메뉴 건너뛰기




Volumn , Issue , 2011, Pages 3570-3573

Explicit signal to noise ratio in reproducing kernel Hilbert spaces

Author keywords

feature extraction; Kernel methods; kernel minimum noise fraction; kernel principal component analysis; signal to noise ratio

Indexed keywords

HYPERSPECTRAL IMAGE CLASSIFICATION; KERNEL METHODS; KERNEL PRINCIPAL COMPONENT ANALYSIS; MINIMUM NOISE FRACTION; NOISE VARIANCE; NONLINEAR FEATURE EXTRACTION METHOD; NONLINEAR RELATIONS; REMOTE SENSING DATA; REPRODUCING KERNEL HILBERT SPACES; SIGNAL FEATURES; SIGNAL TO NOISE; SIGNAL VARIANCE;

EID: 80955159602     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IGARSS.2011.6049993     Document Type: Conference Paper
Times cited : (22)

References (5)
  • 1
    • 0023854011 scopus 로고    scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Transactions on Geoscience and Remote Sensing, vol. 26, no. 1, pp. 65-74, 1998.
    • (1998) IEEE Transactions on Geoscience and Remote Sensing , vol.26 , Issue.1 , pp. 65-74
    • Green, A.A.1    Berman, M.2    Switzer, P.3    Craig, M.D.4
  • 3
    • 79951820684 scopus 로고    scopus 로고
    • Kernel maximum autocorrelation factor and minimum noise fraction transformations
    • Mar.
    • A. A. Nielsen, "Kernel maximum autocorrelation factor and minimum noise fraction transformations," IEEE Trans. Image Processing, vol. 20, no. 3, pp. 612-624, Mar. 2011.
    • (2011) IEEE Trans. Image Processing , vol.20 , Issue.3 , pp. 612-624
    • Nielsen, A.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.