexible hyperspectral processing chain: Preliminary case study using high-resolution urban data,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Boston, MA, 2008.
    • (2008) Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS)
    • Nairoukh, J.1    Trianni, G.2    Gamba, P.3    Dell'Acqua, F.4
  • 43
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognition
    • G. F. Hughes, “On the mean accuracy of statistical pattern recognition,” IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55–63, 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 45
    • 0029195475 scopus 로고
    • On the exponential value of labeled samples
    • V. Castelli and T. M. Cover, “On the exponential value of labeled samples,” Pattern Recogn. Lett., vol. 16, no. 1, pp. 105–111, 1995.
    • (1995) Pattern Recogn. Lett. , vol.16 , Issue.1 , pp. 105-111
    • Castelli, V.1    Cover, T.M.2
  • 46
    • 0001662441 scopus 로고    scopus 로고
    • The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter
    • V. Castelli and T. Cover, “The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter,” IEEE Trans. Inf. Theory, vol. 42, pp. 2101–2117, 1996.
    • (1996) IEEE Trans. Inf. Theory , vol.42 , pp. 2101-2117
    • Castelli, V.1    Cover, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.