메뉴 건너뛰기




Volumn 36, Issue 2, 2012, Pages 280-294

Improving classification performance of Support Vector Machine by genetically optimising kernel shape and hyper-parameters

Author keywords

Classification problems; Genetic programming; Hybrid model; Hyper parameters optimization; Kernel of kernels; Multiple kernel; SVM

Indexed keywords

CLASSIFICATION ACCURACY; CLASSIFICATION PERFORMANCE; HETEROGENEOUS DATA; HYBRID MODEL; KERNEL OF KERNELS; KERNEL PARAMETER; MULTIPLE KERNELS; NUMERICAL EXPERIMENTS; REAL-WORLD APPLICATION; STANDARD TOOLS; STATE OF THE ART; SVM; SVM ALGORITHM; UNIFIED FRAMEWORK;

EID: 84862152671     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-010-0260-1     Document Type: Article
Times cited : (78)

References (63)
  • 1
    • 23244435214 scopus 로고    scopus 로고
    • Computing regularization paths for learning multiple kernels
    • Bach FR, Thibaux R, Jordan MI (2004) Computing regularization paths for learning multiple kernels. In: NIPS, pp 1-10.
    • (2004) NIPS , pp. 1-10
    • Bach, F.R.1    Thibaux, R.2    Jordan, M.I.3
  • 4
    • 38149012483 scopus 로고    scopus 로고
    • A heuristic for free parameter optimization with SVM
    • IEEE, New York
    • Boardman M, Trappenberg T (2006) A heuristic for free parameter optimization with SVM. In: IJCNN 2006. IEEE, New York, pp 1337-1344.
    • (2006) IJCNN 2006 , pp. 1337-1344
    • Boardman, M.1    Trappenberg, T.2
  • 6
    • 84874094866 scopus 로고    scopus 로고
    • On the complexity of learning the kernel matrix
    • Becker S et al (eds), MIT Press, Cambridge
    • Bousquet O, Herrmann DJL (2002) On the complexity of learning the kernel matrix. In: Becker S et al (eds) NIPS. MIT Press, Cambridge, pp 399-406.
    • (2002) NIPS , pp. 399-406
    • Bousquet, O.1    Herrmann, D.J.L.2
  • 7
    • 34948883358 scopus 로고    scopus 로고
    • Composite of adaptive support vector regression and nonlinear conditional heteroscedasticity tuned by quantum minimization for forecasts
    • DOI 10.1007/s10489-006-0036-9, Special Issue on Computational Intelligence in Medicine and Biology. Guest Editors: George Magoulas and Georgios Dounias.
    • Chang BR, Tsai H-F (2007) Composite of adaptive support vector regression and nonlinear conditional heteroscedasticity tuned by quantum minimization for forecasts. Appl Intell 27(3):277-289. (Pubitemid 47518991)
    • (2007) Applied Intelligence , vol.27 , Issue.3 , pp. 277-289
    • Chang, B.R.1    Tsai, H.-F.2
  • 10
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for Support Vector Machines.Mach Learn 46(1/3):131-159. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 11
    • 0032205828 scopus 로고    scopus 로고
    • Evolutionary learning of modular neural networks withgenetic programming
    • Cho S-B, Shimohara K (1998) Evolutionary learning of modular neural networks withgenetic programming. Appl Intell 9(3):191- 200. (Pubitemid 128512700)
    • (1998) Applied Intelligence , vol.9 , Issue.3 , pp. 191-200
    • Cho, S.-B.1    Shimohara, K.2
  • 12
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bounds for support vector machines with the RBF kernel
    • DOI 10.1162/089976603322385108
    • Chung K-M, Kao W-C, Sun C-L, Wang L-L, Lin C-J (2003) Radius margin bounds for Support Vector Machines with the RBF kernel. Neural Comput 15(11):2643-2681. (Pubitemid 37206930)
    • (2003) Neural Computation , vol.15 , Issue.11 , pp. 2643-2681
    • Chung, K.-M.1    Kao, W.-C.2    Sun, C.-L.3    Wang, L.-L.4    Lin, C.-J.5
  • 13
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273-297.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Crammer K, Singer Y (2002) On the algorithmic implementation of multiclass kernel-based vector machines. J Mach Learn Res 2:265-292.
    • (2002) J Mach Learn Res , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 16
    • 84898936871 scopus 로고    scopus 로고
    • On kernel-target alignment
    • Dietterich TG, Becker S, Ghahramani Z (eds), MIT Press, Cambridge
    • Cristianini N, Shawe-Taylor J, Elisseeff A, Kandola JS (2001) On kernel-target alignment. In: Dietterich TG, Becker S, Ghahramani Z (eds) NIPS 2001. MIT Press, Cambridge, pp 367-373.
    • (2001) NIPS 2001 , pp. 367-373
    • Cristianini, N.1    Shawe-Taylor, J.2    Elisseeff, A.3    Kandola, J.S.4
  • 17
    • 38049072277 scopus 로고    scopus 로고
    • Improving SVM performance using a linear combination of kernels
    • LNCS, vol 4432
    • Dio̧san L, Oltean M, Rogozan A, Pécuchet JP (2007) Improving SVM performance using a linear combination of kernels. In: ICANNGA'07. LNCS, vol 4432, pp 218-227.
    • (2007) ICANNGA'07 , pp. 218-227
    • Dio̧san, L.1    Oltean, M.2    Rogozan, A.3    Pécuchet, J.P.4
  • 18
    • 47349110721 scopus 로고    scopus 로고
    • Evolving kernel functions for SVMs by genetic programming
    • Ohio, USA
    • Dio̧san L, Rogozan A, Pécuchet J-P (2007) Evolving kernel functions for SVMs by genetic programming. In: ICMLA'07, Ohio, USA.
    • (2007) ICMLA'07
    • Dio̧san, L.1    Rogozan, A.2    Pécuchet, J.-P.3
  • 20
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • DOI 10.1016/j.neucom.2004.11.022, PII S0925231204005223
    • Friedrichs F, Igel C (2005) Evolutionary tuning of multiple SVM parameters. Neurocomputing 64:107-117. (Pubitemid 40425314)
    • (2005) Neurocomputing , vol.64 , Issue.1-4 SPEC. ISS. , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 21
    • 0344235442 scopus 로고    scopus 로고
    • Feature selection for SVM by means of GAs
    • IEEE, New York
    • Fröhlich H, Chapelle O, Schölkopf B (2003) Feature selection for SVM by means of GAs. In: ICTAI. IEEE, New York, pp 142-148.
    • (2003) ICTAI , pp. 142-148
    • Fröhlich, H.1    Chapelle, O.2    Schölkopf, B.3
  • 24
    • 0242288807 scopus 로고    scopus 로고
    • Model selection for support vector machine classification
    • DOI 10.1016/S0925-2312(03)00375-8
    • Gold C, Sollich P (2003) Model selection for Support Vector Machine classification. Neurocomputing 55(1-2):221-249. (Pubitemid 37336677)
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 221-249
    • Gold, C.1    Sollich, P.2
  • 26
    • 0036643063 scopus 로고    scopus 로고
    • Structural modelling with sparse kernels
    • DOI 10.1023/A:1013903804720
    • Gunn S, Kandola J (2002) Structural modelling with sparse kernels. Mach Learn 48:137-163. (Pubitemid 34247576)
    • (2002) Machine Learning , vol.48 , Issue.1-3 , pp. 137-163
    • Gunn, S.R.1    Kandola, J.S.2
  • 28
    • 84938447945 scopus 로고
    • Direct search solution of numerical and statistical problems
    • Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J ACM 8:212-229.
    • (1961) J ACM , vol.8 , pp. 212-229
    • Hooke, R.1    Jeeves, T.A.2
  • 29
    • 29144521785 scopus 로고    scopus 로고
    • The genetic kernel support vector machine: Description and evaluation
    • DOI 10.1007/s10462-005-9009-3
    • Howley T, Madden MG (2005) The genetic kernel Support Vector Machine: description and evaluation. Artif Intell Rev 24(3- 4):379-395. (Pubitemid 41813391)
    • (2005) Artificial Intelligence Review , vol.24 , Issue.3-4 , pp. 379-395
    • Howley, T.1    Madden, M.G.2
  • 30
    • 77949488653 scopus 로고    scopus 로고
    • Advances in artificial neural networks-methodological development and application
    • Huang Y (2009) Advances in artificial neural networks-methodological development and application. Algorithms 2(3):973- 1007.
    • (2009) Algorithms , vol.2 , Issue.3 , pp. 973-1007
    • Huang, Y.1
  • 31
    • 24344435631 scopus 로고    scopus 로고
    • Multi-objective model selection for SVM
    • Coello Coello CA et al (eds), LNCS, vol 3410. Springer, Berlin
    • Igel C (2005) Multi-objective model selection for SVM. In: Coello Coello CA et al (eds) EMO 2005. LNCS, vol 3410. Springer, Berlin, pp 534-546.
    • (2005) EMO 2005 , pp. 534-546
    • Igel, C.1
  • 32
    • 10044295837 scopus 로고    scopus 로고
    • A stochastic optimization approach for parameter tuning of SVM
    • Imbault F, Lebart K (2004) A stochastic optimization approach for parameter tuning of SVM. In: ICPR (4), pp 597-600.
    • (2004) ICPR , Issue.4 , pp. 597-600
    • Imbault, F.1    Lebart, K.2
  • 33
    • 84862115892 scopus 로고    scopus 로고
    • The maximum-margin approach to learning text classifiers
    • Joachims T (2001) The maximum-margin approach to learning text classifiers. Künstl Intell 15(3):63-65.
    • (2001) Künstl Intell , vol.15 , Issue.3 , pp. 63-65
    • Joachims, T.1
  • 34
    • 46249132434 scopus 로고    scopus 로고
    • An efficient method for gradient-based adaptation of hyperparameters in SVM models
    • IEEE Computer Society, Los Alamitos
    • Keerthi S, Sindhwani V, Chapelle O (2006) An efficient method for gradient-based adaptation of hyperparameters in SVM models. In: NIPS'06. IEEE Computer Society, Los Alamitos, pp 1-10.
    • (2006) NIPS'06 , pp. 1-10
    • Keerthi, S.1    Sindhwani, V.2    Chapelle, O.3
  • 38
  • 39
    • 8844278523 scopus 로고    scopus 로고
    • Learning the kernel matrix with Semidefinite Programming
    • Lanckriet GRG et al (2004) Learning the kernel matrix with Semidefinite Programming. J Mach Learn Res 5:27-72.
    • (2004) J Mach Learn Res , vol.5 , pp. 27-72
    • Lanckriet, G.R.G.1
  • 41
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • Mercer J (1909) Functions of positive and negative type and their connection with the theory of integral equations. Philos Trans R Soc 209:415-446.
    • (1909) Philos Trans R Soc , vol.209 , pp. 415-446
    • Mercer, J.1
  • 42
    • 84862128982 scopus 로고    scopus 로고
    • A pattern search method for model selection of SV Regression
    • Grossman RL et al (eds), SIAM, Philadelphia
    • Momma M, Bennett KP (2002) A pattern search method for model selection of SV Regression. In: Grossman RL et al (eds) SIAM 2002. SIAM, Philadelphia, pp 2-16.
    • (2002) SIAM 2002 , pp. 2-16
    • Momma, M.1    Bennett, K.P.2
  • 46
    • 47249105274 scopus 로고    scopus 로고
    • Genetically constructed kernels for SVM
    • Springer, Berlin
    • Lessmann RS, Crone S (2005) Genetically constructed kernels for SVM. In: Proc. of GOR. Springer, Berlin, pp 257-262.
    • (2005) Proc. of GOR , pp. 257-262
    • Lessmann, R.S.1    Crone, S.2
  • 47
    • 0346451740 scopus 로고    scopus 로고
    • The kernel trick for distances
    • Leen TK, Dietterich TG, Tresp V (eds), MIT Press, Cambridge
    • Schölkopf B (2000) The kernel trick for distances. In: Leen TK, Dietterich TG, Tresp V (eds) NIPS. MIT Press, Cambridge, pp 301-307.
    • (2000) NIPS , pp. 301-307
    • Schölkopf, B.1
  • 52
    • 34548067155 scopus 로고    scopus 로고
    • Evolving kernels for SVM classification
    • Lipson H (ed), ACM, New York
    • Sullivan K, Luke S (2007) Evolving kernels for SVM classification. In: Lipson H (ed) GECCO 2007. ACM, New York, pp 1702- 1707.
    • (2007) GECCO 2007 , pp. 1702-1707
    • Sullivan, K.1    Luke, S.2
  • 53
    • 0001842954 scopus 로고
    • A study of reproduction in generational and steady state Genetic Algorithms
    • Rawlins GJE (ed), Morgan Kaufmann, San Mateo
    • Syswerda G (1991) A study of reproduction in generational and steady state Genetic Algorithms. In: Rawlins GJE (ed) FOGA. Morgan Kaufmann, San Mateo, pp 94-101.
    • (1991) FOGA , pp. 94-101
    • Syswerda, G.1
  • 55
    • 84958985297 scopus 로고    scopus 로고
    • Learning to predict the leave-one-out error of kernel based classifiers
    • Artificial Neural Networks - ICANN 2001
    • Tsuda K, Rätsch G, Mika S, Müller K-R (2001) Learning to predict the leave-one-out error of kernel based classifiers. In: LNCS, vol 2130, pp 331-338. (Pubitemid 33316980)
    • (2001) Lecture Notes in Computer Science , Issue.2130 , pp. 331-338
    • Tsuda, K.1    Ratsch, G.2    Mika, S.3    Muller, K.-R.4
  • 57
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for SVM
    • Vapnik V, Chapelle O (2000) Bounds on error expectation for SVM. Neural Comput 12(9):2013-2036.
    • (2000) Neural Comput , vol.12 , Issue.9 , pp. 2013-2036
    • Vapnik, V.1    Chapelle, O.2
  • 58
    • 84860668408 scopus 로고    scopus 로고
    • Hybrid ensemble approach for classification
    • Verma B, Hassan S (2009) Hybrid ensemble approach for classification. Appl Intell, 1-21.
    • (2009) Appl Intell , pp. 1-21
    • Verma, B.1    Hassan, S.2
  • 59
    • 0003267918 scopus 로고    scopus 로고
    • GACV for support vector machines
    • Smola B, SchRolkopf S (eds), MIT Press, Cambridge
    • Wahba G, Lin Y, Zhang H (1999) GACV for support vector machines. In: Smola B, SchRolkopf S (eds) Advances in large margin classifiers. MIT Press, Cambridge.
    • (1999) Advances in Large Margin Classifiers
    • Wahba, G.1    Lin, Y.2    Zhang, H.3
  • 60
    • 34547980120 scopus 로고    scopus 로고
    • A kernel path algorithm for SVM
    • ACMPress, New York
    • Wang G, Yeung D-Y, Lochovsky FH (2007) A kernel path algorithm for SVM. In: ICML 07. ACMPress, New York, pp 951-958.
    • (2007) ICML 07 , pp. 951-958
    • Wang, G.1    Yeung, D.-Y.2    Lochovsky, F.H.3
  • 61
    • 15344339935 scopus 로고    scopus 로고
    • Optimizing the kernel in the empirical feature space
    • DOI 10.1109/TNN.2004.841784
    • Xiong H, Swamy M, Ahmad M (2005) Optimizing the kernel in the empirical feature space. IEEE Trans Neural Netw 16(2):460- 474. (Pubitemid 40390828)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.2 , pp. 460-474
    • Xiong, H.1    Swamy, M.N.S.2    Ahmad, M.O.3
  • 63
    • 33646417903 scopus 로고    scopus 로고
    • Model-based transductive learning of the kernel matrix
    • Zhang Z, Kwok JT, Yeung D-Y (2006) Model-based transductive learning of the kernel matrix. Mach Learn 63(1):69-101.
    • (2006) Mach Learn , vol.63 , Issue.1 , pp. 69-101
    • Zhang, Z.1    Kwok, J.T.2    Yeung, D.-Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.