-
1
-
-
3242769748
-
Workshop notes on discovery challenge PKDD-99
-
Laboratory of Intelligent Systems, University of Economics, Prague
-
Berka, P. (1999). Workshop notes on discovery challenge PKDD-99. Technical report, Laboratory of Intelligent Systems, University of Economics, Prague.
-
(1999)
Technical Report
-
-
Berka, P.1
-
3
-
-
0003619255
-
Bias, variance, and arcing classifiers
-
Statistics Department, University of California
-
Breiman, L. (1996). Bias, variance, and arcing classifiers. Technical Report, Statistics Department, University of California.
-
(1996)
Technical Report
-
-
Breiman, L.1
-
4
-
-
0043063031
-
The CRISP-DM process model
-
Crisp Consortium
-
Chapman, P., Clinton, J., Khabaza, T., Reinartz, T., & Wirth, R. (1999). The CRISP-DM process model. Technical Report, Crisp Consortium, http://www.crisp-dm.org/.
-
(1999)
Technical Report
-
-
Chapman, P.1
Clinton, J.2
Khabaza, T.3
Reinartz, T.4
Wirth, R.5
-
5
-
-
22844456607
-
The role of Occam's Razor in knowledge discovery
-
Domingos, P. (1997). The role of Occam's Razor in knowledge discovery. Data Mining and Knowledge Discovery, 3, 409-425.
-
(1997)
Data Mining and Knowledge Discovery
, vol.3
, pp. 409-425
-
-
Domingos, P.1
-
7
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29, 103-130.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
9
-
-
21744462998
-
On bias, variance, 0/1 - Loss, and the curse-of-dimensionality
-
Friedman, J. (1997). On bias, variance, 0/1 - loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1, 55-77.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 55-77
-
-
Friedman, J.1
-
10
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4, 1-58.
-
(1992)
Neural Computation
, vol.4
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
13
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
Holte, R. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-91.
-
(1993)
Machine Learning
, vol.11
, pp. 63-91
-
-
Holte, R.1
-
14
-
-
0037403462
-
Variance and bias for general loss functions
-
James, G. M. (2003). Variance and bias for general loss functions. Machine Learning, 51, 115-135.
-
(2003)
Machine Learning
, vol.51
, pp. 115-135
-
-
James, G.M.1
-
15
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R. & John, G., (1997). Wrappers for feature subset selection. Artificial Intelligence, 97, 273-324.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
17
-
-
0013114759
-
Oversearching and layered search in empirical learning
-
Quinlan, J. R., & Cameron-Jones, R. M. (1995). Oversearching and layered search in empirical learning. In IJCAI (pp. 1019-1024).
-
(1995)
IJCAI
, pp. 1019-1024
-
-
Quinlan, J.R.1
Cameron-Jones, R.M.2
-
19
-
-
0003430416
-
CoiL challenge 2000: The insurance company case
-
Leiden Institute of Advanced Computer Science, Universiteit van Leiden
-
van der Putten, P., & van Someren, M. (2000). CoiL challenge 2000: The insurance company case. Technical Report 2000-09, Leiden Institute of Advanced Computer Science, Universiteit van Leiden. http://www.liacs.nl/~putten/ library/cc2000.
-
(2000)
Technical Report
, vol.2000
, Issue.9
-
-
Van Der Putten, P.1
Van Someren, M.2
-
21
-
-
0004000055
-
No free lunch theorems for search
-
The Santa Fe Institute
-
Wolpert, D. H., & Macready, W. G. (1995). No free lunch theorems for search. Technical Report SFI-TR-95-02-010, The Santa Fe Institute.
-
(1995)
Technical Report
, vol.SFI-TR-95-02-010
-
-
Wolpert, D.H.1
Macready, W.G.2
|