메뉴 건너뛰기




Volumn 4, Issue 3, 2014, Pages 234-267

Support vector machines in engineering: An overview

Author keywords

[No Author keywords available]

Indexed keywords

ARRAY PROCESSING; BEAM FORMING NETWORKS; DATA HANDLING; FUNCTIONAL NEUROIMAGING; MAGNETIC RESONANCE IMAGING; REMOTE SENSING; WIND;

EID: 84899529040     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.1125     Document Type: Review
Times cited : (183)

References (194)
  • 1
    • 84873148398 scopus 로고    scopus 로고
    • An overview of the use of neural networks for data mining tasks
    • Stahl F, Jordanov I. An overview of the use of neural networks for data mining tasks. WIREs: Data Mining Knowl Discov 2012, 2:193-208.
    • (2012) WIREs: Data Mining Knowl Discov , vol.2 , pp. 193-208
    • Stahl, F.1    Jordanov, I.2
  • 3
    • 84886738635 scopus 로고    scopus 로고
    • Evolutionary computation for feature selection in classification problems
    • de la Iglesia B. Evolutionary computation for feature selection in classification problems. WIREs: Data Mining Knowl Discov 2013, 3:381-407.
    • (2013) WIREs: Data Mining Knowl Discov , vol.3 , pp. 381-407
    • de la Iglesia, B.1
  • 4
    • 0033280561 scopus 로고    scopus 로고
    • A survey of fuzzy clustering algorithms for pattern recognition I
    • Baraldi A, Blonda P. A survey of fuzzy clustering algorithms for pattern recognition I. IEEE Trans Syst Man Cybern B Cybern 1999, 29:778-785.
    • (1999) IEEE Trans Syst Man Cybern B Cybern , vol.29 , pp. 778-785
    • Baraldi, A.1    Blonda, P.2
  • 5
    • 0033281101 scopus 로고    scopus 로고
    • A survey of fuzzy clustering algorithms for pattern recognition II
    • Baraldi A, Blonda P. A survey of fuzzy clustering algorithms for pattern recognition II. IEEE Trans Syst Man Cybern B Cybern 1999, 29:786-801.
    • (1999) IEEE Trans Syst Man Cybern B Cybern , vol.29 , pp. 786-801
    • Baraldi, A.1    Blonda, P.2
  • 6
    • 84856275943 scopus 로고    scopus 로고
    • Classification and regression trees
    • Loh WY. Classification and regression trees. WIREs: Data Mining Knowl Discov 2011, 1:14-23.
    • (2011) WIREs: Data Mining Knowl Discov , vol.1 , pp. 14-23
    • Loh, W.Y.1
  • 8
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X. Evolving artificial neural networks. Proc IEEE 1999, 87:1423-1447.
    • (1999) Proc IEEE , vol.87 , pp. 1423-1447
    • Yao, X.1
  • 10
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat Comput 2004, 14:199-222.
    • (2004) Stat Comput , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 15
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Gönen M, Alpaydn E. Multiple kernel learning algorithms. J Mach Learn Res 2011, 12:2211-2268.
    • (2011) J Mach Learn Res , vol.12 , pp. 2211-2268
    • Gönen, M.1    Alpaydn, E.2
  • 17
    • 31844440904 scopus 로고    scopus 로고
    • Beyond the point cloud: from transductive to semi-supervised learning
    • ICML'05 Proceedings of the 22nd International Conference on Machine Learning, New York, NY
    • Sindhwani V, Niyogi P, Belkin M. Beyond the point cloud: from transductive to semi-supervised learning. In: ICML'05 Proceedings of the 22nd International Conference on Machine Learning, New York, NY, 2005, 824-831.
    • (2005) , pp. 824-831
    • Sindhwani, V.1    Niyogi, P.2    Belkin, M.3
  • 18
    • 85032751590 scopus 로고    scopus 로고
    • Kernel multivariate analysis framework for supervised subspace learning: a tutorial on linear and kernel multivariate methods
    • Arenas-Garcia J, Petersen K, Camps-Valls G, Hansen LK. Kernel multivariate analysis framework for supervised subspace learning: a tutorial on linear and kernel multivariate methods. IEEE Signal Process Mag 2013, 30:16-29.
    • (2013) IEEE Signal Process Mag , vol.30 , pp. 16-29
    • Arenas-Garcia, J.1    Petersen, K.2    Camps-Valls, G.3    Hansen, L.K.4
  • 20
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman MA, Braverman EM, Rozoner L. Theoretical foundations of the potential function method in pattern recognition learning. Autom remote Control 1964, 25:821-837.
    • (1964) Autom remote Control , vol.25 , pp. 821-837
    • Aizerman, M.A.1    Braverman, E.M.2    Rozoner, L.3
  • 22
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • Tax D, Duin RP. Support vector domain description. Pattern Recogn Lett 1999, 20:1191-1199.
    • (1999) Pattern Recogn Lett , vol.20 , pp. 1191-1199
    • Tax, D.1    Duin, R.P.2
  • 23
    • 18844443432 scopus 로고    scopus 로고
    • Support vector method for novelty detection
    • Advances in Neural Information Processing Systems 12, Denver, CO
    • Schölkopf B, Williamson RC, Smola A, Shawe-Taylor J. Support vector method for novelty detection. In: Advances in Neural Information Processing Systems 12, Denver, CO, 1999.
    • (1999)
    • Schölkopf, B.1    Williamson, R.C.2    Smola, A.3    Shawe-Taylor, J.4
  • 24
    • 33750043620 scopus 로고    scopus 로고
    • Camps-Valls G, Rojo-Álvarez JL, Martínez-Ramón M, eds. Hershey, PA: Idea Group Inc.
    • Camps-Valls G, Rojo-Álvarez JL, Martínez-Ramón M, eds. Kernel Methods in Bioengineering, Signal, and Image Processing. Hershey, PA: Idea Group Inc.; 2007.
    • (2007) Kernel Methods in Bioengineering, Signal, and Image Processing
  • 29
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • Friedrichs F, Igel C. Evolutionary tuning of multiple SVM parameters. Neurocomputing 2005, 64:107-117.
    • (2005) Neurocomputing , vol.64 , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 30
    • 84879531800 scopus 로고    scopus 로고
    • Revisiting evolutionary algorithms in feature selection and nonfuzzy/fuzzy rule based classification
    • Dehuri S, Ghosh A. Revisiting evolutionary algorithms in feature selection and nonfuzzy/fuzzy rule based classification. WIREs: Data Mining Knowl Discov 2013, 3:83-108.
    • (2013) WIREs: Data Mining Knowl Discov , vol.3 , pp. 83-108
    • Dehuri, S.1    Ghosh, A.2
  • 31
    • 84874656675 scopus 로고    scopus 로고
    • Kernel factory: an ensemble of kernel machines
    • Ballings M, Van den Poel D. Kernel factory: an ensemble of kernel machines. Expert Syst Appl 2013, 40:2904-2913.
    • (2013) Expert Syst Appl , vol.40 , pp. 2904-2913
    • Ballings, M.1    Van den Poel, D.2
  • 32
    • 84925605946 scopus 로고    scopus 로고
    • The entire regularization path for the support vector machine
    • Hastie T, Rosset S, Tibshirani R, Zhu J. The entire regularization path for the support vector machine. J Mach Learn Res 2004, 5:1391-1415.
    • (2004) J Mach Learn Res , vol.5 , pp. 1391-1415
    • Hastie, T.1    Rosset, S.2    Tibshirani, R.3    Zhu, J.4
  • 33
    • 56549085451 scopus 로고    scopus 로고
    • Evolutionary tuning of SVM parameter values in multiclass problems
    • Lorena AC, de Carvalho A. Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing 2008, 71:3326-3334.
    • (2008) Neurocomputing , vol.71 , pp. 3326-3334
    • Lorena, A.C.1    de Carvalho, A.2
  • 34
    • 42549090647 scopus 로고    scopus 로고
    • Quantum-inspired evolutionary tuning of SVM parameters
    • Luo Z, Wang P, Li Y, Zhang W, Tang W, Xiang M. Quantum-inspired evolutionary tuning of SVM parameters. Prog Nat Sci 2008, 18:475-480.
    • (2008) Prog Nat Sci , vol.18 , pp. 475-480
    • Luo, Z.1    Wang, P.2    Li, Y.3    Zhang, W.4    Tang, W.5    Xiang, M.6
  • 35
    • 77952883811 scopus 로고    scopus 로고
    • Evolutionary strategies for hyperparameters of support vector machines based on multi-scale radial basis function kernels
    • Phienthrakul T, Kijsirikul B. Evolutionary strategies for hyperparameters of support vector machines based on multi-scale radial basis function kernels. Soft Comput 2010, 14:681-699.
    • (2010) Soft Comput , vol.14 , pp. 681-699
    • Phienthrakul, T.1    Kijsirikul, B.2
  • 36
    • 77952542640 scopus 로고    scopus 로고
    • Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm
    • Li S, Tan M. Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm. Neurocomputing 2010, 73:2089-2096.
    • (2010) Neurocomputing , vol.73 , pp. 2089-2096
    • Li, S.1    Tan, M.2
  • 37
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn 2002, 46:389-422.
    • (2002) Mach Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 39
    • 56349116904 scopus 로고    scopus 로고
    • Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM
    • Avci E. Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM. Expert Syst Appl 2009, 36:1391-1402.
    • (2009) Expert Syst Appl , vol.36 , pp. 1391-1402
    • Avci, E.1
  • 40
    • 84878154666 scopus 로고    scopus 로고
    • Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients
    • Vieira SM, Mendonça LF, Farinha GJ, Sousa JM. Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients. Appl Soft Comput 2013, 13:3494-3504.
    • (2013) Appl Soft Comput , vol.13 , pp. 3494-3504
    • Vieira, S.M.1    Mendonça, L.F.2    Farinha, G.J.3    Sousa, J.M.4
  • 41
    • 84862814363 scopus 로고    scopus 로고
    • An ensemble kernel classifier with immune clonal selection algorithm for automatic discriminant of primary open-angle glaucoma
    • Cheng L, Ding Y, Hao K, Hu Y. An ensemble kernel classifier with immune clonal selection algorithm for automatic discriminant of primary open-angle glaucoma. Neurocomputing 2012, 83:1-11.
    • (2012) Neurocomputing , vol.83 , pp. 1-11
    • Cheng, L.1    Ding, Y.2    Hao, K.3    Hu, Y.4
  • 42
    • 68649126782 scopus 로고    scopus 로고
    • Evolutionary optimization of kernel weights improves protein complex comembership prediction
    • Hulsman M, Reinders MJ, de Ridder D. Evolutionary optimization of kernel weights improves protein complex comembership prediction. IEEE/ACM Trans Comput Biol Bioinform 2009, 6:427-437.
    • (2009) IEEE/ACM Trans Comput Biol Bioinform , vol.6 , pp. 427-437
    • Hulsman, M.1    Reinders, M.J.2    de Ridder, D.3
  • 43
    • 84862152671 scopus 로고    scopus 로고
    • Improving classification performance of support vector machine by genetically optimising kernel shape and hyper-parameters
    • Diosan L, Rogozan A, Pecuchet JP. Improving classification performance of support vector machine by genetically optimising kernel shape and hyper-parameters. Appl Intell 2012, 36:280-294.
    • (2012) Appl Intell , vol.36 , pp. 280-294
    • Diosan, L.1    Rogozan, A.2    Pecuchet, J.P.3
  • 44
    • 84874658814 scopus 로고    scopus 로고
    • Applications of evolutionary SVM to prediction of membrane α-helices
    • Kazemian HB, White K, Palmer-Brown D. Applications of evolutionary SVM to prediction of membrane α-helices. Expert Syst Appl 2013, 40:3412-3420.
    • (2013) Expert Syst Appl , vol.40 , pp. 3412-3420
    • Kazemian, H.B.1    White, K.2    Palmer-Brown, D.3
  • 45
    • 84875921509 scopus 로고    scopus 로고
    • Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders
    • Subasi A. Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput Biol Med 2013, 43:576-586.
    • (2013) Comput Biol Med , vol.43 , pp. 576-586
    • Subasi, A.1
  • 46
    • 84867404131 scopus 로고    scopus 로고
    • Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA)
    • Sartakhti JS, Zangooei MH, Mozafari K. Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA). Comput Methods Programs Biomed 2012, 108:570-579.
    • (2012) Comput Methods Programs Biomed , vol.108 , pp. 570-579
    • Sartakhti, J.S.1    Zangooei, M.H.2    Mozafari, K.3
  • 47
    • 79952443536 scopus 로고    scopus 로고
    • Predicting high-tech equipment fabrication cost with a novel evolutionary SVM inference model
    • Chou JS, Cheng MY, Wu YW, Tai Y. Predicting high-tech equipment fabrication cost with a novel evolutionary SVM inference model. Expert Syst Appl 2011, 38:8571-8579.
    • (2011) Expert Syst Appl , vol.38 , pp. 8571-8579
    • Chou, J.S.1    Cheng, M.Y.2    Wu, Y.W.3    Tai, Y.4
  • 48
    • 84896505268 scopus 로고    scopus 로고
    • Optimum multi-fault classification of gears with integration of evolutionary and SVM algorithms
    • Bordoloi DJ, Tiwari R. Optimum multi-fault classification of gears with integration of evolutionary and SVM algorithms. Mech Mach Theory 2014, 73:49-60.
    • (2014) Mech Mach Theory , vol.73 , pp. 49-60
    • Bordoloi, D.J.1    Tiwari, R.2
  • 49
    • 82255179257 scopus 로고    scopus 로고
    • Seismic assessment of school buildings in Taiwan using the evolutionary support vector machine inference system
    • Chen CS, Cheng MY, Wu YW. Seismic assessment of school buildings in Taiwan using the evolutionary support vector machine inference system. Expert Syst Appl 2012, 39:4102-4110.
    • (2012) Expert Syst Appl , vol.39 , pp. 4102-4110
    • Chen, C.S.1    Cheng, M.Y.2    Wu, Y.W.3
  • 50
    • 84899581938 scopus 로고    scopus 로고
    • Fatigue life prediction of ductile iron based on DE-SVM algorithm
    • Yiqun M, Xiaoping W, Lun A. Fatigue life prediction of ductile iron based on DE-SVM algorithm. Phys Procedia 2012, 33:1309-1315.
    • (2012) Phys Procedia , vol.33 , pp. 1309-1315
    • Yiqun, M.1    Xiaoping, W.2    Lun, A.3
  • 51
    • 84891644910 scopus 로고    scopus 로고
    • Leak location of pipelines based on transient model and PSO-SVM
    • Ni L, Jiang J, Pan Y. Leak location of pipelines based on transient model and PSO-SVM. J Loss Prev Process Ind 2013, 26:1085-1093.
    • (2013) J Loss Prev Process Ind , vol.26 , pp. 1085-1093
    • Ni, L.1    Jiang, J.2    Pan, Y.3
  • 52
    • 80255124873 scopus 로고    scopus 로고
    • Leak detection of pipeline: an integrated approach of rough set theory and artificial bee colony trained SVM
    • Mandal SK, Chan FT, Tiwari MK. Leak detection of pipeline: an integrated approach of rough set theory and artificial bee colony trained SVM. Expert Syst Appl 2012, 39:3071-3080.
    • (2012) Expert Syst Appl , vol.39 , pp. 3071-3080
    • Mandal, S.K.1    Chan, F.T.2    Tiwari, M.K.3
  • 53
    • 78651361052 scopus 로고    scopus 로고
    • Evolutionary algorithm based optimization for power quality disturbances classification using support vector machines
    • Mohanty MN, Kumar A, Routray A, Kabisatpathy P. Evolutionary algorithm based optimization for power quality disturbances classification using support vector machines. Int J Control Autom Syst 2010, 8:1306-1312.
    • (2010) Int J Control Autom Syst , vol.8 , pp. 1306-1312
    • Mohanty, M.N.1    Kumar, A.2    Routray, A.3    Kabisatpathy, P.4
  • 54
    • 84899547626 scopus 로고    scopus 로고
    • Evolutionary support vector machines for transient stability monitoring
    • Selvi BD, Kamaraj N. Evolutionary support vector machines for transient stability monitoring. J Inst Eng (India) Ser B 2012, 93:43-49.
    • (2012) J Inst Eng (India) Ser B , vol.93 , pp. 43-49
    • Selvi, B.D.1    Kamaraj, N.2
  • 55
    • 70349464481 scopus 로고    scopus 로고
    • Power load forecasts based on hybrid PSO with Gaussian and adaptive mutation and Wv-SVM
    • Wu Q. Power load forecasts based on hybrid PSO with Gaussian and adaptive mutation and Wv-SVM. Expert Syst Appl 2010, 37:194-201.
    • (2010) Expert Syst Appl , vol.37 , pp. 194-201
    • Wu, Q.1
  • 56
    • 59749093654 scopus 로고    scopus 로고
    • Evolving least squares support vector machines for stock market trend mining
    • Yu L, Chen H, Wang S, Lai KK. Evolving least squares support vector machines for stock market trend mining. IEEE Trans Evol Comput 2009, 13:87-102.
    • (2009) IEEE Trans Evol Comput , vol.13 , pp. 87-102
    • Yu, L.1    Chen, H.2    Wang, S.3    Lai, K.K.4
  • 57
    • 84863723081 scopus 로고    scopus 로고
    • Asset portfolio optimization using support vector machines and real-coded genetic algorithm
    • Gupta P, Mehlawat K, Mittal G. Asset portfolio optimization using support vector machines and real-coded genetic algorithm. J Glob Optim 2012, 53:297-315.
    • (2012) J Glob Optim , vol.53 , pp. 297-315
    • Gupta, P.1    Mehlawat, K.2    Mittal, G.3
  • 58
    • 84889089512 scopus 로고    scopus 로고
    • Real estate price forecasting based on SVM optimized by PSO
    • Wang X, Wen J, Zhang Y, Wang Y. Real estate price forecasting based on SVM optimized by PSO. Optik - Int J Light Elect Opt 2014, 125:1439-1443.
    • (2014) Optik - Int J Light Elect Opt , vol.125 , pp. 1439-1443
    • Wang, X.1    Wen, J.2    Zhang, Y.3    Wang, Y.4
  • 59
    • 84884501774 scopus 로고    scopus 로고
    • Hybrid intelligence approach based on LS-SVM and differential evolution for construction cost index estimation: a Taiwan case study
    • Cheng MY, Hoang ND, Wu YW. Hybrid intelligence approach based on LS-SVM and differential evolution for construction cost index estimation: a Taiwan case study. Autom Constr 2013, 35:306-313.
    • (2013) Autom Constr , vol.35 , pp. 306-313
    • Cheng, M.Y.1    Hoang, N.D.2    Wu, Y.W.3
  • 60
    • 84884593106 scopus 로고    scopus 로고
    • Facial expression recognition and its application based on curvelet transform and PSO-SVM
    • Tang M, Chen F. Facial expression recognition and its application based on curvelet transform and PSO-SVM. Optik - Int J Light Elect Opt 2013, 124:5401-5406.
    • (2013) Optik - Int J Light Elect Opt , vol.124 , pp. 5401-5406
    • Tang, M.1    Chen, F.2
  • 61
    • 84868623982 scopus 로고    scopus 로고
    • Streamflow forecasting by SVM with quantum behaved particle swarm optimization
    • Ch S, Anand N, Panigrahi BK, Mathur S. Streamflow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing 2013, 101:18-23.
    • (2013) Neurocomputing , vol.101 , pp. 18-23
    • Ch, S.1    Anand, N.2    Panigrahi, B.K.3    Mathur, S.4
  • 62
    • 71749101288 scopus 로고    scopus 로고
    • Safety evaluation of human accidents in coal mine based on ant colony optimization and SVM
    • Zhu J, Xiao-ping M. Safety evaluation of human accidents in coal mine based on ant colony optimization and SVM. Procedia: Earth Planet Sci 2009, 1:1418-1424.
    • (2009) Procedia: Earth Planet Sci , vol.1 , pp. 1418-1424
    • Zhu, J.1    Xiao-ping, M.2
  • 63
    • 0003611103 scopus 로고
    • Hall P, ed. Englewood Cliffs, NJ: Prentice Hall
    • Scharf L. In: Hall P, ed. Statistical Signal Processing. Englewood Cliffs, NJ: Prentice Hall; 1990.
    • (1990) Statistical Signal Processing
    • Scharf, L.1
  • 66
    • 0037972137 scopus 로고    scopus 로고
    • Shape statistics in kernel space for variational image segmentation
    • Cremers D. Shape statistics in kernel space for variational image segmentation. Pattern Recogn 2003, 36:1929-1943.
    • (2003) Pattern Recogn , vol.36 , pp. 1929-1943
    • Cremers, D.1
  • 68
  • 69
    • 0035329687 scopus 로고    scopus 로고
    • Support vector machine multiuser receiver for DS-CDMA signals in multipath channels
    • Chen S, Samingan AK, Hanzo L. Support vector machine multiuser receiver for DS-CDMA signals in multipath channels. IEEE Trans Neural Netw 2001, 12:604-611.
    • (2001) IEEE Trans Neural Netw , vol.12 , pp. 604-611
    • Chen, S.1    Samingan, A.K.2    Hanzo, L.3
  • 70
    • 0035176414 scopus 로고    scopus 로고
    • Adaptive mutiuser receiver using a support vector machine technique
    • Proceedings of the IEEE Semianual Vehicular Technology Conference, VTC 2001 Spring, CD-ROM, Rhode, Greece, May
    • Chen S, Sanmigan AK, Hanzo L. Adaptive mutiuser receiver using a support vector machine technique. In: Proceedings of the IEEE Semianual Vehicular Technology Conference, VTC 2001 Spring, CD-ROM, Rhode, Greece, May 2001, 604-608.
    • (2001) , pp. 604-608
    • Chen, S.1    Sanmigan, A.K.2    Hanzo, L.3
  • 71
    • 0037461890 scopus 로고    scopus 로고
    • Robust channel estimation in MIMO-OFDM systems
    • Bai W, He C, Jiang LG, Li XX. Robust channel estimation in MIMO-OFDM systems. IEE Electron Lett 2003, 39:242-244.
    • (2003) IEE Electron Lett , vol.39 , pp. 242-244
    • Bai, W.1    He, C.2    Jiang, L.G.3    Li, X.X.4
  • 73
    • 28244452603 scopus 로고    scopus 로고
    • An IRWLS procedure for robust beamforming with sidelobe control
    • Sensor Array and Multichannel Signal Processing Workshop Proceedings, Hoboken, NJ
    • Gaudes CC, Va J, Santamara I. An IRWLS procedure for robust beamforming with sidelobe control. In: Sensor Array and Multichannel Signal Processing Workshop Proceedings, Hoboken, NJ, 2004, 342-346.
    • (2004) , pp. 342-346
    • Gaudes, C.C.1    Va, J.2    Santamara, I.3
  • 75
    • 31144479437 scopus 로고    scopus 로고
    • Support vector regression for the design of array antennas
    • Ayestaran RG, Las-Heras F. Support vector regression for the design of array antennas. IEEE Antenn Wirel Propag Lett 2005, 4:414-416.
    • (2005) IEEE Antenn Wirel Propag Lett , vol.4 , pp. 414-416
    • Ayestaran, R.G.1    Las-Heras, F.2
  • 78
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach. Neural Comput 2000, 12:2385-2404.
    • (2000) Neural Comput , vol.12 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 81
    • 0011812771 scopus 로고    scopus 로고
    • Kernel independent component analysis
    • Bach FR, Jordan MI. Kernel independent component analysis. J Mach Learn Res 2002, 3:1-48.
    • (2002) J Mach Learn Res , vol.3 , pp. 1-48
    • Bach, F.R.1    Jordan, M.I.2
  • 82
    • 84899573556 scopus 로고    scopus 로고
    • The kernel mutual information, Max Planck Institute for Biological Cybernetics, Technical Report
    • Gretton A, Herbrich R, Smola A. The kernel mutual information, Max Planck Institute for Biological Cybernetics, Technical Report, 2003.
    • (2003)
    • Gretton, A.1    Herbrich, R.2    Smola, A.3
  • 83
    • 14344253870 scopus 로고    scopus 로고
    • Max-margin Markov networks
    • Whistler, BC: MIT Press
    • Taskar B, Guestrin C, Koller D. Max-margin Markov networks, In:. In: NIPS. Whistler, BC: MIT Press; 2003.
    • (2003) NIPS
    • Taskar, B.1    Guestrin, C.2    Koller, D.3
  • 85
    • 0035555821 scopus 로고    scopus 로고
    • Support vector regression for black-box system identification
    • 11th IEEE Workshop on Statistical Signal Processing. IEEE Signal Processing Society, Piscataway, NY
    • Gretton A, Doucet A, Herbrich R, Rayner P, Schölkopf B. Support vector regression for black-box system identification. In: 11th IEEE Workshop on Statistical Signal Processing. IEEE Signal Processing Society, Piscataway, NY, 341-344, 2001.
    • (2001) , pp. 341-344
    • Gretton, A.1    Doucet, A.2    Herbrich, R.3    Rayner, P.4    Schölkopf, B.5
  • 86
    • 0005906715 scopus 로고    scopus 로고
    • Support vector machines: a nonlinear modelling and control perspective
    • Suykens JAK. Support vector machines: a nonlinear modelling and control perspective. Eur J Control 2001, 7:311-327.
    • (2001) Eur J Control , vol.7 , pp. 311-327
    • Suykens, J.A.K.1
  • 87
    • 0035181296 scopus 로고    scopus 로고
    • Optimal control by least squares support vector machines
    • Suykens JAK, Vandewalle J, Moor BD. Optimal control by least squares support vector machines. Neural Netw 2001, 14:23-35.
    • (2001) Neural Netw , vol.14 , pp. 23-35
    • Suykens, J.A.K.1    Vandewalle, J.2    Moor, B.D.3
  • 88
    • 24944559785 scopus 로고    scopus 로고
    • Studies in Fuzziness and Soft Computing. Berlin/Heidelberg: Springer
    • Mattera D. Support Vector Machines for Signal Processing. Studies in Fuzziness and Soft Computing. Berlin/Heidelberg: Springer; 2005, 321-342.
    • (2005) Support Vector Machines for Signal Processing , pp. 321-342
    • Mattera, D.1
  • 89
    • 27644524925 scopus 로고    scopus 로고
    • Subspace identification of Hammerstein systems using least squares support vector machines
    • Goethals I, Pelckmans K, Suykens JAK, Moor BD. Subspace identification of Hammerstein systems using least squares support vector machines. IEEE Trans Autom Control 2005, 50:1509-1519.
    • (2005) IEEE Trans Autom Control , vol.50 , pp. 1509-1519
    • Goethals, I.1    Pelckmans, K.2    Suykens, J.A.K.3    Moor, B.D.4
  • 98
    • 45749121535 scopus 로고    scopus 로고
    • Sparse deconvolution using support vector machines. EURASIP JASP 2008. Special Issue Emerging Machine Learning Techniques in Signal Processing
    • Rojo-Álvarez JL, Martínez-Ramón M, Muñoz-Marí J, Camps-Valls G, Cruz C and Figueiras-Vidal AR. Sparse deconvolution using support vector machines. EURASIP JASP 2008. Special Issue Emerging Machine Learning Techniques in Signal Processing, 2008.
    • (2008)
    • Rojo-Álvarez, J.L.1    Martínez-Ramón, M.2    Muñoz-Marí, J.3    Camps-Valls, G.4    Cruz, C.5    Figueiras-Vidal, A.R.6
  • 102
    • 85032752202 scopus 로고    scopus 로고
    • Kernel-based learning for statistical signal processing in cognitive radio networks: theoretical foundations, example applications, and future directions
    • Ding G, Wu Q, Yao Y-D, Wang J, Chen Y. Kernel-based learning for statistical signal processing in cognitive radio networks: theoretical foundations, example applications, and future directions. IEEE Signal Process Mag 2013, 30:126-136.
    • (2013) IEEE Signal Process Mag , vol.30 , pp. 126-136
    • Ding, G.1    Wu, Q.2    Yao, Y.-D.3    Wang, J.4    Chen, Y.5
  • 104
    • 79951512139 scopus 로고    scopus 로고
    • The wind energy (r)evolution: a short review of a long history
    • Kaldellis JK, Zafirakis D. The wind energy (r)evolution: a short review of a long history. Renew Energy 2011, 36:1887-1901.
    • (2011) Renew Energy , vol.36 , pp. 1887-1901
    • Kaldellis, J.K.1    Zafirakis, D.2
  • 106
    • 84899582867 scopus 로고    scopus 로고
    • GWEC Global Wind Statistics. Global Wind Energy Commission, Available at (Accessed April 4, 2014)
    • GWEC Global Wind Statistics. Global Wind Energy Commission, 2011. Available at: http://gwec.net/wp-content/uploads/2012/06/GWEC_Global_Wind_Statistics_2011.pdf. (Accessed April 4, 2014).
    • (2011)
  • 108
    • 33244483663 scopus 로고    scopus 로고
    • Short-term wind forecasting using off-site observations
    • Larson KA, Westrick K. Short-term wind forecasting using off-site observations. Wind Energy 2006, 9:55-62.
    • (2006) Wind Energy , vol.9 , pp. 55-62
    • Larson, K.A.1    Westrick, K.2
  • 113
    • 77956017876 scopus 로고    scopus 로고
    • Wind speed prediction using support vector regression
    • Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications, Taichung, Taiwan
    • Zhao P, Xia J, Dai Y, He J. Wind speed prediction using support vector regression. In: Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications, Taichung, Taiwan, 2010, 882-886.
    • (2010) , pp. 882-886
    • Zhao, P.1    Xia, J.2    Dai, Y.3    He, J.4
  • 114
    • 84880869790 scopus 로고    scopus 로고
    • Use of support vector machine for wind speed prediction
    • Proceedings of the International Conference on Power and Energy Systems, Crete, Greece
    • SangitaB P, Dshmukh SR. Use of support vector machine for wind speed prediction. In: Proceedings of the International Conference on Power and Energy Systems, Crete, Greece, 2011, 1-8.
    • (2011) , pp. 1-8
    • SangitaB, P.1    Dshmukh, S.R.2
  • 115
    • 78650944534 scopus 로고    scopus 로고
    • Fine tuning support vector machines for short-term wind speed forecasting
    • Zhou J, Shi J, Li G. Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers Manage 2011, 52:1990-1998.
    • (2011) Energy Convers Manage , vol.52 , pp. 1990-1998
    • Zhou, J.1    Shi, J.2    Li, G.3
  • 116
    • 84866778203 scopus 로고    scopus 로고
    • Short-term wind speed forecast of wind farm based on V-system and LS-SVM
    • Proceedings of the 7th International Power Electronics and Motion Control Conference, Harbin, China
    • Xiao-lan W, Qian-cheng C.Short-term wind speed forecast of wind farm based on V-system and LS-SVM. In: Proceedings of the 7th International Power Electronics and Motion Control Conference, Harbin, China, 2012, 2113-2117.
    • (2012) , pp. 2113-2117
    • Xiao-lan, W.1    Qian-cheng, C.2
  • 117
    • 84877294437 scopus 로고    scopus 로고
    • Short-term wind power prediction using least-square support vector machines
    • Proceedings of the IEEE Power Engineering Society Conference and Exposition in Africa, Johannesburg, South Africa
    • Mathaba T, Xia X, Zhang J. Short-term wind power prediction using least-square support vector machines. In: Proceedings of the IEEE Power Engineering Society Conference and Exposition in Africa, Johannesburg, South Africa, 2012, 1-6.
    • (2012) , pp. 1-6
    • Mathaba, T.1    Xia, X.2    Zhang, J.3
  • 118
    • 77949524633 scopus 로고    scopus 로고
    • One-month ahead prediction of wind speed and output power based on EMD and LS-SVM
    • Xiaola W, Hui L. One-month ahead prediction of wind speed and output power based on EMD and LS-SVM. Proc Int Conf Energy Environ Technol 2009, 3:439-442.
    • (2009) Proc Int Conf Energy Environ Technol , vol.3 , pp. 439-442
    • Xiaola, W.1    Hui, L.2
  • 119
    • 84859094795 scopus 로고    scopus 로고
    • Short-term wind power prediction using a wavelet support vector machine
    • Zeng J, Qiao W. Short-term wind power prediction using a wavelet support vector machine. IEEE Trans Sustain Energy 2012, 3:255-264.
    • (2012) IEEE Trans Sustain Energy , vol.3 , pp. 255-264
    • Zeng, J.1    Qiao, W.2
  • 120
    • 84884126948 scopus 로고    scopus 로고
    • Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
    • Liu D, Niu D, Wang H, Fan L. Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew Energy 2014, 62:592-597.
    • (2014) Renew Energy , vol.62 , pp. 592-597
    • Liu, D.1    Niu, D.2    Wang, H.3    Fan, L.4
  • 121
    • 77958138916 scopus 로고    scopus 로고
    • The research and application of wavelet-support vector machine on short-term wind power prediction
    • Proceedings of the 8th World Congress on Intelligent Control and Automation, Shandong, China
    • Shi J, Liu Y, Yang Y, Han S, Wang P. The research and application of wavelet-support vector machine on short-term wind power prediction. In: Proceedings of the 8th World Congress on Intelligent Control and Automation, Shandong, China, 2010, 4927-4931.
    • (2010) , pp. 4927-4931
    • Shi, J.1    Liu, Y.2    Yang, Y.3    Han, S.4    Wang, P.5
  • 123
    • 77958144053 scopus 로고    scopus 로고
    • Genetic algorithm-piecewise support vector machine model for short term wind power prediction
    • Proceedings of the 8th World Congress on Intelligent Control and Automation
    • Shi J, Yang Y, Wang P, Liu Y, Han S. Genetic algorithm-piecewise support vector machine model for short term wind power prediction. In: Proceedings of the 8th World Congress on Intelligent Control and Automation, 2010, 2254-2258.
    • (2010) , pp. 2254-2258
    • Shi, J.1    Yang, Y.2    Wang, P.3    Liu, Y.4    Han, S.5
  • 124
    • 79958272062 scopus 로고    scopus 로고
    • Forecasting of wind speed with least squares support vector machine based on genetic algorithm
    • Proceedings of the International Conference on Consumer Electronics, Communications and Networks, Xianning, China
    • Ran L, Yong-gin K, Xiao-gian Z. Forecasting of wind speed with least squares support vector machine based on genetic algorithm. In: Proceedings of the International Conference on Consumer Electronics, Communications and Networks, Xianning, China, 2011, 358-361.
    • (2011) , pp. 358-361
    • Ran, L.1    Yong-gin, K.2    Xiao-gian, Z.3
  • 126
    • 84882803612 scopus 로고    scopus 로고
    • Short-term wind speed prediction based on support vector machine of fuzzy information granulation
    • Proceedings of 25th Chinese Control and Decision Conference, Guiyang, China
    • Cheng X, Guo P. Short-term wind speed prediction based on support vector machine of fuzzy information granulation. In: Proceedings of 25th Chinese Control and Decision Conference, Guiyang, China, 2013, 1918-1923.
    • (2013) , pp. 1918-1923
    • Cheng, X.1    Guo, P.2
  • 127
    • 84883355288 scopus 로고    scopus 로고
    • Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
    • Chen K, Yu J. Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach. Appl Energy 2014, 113:690-705.
    • (2014) Appl Energy , vol.113 , pp. 690-705
    • Chen, K.1    Yu, J.2
  • 128
    • 84899583995 scopus 로고    scopus 로고
    • Available at: (Accessed April 4, 2014)
    • Available at: http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml. (Accessed April 4, 2014).
  • 129
    • 84899577076 scopus 로고    scopus 로고
    • Available at: (Accessed April 4, 2014)
    • Available at: http://data-portal.ecmwf.int/data/d/interim_full_daily. (Accessed April 4, 2014).
  • 130
    • 79955446270 scopus 로고    scopus 로고
    • The ERA-Interim reanalysis: configuration and performance of the data assimilation system
    • Dee DP, Uppal SM, Simmons AJ, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 2011, 137:553-597.
    • (2011) Q J R Meteorol Soc , vol.137 , pp. 553-597
    • Dee, D.P.1    Uppal, S.M.2    Simmons, A.J.3
  • 132
    • 0026616924 scopus 로고
    • Left ventricular flow propagation during early filling is related to wall relaxation: a color M-mode Doppler analysis
    • Brun P, Tribouilloy C, Duval AM, Iserin L, Meguira A, Pelle G, Dubois-Rande JL. Left ventricular flow propagation during early filling is related to wall relaxation: a color M-mode Doppler analysis. J Am Coll Cardiol 1992, 20:420-432.
    • (1992) J Am Coll Cardiol , vol.20 , pp. 420-432
    • Brun, P.1    Tribouilloy, C.2    Duval, A.M.3    Iserin, L.4    Meguira, A.5    Pelle, G.6    Dubois-Rande, J.L.7
  • 133
    • 0031019476 scopus 로고    scopus 로고
    • An index of early left ventricular filling that combined with pulsed Doppler peak and velocity may estimate capillary wedge pressure
    • Garca MJ, Ares MA, Asher C, Rodrguez L, Vandervoort P, Thomas JD. An index of early left ventricular filling that combined with pulsed Doppler peak and velocity may estimate capillary wedge pressure. J Am Coll Cardiol 1997, 29:448-454.
    • (1997) J Am Coll Cardiol , vol.29 , pp. 448-454
    • Garca, M.J.1    Ares, M.A.2    Asher, C.3    Rodrguez, L.4    Vandervoort, P.5    Thomas, J.D.6
  • 134
    • 0032903548 scopus 로고    scopus 로고
    • Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy
    • Nagueh SF, Lakkis NM, Middleton K, Spencer WH, Zoghbi WA, Quinones MA. Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation 1999, 99:254-261.
    • (1999) Circulation , vol.99 , pp. 254-261
    • Nagueh, S.F.1    Lakkis, N.M.2    Middleton, K.3    Spencer, W.H.4    Zoghbi, W.A.5    Quinones, M.A.6
  • 135
    • 0037443576 scopus 로고    scopus 로고
    • Impact of left ventricular ejection fraction on estimation of left ventricular filling pressures using tissue Doppler and flow propagation velocity
    • Rivas-Gotz C, Manolios M, Thohan V, Nagueh SF. Impact of left ventricular ejection fraction on estimation of left ventricular filling pressures using tissue Doppler and flow propagation velocity. Am J Cardiol 2003, 91:780-784.
    • (2003) Am J Cardiol , vol.91 , pp. 780-784
    • Rivas-Gotz, C.1    Manolios, M.2    Thohan, V.3    Nagueh, S.F.4
  • 137
    • 25444464613 scopus 로고    scopus 로고
    • Intraventricular pressure differences: A new window into cardiac function
    • Thomas J, Popovic Z. Intraventricular pressure differences: A new window into cardiac function. Circulation 2005, 112:1684-1686.
    • (2005) Circulation , vol.112 , pp. 1684-1686
    • Thomas, J.1    Popovic, Z.2
  • 139
    • 33746903439 scopus 로고    scopus 로고
    • Comparison of four computer-aided diagnosis schemes for automated discrimination of myocardial heart disease
    • Proceedings of ICSP 2000, Beijing, China
    • Tsai D-Y. Comparison of four computer-aided diagnosis schemes for automated discrimination of myocardial heart disease. In: Proceedings of ICSP 2000, Beijing, China, 2000, 2000-2003.
    • (2000) , pp. 2000-2003
    • Tsai, D.-Y.1
  • 140
    • 0029534245 scopus 로고
    • Fully automatic left ventricular boundary extraction in echocardiographic images
    • IEEE Computers in Cardiol
    • Hunter I, Soraghan J, McDonagh T. Fully automatic left ventricular boundary extraction in echocardiographic images. In: IEEE Computers in Cardiol, 1995, 741-744.
    • (1995) , pp. 741-744
    • Hunter, I.1    Soraghan, J.2    McDonagh, T.3
  • 142
    • 0027840385 scopus 로고
    • Study of echocardiogram for myocardial infarction using neural networks
    • EMBS Annual Conference, San Diego, CA
    • Yi C, Micheli-Tzanakou E, Shindler D, and Kostis J. Study of echocardiogram for myocardial infarction using neural networks. In: EMBS Annual Conference, San Diego, CA, 1993, 255-256.
    • (1993) , pp. 255-256
    • Yi, C.1    Micheli-Tzanakou, E.2    Shindler, D.3    Kostis, J.4
  • 143
    • 84899503445 scopus 로고
    • Contour extraction of Doppler velocity profiles using neural networks
    • IEEE Computers Cardiol, Durham, USA
    • Gazula S, Hall A, Kovács S. Contour extraction of Doppler velocity profiles using neural networks. In: IEEE Computers Cardiol, Durham, USA, 1992, 543-546.
    • (1992) , pp. 543-546
    • Gazula, S.1    Hall, A.2    Kovács, S.3
  • 146
    • 0017169580 scopus 로고
    • Hemodynamic determinants of the time-course of fall in canine left ventricular pressure
    • Weiss JL, Frederiksen JW, Weisfeldt ML. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest 1976, 58:751-760.
    • (1976) J Clin Invest , vol.58 , pp. 751-760
    • Weiss, J.L.1    Frederiksen, J.W.2    Weisfeldt, M.L.3
  • 147
    • 0021702083 scopus 로고
    • The use of left ventricular end-ejection pressure and peak pressure in the estimation of the end-systolic pressure-volume relationship
    • Kono A, Maughan WL, Sunagawa K, Hamilton K, Sagawa K, Weisfeldt ML. The use of left ventricular end-ejection pressure and peak pressure in the estimation of the end-systolic pressure-volume relationship. Circulation 1984, 70:1057-1065.
    • (1984) Circulation , vol.70 , pp. 1057-1065
    • Kono, A.1    Maughan, W.L.2    Sunagawa, K.3    Hamilton, K.4    Sagawa, K.5    Weisfeldt, M.L.6
  • 148
    • 0035001018 scopus 로고    scopus 로고
    • Spatio-temporal mapping of intracardiac pressure gradients. A solution to Euler's equation from digital postprocessing of color Doppler M-mode echocardiograms
    • Bermejo J, Antoranz JC, Yotti R, Moreno M, García-Fernández MA. Spatio-temporal mapping of intracardiac pressure gradients. A solution to Euler's equation from digital postprocessing of color Doppler M-mode echocardiograms. Ultrasound Med Biol 2001, 27:621-630.
    • (2001) Ultrasound Med Biol , vol.27 , pp. 621-630
    • Bermejo, J.1    Antoranz, J.C.2    Yotti, R.3    Moreno, M.4    García-Fernández, M.A.5
  • 149
    • 25344437636 scopus 로고    scopus 로고
    • Noninvasive assessment of ventricular relaxation and contractility indices by analysis of intraventricular ejection pressure-gradient curves derived from Doppler echocardiography
    • Yotti R, Bermejo J, Antoranz C, Silva J, Allue C, Rojo-Álvarez JL, Moreno M, García-Fernández MA. Noninvasive assessment of ventricular relaxation and contractility indices by analysis of intraventricular ejection pressure-gradient curves derived from Doppler echocardiography. J Am Coll Cardiol 2003, 41:447.
    • (2003) J Am Coll Cardiol , vol.41 , pp. 447
    • Yotti, R.1    Bermejo, J.2    Antoranz, C.3    Silva, J.4    Allue, C.5    Rojo-Álvarez, J.L.6    Moreno, M.7    García-Fernández, M.A.8
  • 150
    • 33744938994 scopus 로고    scopus 로고
    • Statistical parametric mapping: I. Generic considerations
    • Kiebel SJ, Friston KJ. Statistical parametric mapping: I. Generic considerations. Neuroimage 2004, 2:402-502.
    • (2004) Neuroimage , vol.2 , pp. 402-502
    • Kiebel, S.J.1    Friston, K.J.2
  • 151
    • 2942586807 scopus 로고    scopus 로고
    • Statistical parametric mapping: II. A hierarchical temporal model
    • Kiebel SJ, Friston KJ. Statistical parametric mapping: II. A hierarchical temporal model. Neuroimage 2004, 2:503-520.
    • (2004) Neuroimage , vol.2 , pp. 503-520
    • Kiebel, S.J.1    Friston, K.J.2
  • 152
    • 0033933649 scopus 로고    scopus 로고
    • Voxel-based morphometry-the methods
    • Ashburner J, Friston KJ. Voxel-based morphometry-the methods. Neuroimage 2000, 11:805-821.
    • (2000) Neuroimage , vol.11 , pp. 805-821
    • Ashburner, J.1    Friston, K.J.2
  • 154
    • 0037765189 scopus 로고    scopus 로고
    • Patterns of activity in the categorical representations of objects
    • Carlson TA, Schrater P, He S. Patterns of activity in the categorical representations of objects. J Cogn Neurosci 2003, 15:704-717.
    • (2003) J Cogn Neurosci , vol.15 , pp. 704-717
    • Carlson, T.A.1    Schrater, P.2    He, S.3
  • 155
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
    • Mourão-Miranda J, Bokde ALW, Born C, Hampel H, Stetter M. Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. Neuroimage 2005, 28:980-995.
    • (2005) Neuroimage , vol.28 , pp. 980-995
    • Mourão-Miranda, J.1    Bokde, A.L.W.2    Born, C.3    Hampel, H.4    Stetter, M.5
  • 156
    • 52049116700 scopus 로고    scopus 로고
    • Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns
    • DeMartino F, Valente G, Staeren N, Ashburner J, Goebel R, Formisano E. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. Neuroimage 2008, 43:44-58.
    • (2008) Neuroimage , vol.43 , pp. 44-58
    • DeMartino, F.1    Valente, G.2    Staeren, N.3    Ashburner, J.4    Goebel, R.5    Formisano, E.6
  • 157
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003, 3:1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 158
    • 77951976541 scopus 로고    scopus 로고
    • Sparse logistic regression for whole-brain classification of fMRI data
    • Ryali S, Supekar K, Abrams DA, Menon V. Sparse logistic regression for whole-brain classification of fMRI data. Neuroimage 2010, 51:752-764.
    • (2010) Neuroimage , vol.51 , pp. 752-764
    • Ryali, S.1    Supekar, K.2    Abrams, D.A.3    Menon, V.4
  • 160
    • 75249099795 scopus 로고    scopus 로고
    • Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior
    • van Gerven MAJ, Cseke B, de Lange FP, Heskes T. Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. Neuroimage 2010, 50:150-161.
    • (2010) Neuroimage , vol.50 , pp. 150-161
    • van Gerven, M.A.J.1    Cseke, B.2    de Lange, F.P.3    Heskes, T.4
  • 161
    • 33744936017 scopus 로고    scopus 로고
    • fMRI pattern classification using neuroanatomically constrained boosting
    • Martínez-Ramón M, Koltchinskii V, Heileman GL, Posse S. fMRI pattern classification using neuroanatomically constrained boosting. Neuroimage 2006, 31:1129-1141.
    • (2006) Neuroimage , vol.31 , pp. 1129-1141
    • Martínez-Ramón, M.1    Koltchinskii, V.2    Heileman, G.L.3    Posse, S.4
  • 163
    • 0030419058 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Proceedings of the Ninth Annual Conference on Computational Learning Theory, Desenzano sul Garda, Italy
    • Freund Y, Schapire R. A decision-theoretic generalization of on-line learning and an application to boosting. In: Proceedings of the Ninth Annual Conference on Computational Learning Theory, Desenzano sul Garda, Italy 1996, 325-332.
    • (1996) , pp. 325-332
    • Freund, Y.1    Schapire, R.2
  • 164
    • 0001254045 scopus 로고    scopus 로고
    • Multi-class support vector machines
    • Verleysen M, ed. Brussels: D-facto; Bruges, Belgium
    • Weston J, Watkins C. Multi-class support vector machines. In: Verleysen M, ed. Proceedings of ESANN 99. Brussels: D-facto; Bruges, Belgium, 1999.
    • (1999) Proceedings of ESANN 99
    • Weston, J.1    Watkins, C.2
  • 165
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error correcting output codes
    • Dietterich TG, Bakiri G. Solving multiclass learning problems via error correcting output codes. J Artif Intell Res 1995, 2:263-286.
    • (1995) J Artif Intell Res , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 167
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • Rifkin R, Klautau A. In defense of one-vs-all classification. J Mach Learn Res 2004, 5:101-141.
    • (2004) J Mach Learn Res , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 168
    • 80051781186 scopus 로고    scopus 로고
    • Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia
    • Castro E, Martínez-Ramon M, Pearlson G, Sui J, Calhoun VD. Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia. Neuroimage 2011, 58:526-536.
    • (2011) Neuroimage , vol.58 , pp. 526-536
    • Castro, E.1    Martínez-Ramon, M.2    Pearlson, G.3    Sui, J.4    Calhoun, V.D.5
  • 169
    • 84890888665 scopus 로고    scopus 로고
    • A multiple kernel learning approach to perform classification of groups from complex-valued fMRI data analysis: Application to schizophrenia
    • Castro E, Gómez-Verdejo V, Martínez-Ramón M, Kiehl KA, Calhoun VD. A multiple kernel learning approach to perform classification of groups from complex-valued fMRI data analysis: Application to schizophrenia. Neuroimage 2014, 87:1-17.
    • (2014) Neuroimage , vol.87 , pp. 1-17
    • Castro, E.1    Gómez-Verdejo, V.2    Martínez-Ramón, M.3    Kiehl, K.A.4    Calhoun, V.D.5
  • 170
  • 171
    • 84899540564 scopus 로고    scopus 로고
    • Association American Psychiatric. 4th (Text Revision) ed. Arlington, VA: American Psychiatric Publishing, Inc
    • Association American Psychiatric. Diagnostic and Statistical Manual of Mental Disorders DSM-IV-TR. 4th (Text Revision) ed. Arlington, VA: American Psychiatric Publishing, Inc; 2000.
    • (2000) Diagnostic and Statistical Manual of Mental Disorders DSM-IV-TR
  • 172
    • 0035970609 scopus 로고    scopus 로고
    • An event-related functional magnetic resonance imaging study of an auditory oddball task in schizophrenia
    • Kiehl KA, Liddle PF. An event-related functional magnetic resonance imaging study of an auditory oddball task in schizophrenia. Schizophr Res 2001, 48:59-71.
    • (2001) Schizophr Res , vol.48 , pp. 59-71
    • Kiehl, K.A.1    Liddle, P.F.2
  • 173
    • 65549097795 scopus 로고    scopus 로고
    • A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
    • Calhoun VD, Liu J, Adalic T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 2009, 45:163-172.
    • (2009) Neuroimage , vol.45 , pp. 163-172
    • Calhoun, V.D.1    Liu, J.2    Adalic, T.3
  • 174
    • 0034856839 scopus 로고    scopus 로고
    • Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study
    • Carter CS, MacDonald AWI, Ross LL, Stenger VA. Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study. Am J Psychiatry 2001, 158:9.
    • (2001) Am J Psychiatry , vol.158 , pp. 9
    • Carter, C.S.1    MacDonald, A.W.I.2    Ross, L.L.3    Stenger, V.A.4
  • 176
    • 33846853735 scopus 로고    scopus 로고
    • On SVM for classification of real and synthetic radar signatures
    • Proceedings of the IEEE International Symposium on Antennas and Propagation Society, vol 1B. Washington DC
    • Jouny I. On SVM for classification of real and synthetic radar signatures. In: Proceedings of the IEEE International Symposium on Antennas and Propagation Society, vol 1B. Washington DC, 2005, 2-5.
    • (2005) , pp. 2-5
    • Jouny, I.1
  • 177
    • 36148932618 scopus 로고    scopus 로고
    • Antenna array processing for radar applications using support vector machine
    • Proceedings of the IEEE International Symposium on Antennas and Propagation Society, Albuquerque, NM
    • Xu N, Christodoulou CG, Martnez-Ramón M, Ozdemir T. Antenna array processing for radar applications using support vector machine. In: Proceedings of the IEEE International Symposium on Antennas and Propagation Society, Albuquerque, NM, 2006, 1295-1298.
    • (2006) , pp. 1295-1298
    • Xu, N.1    Christodoulou, C.G.2    Martnez-Ramón, M.3    Ozdemir, T.4
  • 178
    • 33846906527 scopus 로고    scopus 로고
    • Training of adaptive antennas using simulated data
    • Proceedings of the IEEE International Symposium on Antennas and Propagation Society, vol 4A, Washington DC, USA
    • Ozdemir T, Christodoulou CG, Miranda MJ. Training of adaptive antennas using simulated data. In: Proceedings of the IEEE International Symposium on Antennas and Propagation Society, vol 4A, Washington DC, USA, 2005, 1821.
    • (2005) , pp. 1821
    • Ozdemir, T.1    Christodoulou, C.G.2    Miranda, M.J.3
  • 179
    • 4544321218 scopus 로고    scopus 로고
    • The use of machine learning in smart antennas
    • Proceedings of the IEEE International Symposium on Antennas and Propagation Society, vol 1, Monterey, CA
    • Christodoulou CG, Rohwer JA, Abdallah CT. The use of machine learning in smart antennas. In: Proceedings of the IEEE International Symposium on Antennas and Propagation Society, vol 1, Monterey, CA, 2004, 321-324.
    • (2004) , pp. 321-324
    • Christodoulou, C.G.1    Rohwer, J.A.2    Abdallah, C.T.3
  • 180
    • 84878475926 scopus 로고    scopus 로고
    • Microwave devices and antennas modelling by support vector regression machines
    • Angiulli G, Cacciola M, Versaci M. Microwave devices and antennas modelling by support vector regression machines. IEEE Trans Magn 2007, 43:1589-1592.
    • (2007) IEEE Trans Magn , vol.43 , pp. 1589-1592
    • Angiulli, G.1    Cacciola, M.2    Versaci, M.3
  • 181
    • 0041379737 scopus 로고    scopus 로고
    • One-vs-one multiclass least squares support vector machines for direction of arrival estimation
    • Rohwer JA, Abdallah CT. One-vs-one multiclass least squares support vector machines for direction of arrival estimation. Appl Comput Electromagn Soc J 2003, 18:34-45.
    • (2003) Appl Comput Electromagn Soc J , vol.18 , pp. 34-45
    • Rohwer, J.A.1    Abdallah, C.T.2
  • 182
    • 68949219597 scopus 로고    scopus 로고
    • An innovative multiresolution approach for DOA estimation based on a support vector classification
    • Donelli M, Viani F, Rocca P, Massa A. An innovative multiresolution approach for DOA estimation based on a support vector classification. IEEE Trans Antenn Propag 2009, 57:2279-2292.
    • (2009) IEEE Trans Antenn Propag , vol.57 , pp. 2279-2292
    • Donelli, M.1    Viani, F.2    Rocca, P.3    Massa, A.4
  • 183
    • 0000624015 scopus 로고
    • Multiple emitter location and signal parameter estimation
    • Proceedings of the RADC Spectral Estimation Workshop, Rome, NY
    • Schmidt RO. Multiple emitter location and signal parameter estimation. In: Proceedings of the RADC Spectral Estimation Workshop, Rome, NY, 1979, 243-258.
    • (1979) , pp. 243-258
    • Schmidt, R.O.1
  • 185
    • 0014642808 scopus 로고
    • High-resolution frequency-wavenumber spectrum analysis
    • Capon J. High-resolution frequency-wavenumber spectrum analysis. Proc IEEE 1969, 57:1408-1418.
    • (1969) Proc IEEE , vol.57 , pp. 1408-1418
    • Capon, J.1
  • 186
    • 0037844881 scopus 로고    scopus 로고
    • Linear dependency between ε and the input noise in ε-support vector regression
    • Kwok JT, Tsang IW. Linear dependency between ε and the input noise in ε-support vector regression. IEEE Trans Neural Netw 2003, 14:544-553.
    • (2003) IEEE Trans Neural Netw , vol.14 , pp. 544-553
    • Kwok, J.T.1    Tsang, I.W.2
  • 187
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V, Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 2004, 17:113-126.
    • (2004) Neural Netw , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 188
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Camps-Valls G, Bruzzone L. Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens 2005, 43:1351-1362.
    • (2005) IEEE Trans Geosci Remote Sens , vol.43 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 189
  • 190
    • 34547490449 scopus 로고    scopus 로고
    • Partially supervised oil-slick detection by SAR imagery using kernel expansion
    • Mercier G, Girard-Ardhuin F. Partially supervised oil-slick detection by SAR imagery using kernel expansion. IEEE Trans Geosci Remote Sens 2006, 44:2839-2846.
    • (2006) IEEE Trans Geosci Remote Sens , vol.44 , pp. 2839-2846
    • Mercier, G.1    Girard-Ardhuin, F.2
  • 191
    • 34547399927 scopus 로고    scopus 로고
    • A support vector domain description approach to supervised classification of remote sensing images
    • Muñoz Marí J, Bruzzone L, Camps-Valls G. A support vector domain description approach to supervised classification of remote sensing images. IEEE Trans Geosci Remote Sens 2007, 45:2683-2692.
    • (2007) IEEE Trans Geosci Remote Sens , vol.45 , pp. 2683-2692
    • Muñoz Marí, J.1    Bruzzone, L.2    Camps-Valls, G.3
  • 193
    • 30344462676 scopus 로고    scopus 로고
    • Urban monitoring using multitemporal SAR and multispectral data
    • 3rd Pattern Recognition in Remote Sensing Workshop, Kingston Upon Thames, England, Aug 27, 2004
    • Gómez-Chova L, Fernández-Prieto D, Calpe J, Soria E, Vila-Francés J, Camps-Valls G. Urban monitoring using multitemporal SAR and multispectral data. Pattern Recogn Lett 2006, 3rd Pattern Recognition in Remote Sensing Workshop, Kingston Upon Thames, England, Aug 27, 2004, 27:234-243.
    • (2006) Pattern Recogn Lett , vol.27 , pp. 234-243
    • Gómez-Chova, L.1    Fernández-Prieto, D.2    Calpe, J.3    Soria, E.4    Vila-Francés, J.5    Camps-Valls, G.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.