메뉴 건너뛰기




Volumn 5, Issue 2, 2012, Pages 421-435

A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification

Author keywords

Hyperspectral image classification; spatial spectral integration; spectral unmixing; support vector machines (SVMs); unmixing based feature extraction

Indexed keywords

COMPARATIVE ASSESSMENT; CURSE OF DIMENSIONALITY; FEATURE EXTRACTION TECHNIQUES; GENERALIZATION CAPABILITY; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL; HYPERSPECTRAL IMAGE CLASSIFICATION; MACHINE LEARNING TECHNIQUES; MINIMUM NOISE FRACTION; PROCESSING CHAIN; SPATIAL INFORMATIONS; SPATIAL RESOLUTION; SPECTRAL INFORMATION; SPECTRAL UNMIXING; STATISTICAL TRANSFORMATION; SUB PIXELS; SUPERVISED CLASSIFICATION; UNSUPERVISED CLUSTERING;

EID: 84861725237     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2011.2176721     Document Type: Article
Times cited : (128)

References (37)
  • 2
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan.
    • G. F. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. 14, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , pp. 55-63
    • Hughes, G.F.1
  • 5
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive svm for the semisupervised classification of remote sensing images
    • L. Bruzzone, M. Chi, andM.Marconcini, "A novel transductive SVM for the semisupervised classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, pp. 3363-3373, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 6
    • 0031997059 scopus 로고    scopus 로고
    • Supervised classification in high-dimensional space: Geometrical, statistical, and asymptotical properties of multivariate data
    • PII S1094697798015260
    • L. Jimenez and D. A. Landgrebe, "Supervised classification in high dimensional space: Geometrical, statistical and asymptotical properties of multivariate data," IEEE Trans. Syst., Man, Cybern. B: Cybernetics, vol. 28, pp. 39-54, Feb. 1993. (Pubitemid 128748606)
    • (1998) IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews , vol.28 , Issue.1 , pp. 39-54
    • Jimenez, L.O.1    Landgrebe, D.A.2
  • 7
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • DOI 10.1109/36.975001, PII S0196289201108776
    • Q. Jackson and D. A. Landgrebe, "An adaptive classifier design for high dimensional data analysis with a limited training data set," IEEE Trans. Geosci. Remote. Sens., vol. 39, pp. 2664-2679, Dec. 2001. (Pubitemid 34091845)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.12 , pp. 2664-2679
    • Jackson, Q.1    Landgrebe, D.A.2
  • 9
    • 0023854011 scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • DOI 10.1109/36.3001
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. GRS-26, pp. 65-74, 1988. (Pubitemid 18596008)
    • (1988) IEEE Transactions on Geoscience and Remote Sensing , vol.26 , Issue.1 , pp. 65-74
    • Green Andrew, A.1    Berman Mark2    Switzer Paul3    Craig Maurice, D.4
  • 10
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • P. Comon, "Independent component analysis, a new concept?," Signal Process., vol. 36, no. 3, pp. 287-314, 1994.
    • (1994) Signal Process. , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 11
    • 14644399190 scopus 로고    scopus 로고
    • Analysis of remotely sensed data: The formative decades and the future
    • DOI 10.1109/TGRS.2004.837326
    • J. A. Richards, "Analysis of remotely sensed data: The formative decades and the future," IEEE Trans. Geosci. Remote Sens., vol. 43, pp. 422-432, 2005. (Pubitemid 40320265)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 422-432
    • Richards, J.A.1
  • 12
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, pp. 1351-1362, 2005. (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 14
    • 14644435059 scopus 로고    scopus 로고
    • Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations
    • DOI 10.1109/TGRS.2004.841417
    • A. Plaza, P.Martinez, J. Plaza, and R. Perez, "Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 466-479, 2005. (Pubitemid 40320269)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 466-479
    • Plaza, A.1    Martinez, P.2    Plaza, J.3    Perez, R.4
  • 15
    • 79959742177 scopus 로고    scopus 로고
    • Unmixing prior to supervised classification of remotely sensed hyperspectral images
    • I. Dopido, M. Zortea, A. Villa, A. Plaza, and P. Gamba, "Unmixing prior to supervised classification of remotely sensed hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 8, pp. 760-764, 2011.
    • IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.2011 , pp. 760-764
    • Dopido, I.1    Zortea, M.2    Villa, A.3    Plaza, A.4    Gamba, P.5
  • 16
  • 18
    • 0033721179 scopus 로고    scopus 로고
    • Generalized constrained energy minimization approach to subpixel target detection for multispectral imagery
    • C.-I. Chang, J.-M. Liu, B.-C. Chieu, C.-M. Wang, C. S. Lo, P.-C. Chung, H. Ren, C.-W. Yang, and D.-J. Ma, "Generalized constrained energy minimization approach to subpixel target detection for multispectral imagery," Opt. Eng., vol. 39, pp. 1275-1281, 2000.
    • (2000) Opt. Eng. , vol.39 , pp. 1275-1281
    • Chang, C.-I.1    Liu, J.-M.2    Chieu, B.-C.3    Wang, C.-M.4    Lo, C.S.5    Chung, P.-C.6    Ren, H.7    Yang, C.-W.8    Ma, D.-J.9
  • 19
    • 0002781034 scopus 로고    scopus 로고
    • Leveraging the high dimensionality of aviris data for improved subpixel target unmixing and rejection of false positives: Mixture tuned matched filtering
    • J. Boardman, "Leveraging the high dimensionality of AVIRIS data for improved subpixel target unmixing and rejection of false positives: Mixture tuned matched filtering," in Proc. 5th JPL Geoscience Workshop, 1998, pp. 55-56.
    • (1998) Proc. 5th JPL Geoscience Workshop , pp. 55-56
    • Boardman, J.1
  • 23
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. Heinz and C.-I. Chang, "Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, pp. 529-545, 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 25
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • C.-I. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 27
    • 77951965644 scopus 로고    scopus 로고
    • Unsupervised classification of hyperspectral images by using linear unmixing algorithm
    • B. Luo and J. Chanussot, "Unsupervised classification of hyperspectral images by using linear unmixing algorithm," in Proc. IEEE Int. Conf. Image Processing, 2009, pp. 2877-2880.
    • (2009) Proc. IEEE Int. Conf. Image Processing , pp. 2877-2880
    • Luo, B.1    Chanussot, J.2
  • 28
    • 67651155779 scopus 로고    scopus 로고
    • Integration of soft and hard classifications using extended support vector machines
    • L. Wang and X. Jia, "Integration of soft and hard classifications using extended support vector machines," IEEE Geosci. Remote Sens. Lett., vol. 6, pp. 543-547, 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , pp. 543-547
    • Wang, L.1    Jia, X.2
  • 29
    • 79957439842 scopus 로고    scopus 로고
    • Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution
    • A. Villa, J. Chanussot, J. A. Benediktsson, and C. Jutten, "Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution," IEEE J. Sel. Topics Signal Process., vol. 5, pp. 521-533, 2011.
    • IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.2011 , pp. 521-533
    • Villa, A.1    Chanussot, J.2    Benediktsson, J.A.3    Jutten, C.4
  • 30
    • 80455122749 scopus 로고    scopus 로고
    • Svm-based unmixing-to-classification conversion for hyperspectral abundance quantification
    • F. A. Mianji and Y. Zhang, "SVM-based unmixing-to-classification conversion for hyperspectral abundance quantification," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4318-4327, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4318-4327
    • Mianji, F.A.1    Zhang, Y.2
  • 31
    • 0032612381 scopus 로고    scopus 로고
    • High-order contrasts for independent component analysis
    • J.-F. Cardoso, "High-order contrasts for independent component analysis," Neural Computation, vol. 11, pp. 157-192, 1999.
    • (1999) Neural Computation , vol.11 , pp. 157-192
    • Cardoso, J.-F.1
  • 32
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection
    • J. C. Harsanyi and C.-I. Chang, "Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection," IEEE Trans. Geosci. Remote Sens., vol. 32, pp. 779-785, 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.-I.2
  • 34
    • 67651160364 scopus 로고    scopus 로고
    • Dimensionality reduction of hyperspectral data via spectral feature extraction
    • Jul.
    • B. Mojaradi, H. Abrishami-Moghaddam, M. Zoej, and R. Duin, "Dimensionality reduction of hyperspectral data via spectral feature extraction," IEEE Trans. Geosci. Remote. Sensing, vol. 47, no. 7, pp. 2091-2105, Jul. 2009.
    • (2009) IEEE Trans. Geosci. Remote. Sensing , vol.47 , Issue.7 , pp. 2091-2105
    • Mojaradi, B.1    Abrishami-Moghaddam, H.2    Zoej, M.3    Du, R.4
  • 35
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • G. Foody, "Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy," Photogramm. Eng. Remote Sens., vol. 70, no. 5, pp. 627-633, 2004. (Pubitemid 39081774)
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1
  • 36
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • S. García, A. Fernández, J. Luengo, and F. Herrera, "Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power," Inf. Sci., vol. 180, pp. 2044-2064, 2010.
    • Inf. Sci. , vol.180 , Issue.2010 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 37
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • B. Scholkopf, A. J. Smola, and K.-R. Muller, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Computat., vol. 10, pp. 1299-1319, 1998. (Pubitemid 128463674)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.