-
1
-
-
23244435214
-
Computing regularization paths for learning multiple kernels
-
Bach FR, Thibaux R, Jordan MI (2004) Computing regularization paths for learning multiple kernels. In: NIPS, pp 1-10.
-
(2004)
NIPS
, pp. 1-10
-
-
Bach, F.R.1
Thibaux, R.2
Jordan, M.I.3
-
3
-
-
40649091637
-
Model selection via bilevel optimization
-
1716345, International Joint Conference on Neural Networks 2006, IJCNN '06
-
Bennett K, Hu J, Ji X, Kunapuli G, Pang J-S (2006) Model selection via bilevel optimization. In: IJCNN'06. International joint conference on neural networks. IEEE Computer Society, Los Alamitos, pp 1922-1929. (Pubitemid 351369560)
-
(2006)
IEEE International Conference on Neural Networks - Conference Proceedings
, pp. 1922-1929
-
-
Bennett, K.P.1
Hu, J.2
Ji, X.3
Kunapuli, G.4
Pang, J.-S.5
-
4
-
-
38149012483
-
A heuristic for free parameter optimization with SVM
-
IEEE, New York
-
Boardman M, Trappenberg T (2006) A heuristic for free parameter optimization with SVM. In: IJCNN 2006. IEEE, New York, pp 1337-1344.
-
(2006)
IJCNN 2006
, pp. 1337-1344
-
-
Boardman, M.1
Trappenberg, T.2
-
6
-
-
84874094866
-
On the complexity of learning the kernel matrix
-
Becker S et al (eds), MIT Press, Cambridge
-
Bousquet O, Herrmann DJL (2002) On the complexity of learning the kernel matrix. In: Becker S et al (eds) NIPS. MIT Press, Cambridge, pp 399-406.
-
(2002)
NIPS
, pp. 399-406
-
-
Bousquet, O.1
Herrmann, D.J.L.2
-
7
-
-
34948883358
-
Composite of adaptive support vector regression and nonlinear conditional heteroscedasticity tuned by quantum minimization for forecasts
-
DOI 10.1007/s10489-006-0036-9, Special Issue on Computational Intelligence in Medicine and Biology. Guest Editors: George Magoulas and Georgios Dounias.
-
Chang BR, Tsai H-F (2007) Composite of adaptive support vector regression and nonlinear conditional heteroscedasticity tuned by quantum minimization for forecasts. Appl Intell 27(3):277-289. (Pubitemid 47518991)
-
(2007)
Applied Intelligence
, vol.27
, Issue.3
, pp. 277-289
-
-
Chang, B.R.1
Tsai, H.-F.2
-
10
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
DOI 10.1023/A:1012450327387
-
Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for Support Vector Machines.Mach Learn 46(1/3):131-159. (Pubitemid 34129966)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
11
-
-
0032205828
-
Evolutionary learning of modular neural networks withgenetic programming
-
Cho S-B, Shimohara K (1998) Evolutionary learning of modular neural networks withgenetic programming. Appl Intell 9(3):191- 200. (Pubitemid 128512700)
-
(1998)
Applied Intelligence
, vol.9
, Issue.3
, pp. 191-200
-
-
Cho, S.-B.1
Shimohara, K.2
-
12
-
-
0141430928
-
Radius margin bounds for support vector machines with the RBF kernel
-
DOI 10.1162/089976603322385108
-
Chung K-M, Kao W-C, Sun C-L, Wang L-L, Lin C-J (2003) Radius margin bounds for Support Vector Machines with the RBF kernel. Neural Comput 15(11):2643-2681. (Pubitemid 37206930)
-
(2003)
Neural Computation
, vol.15
, Issue.11
, pp. 2643-2681
-
-
Chung, K.-M.1
Kao, W.-C.2
Sun, C.-L.3
Wang, L.-L.4
Lin, C.-J.5
-
13
-
-
34249753618
-
Support-vector networks
-
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273-297.
-
(1995)
Mach Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
14
-
-
0010442827
-
On the algorithmic implementation of multiclass kernel-based vector machines
-
Crammer K, Singer Y (2002) On the algorithmic implementation of multiclass kernel-based vector machines. J Mach Learn Res 2:265-292.
-
(2002)
J Mach Learn Res
, vol.2
, pp. 265-292
-
-
Crammer, K.1
Singer, Y.2
-
16
-
-
84898936871
-
On kernel-target alignment
-
Dietterich TG, Becker S, Ghahramani Z (eds), MIT Press, Cambridge
-
Cristianini N, Shawe-Taylor J, Elisseeff A, Kandola JS (2001) On kernel-target alignment. In: Dietterich TG, Becker S, Ghahramani Z (eds) NIPS 2001. MIT Press, Cambridge, pp 367-373.
-
(2001)
NIPS 2001
, pp. 367-373
-
-
Cristianini, N.1
Shawe-Taylor, J.2
Elisseeff, A.3
Kandola, J.S.4
-
17
-
-
38049072277
-
Improving SVM performance using a linear combination of kernels
-
LNCS, vol 4432
-
Dio̧san L, Oltean M, Rogozan A, Pécuchet JP (2007) Improving SVM performance using a linear combination of kernels. In: ICANNGA'07. LNCS, vol 4432, pp 218-227.
-
(2007)
ICANNGA'07
, pp. 218-227
-
-
Dio̧san, L.1
Oltean, M.2
Rogozan, A.3
Pécuchet, J.P.4
-
18
-
-
47349110721
-
Evolving kernel functions for SVMs by genetic programming
-
Ohio, USA
-
Dio̧san L, Rogozan A, Pécuchet J-P (2007) Evolving kernel functions for SVMs by genetic programming. In: ICMLA'07, Ohio, USA.
-
(2007)
ICMLA'07
-
-
Dio̧san, L.1
Rogozan, A.2
Pécuchet, J.-P.3
-
20
-
-
15844394276
-
Evolutionary tuning of multiple SVM parameters
-
DOI 10.1016/j.neucom.2004.11.022, PII S0925231204005223
-
Friedrichs F, Igel C (2005) Evolutionary tuning of multiple SVM parameters. Neurocomputing 64:107-117. (Pubitemid 40425314)
-
(2005)
Neurocomputing
, vol.64
, Issue.1-4 SPEC. ISS.
, pp. 107-117
-
-
Friedrichs, F.1
Igel, C.2
-
21
-
-
0344235442
-
Feature selection for SVM by means of GAs
-
IEEE, New York
-
Fröhlich H, Chapelle O, Schölkopf B (2003) Feature selection for SVM by means of GAs. In: ICTAI. IEEE, New York, pp 142-148.
-
(2003)
ICTAI
, pp. 142-148
-
-
Fröhlich, H.1
Chapelle, O.2
Schölkopf, B.3
-
22
-
-
33750228090
-
Genetic programming for kernel-based learning with co-evolving subsets selection
-
Parallel Problem Solving from Nature, PPSN IX - 9th International Conference, Procedings
-
Gagne C et al (2006) Genetic programming for kernel-based learning with co-evolving subsets selection. In: Runarsson TP et al (eds) 9th PPSN'06. Springer, Berlin, pp 1008-1017. (Pubitemid 44609477)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4193
, pp. 1008-1017
-
-
Gagne, C.1
Schoenauer, M.2
Sebag, M.3
Tomassini, M.4
-
24
-
-
0242288807
-
Model selection for support vector machine classification
-
DOI 10.1016/S0925-2312(03)00375-8
-
Gold C, Sollich P (2003) Model selection for Support Vector Machine classification. Neurocomputing 55(1-2):221-249. (Pubitemid 37336677)
-
(2003)
Neurocomputing
, vol.55
, Issue.1-2
, pp. 221-249
-
-
Gold, C.1
Sollich, P.2
-
26
-
-
0036643063
-
Structural modelling with sparse kernels
-
DOI 10.1023/A:1013903804720
-
Gunn S, Kandola J (2002) Structural modelling with sparse kernels. Mach Learn 48:137-163. (Pubitemid 34247576)
-
(2002)
Machine Learning
, vol.48
, Issue.1-3
, pp. 137-163
-
-
Gunn, S.R.1
Kandola, J.S.2
-
28
-
-
84938447945
-
Direct search solution of numerical and statistical problems
-
Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J ACM 8:212-229.
-
(1961)
J ACM
, vol.8
, pp. 212-229
-
-
Hooke, R.1
Jeeves, T.A.2
-
29
-
-
29144521785
-
The genetic kernel support vector machine: Description and evaluation
-
DOI 10.1007/s10462-005-9009-3
-
Howley T, Madden MG (2005) The genetic kernel Support Vector Machine: description and evaluation. Artif Intell Rev 24(3- 4):379-395. (Pubitemid 41813391)
-
(2005)
Artificial Intelligence Review
, vol.24
, Issue.3-4
, pp. 379-395
-
-
Howley, T.1
Madden, M.G.2
-
30
-
-
77949488653
-
Advances in artificial neural networks-methodological development and application
-
Huang Y (2009) Advances in artificial neural networks-methodological development and application. Algorithms 2(3):973- 1007.
-
(2009)
Algorithms
, vol.2
, Issue.3
, pp. 973-1007
-
-
Huang, Y.1
-
31
-
-
24344435631
-
Multi-objective model selection for SVM
-
Coello Coello CA et al (eds), LNCS, vol 3410. Springer, Berlin
-
Igel C (2005) Multi-objective model selection for SVM. In: Coello Coello CA et al (eds) EMO 2005. LNCS, vol 3410. Springer, Berlin, pp 534-546.
-
(2005)
EMO 2005
, pp. 534-546
-
-
Igel, C.1
-
32
-
-
10044295837
-
A stochastic optimization approach for parameter tuning of SVM
-
Imbault F, Lebart K (2004) A stochastic optimization approach for parameter tuning of SVM. In: ICPR (4), pp 597-600.
-
(2004)
ICPR
, Issue.4
, pp. 597-600
-
-
Imbault, F.1
Lebart, K.2
-
33
-
-
84862115892
-
The maximum-margin approach to learning text classifiers
-
Joachims T (2001) The maximum-margin approach to learning text classifiers. Künstl Intell 15(3):63-65.
-
(2001)
Künstl Intell
, vol.15
, Issue.3
, pp. 63-65
-
-
Joachims, T.1
-
34
-
-
46249132434
-
An efficient method for gradient-based adaptation of hyperparameters in SVM models
-
IEEE Computer Society, Los Alamitos
-
Keerthi S, Sindhwani V, Chapelle O (2006) An efficient method for gradient-based adaptation of hyperparameters in SVM models. In: NIPS'06. IEEE Computer Society, Los Alamitos, pp 1-10.
-
(2006)
NIPS'06
, pp. 1-10
-
-
Keerthi, S.1
Sindhwani, V.2
Chapelle, O.3
-
38
-
-
17744373086
-
Evolutionary radial basis functions for credit assessment
-
DOI 10.1007/s10791-005-6617-0
-
Lacerda E, Carvalho AC, Braga AP, Ludermir TB (2005) Evolutionary radial basis functions for credit assessment. Appl Intell 22(3):167-181. (Pubitemid 40573951)
-
(2005)
Applied Intelligence
, vol.22
, Issue.3
, pp. 167-181
-
-
Lacerda, E.1
Carvalho, A.C.P.L.F.2
Braga, A.P.3
Ludermir, T.B.4
-
39
-
-
8844278523
-
Learning the kernel matrix with Semidefinite Programming
-
Lanckriet GRG et al (2004) Learning the kernel matrix with Semidefinite Programming. J Mach Learn Res 5:27-72.
-
(2004)
J Mach Learn Res
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
-
41
-
-
0001500115
-
Functions of positive and negative type and their connection with the theory of integral equations
-
Mercer J (1909) Functions of positive and negative type and their connection with the theory of integral equations. Philos Trans R Soc 209:415-446.
-
(1909)
Philos Trans R Soc
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
42
-
-
84862128982
-
A pattern search method for model selection of SV Regression
-
Grossman RL et al (eds), SIAM, Philadelphia
-
Momma M, Bennett KP (2002) A pattern search method for model selection of SV Regression. In: Grossman RL et al (eds) SIAM 2002. SIAM, Philadelphia, pp 2-16.
-
(2002)
SIAM 2002
, pp. 2-16
-
-
Momma, M.1
Bennett, K.P.2
-
43
-
-
35048874390
-
Evolutionary parameter estimation algorithm for combined kernel function in support vector machine
-
Ohn S-Y, Nguyen H-N, Chi S-D (2004) Evolutionary parameter estimation algorithm for combined kernel function in SVM. In: Content computing, AWCC 2004. Springer, Berlin, pp 481-486. (Pubitemid 39744451)
-
(2004)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3309
, pp. 481-486
-
-
Ohn, S.-Y.1
Nguyen, H.-N.2
Chi, S.-D.3
-
46
-
-
47249105274
-
Genetically constructed kernels for SVM
-
Springer, Berlin
-
Lessmann RS, Crone S (2005) Genetically constructed kernels for SVM. In: Proc. of GOR. Springer, Berlin, pp 257-262.
-
(2005)
Proc. of GOR
, pp. 257-262
-
-
Lessmann, R.S.1
Crone, S.2
-
47
-
-
0346451740
-
The kernel trick for distances
-
Leen TK, Dietterich TG, Tresp V (eds), MIT Press, Cambridge
-
Schölkopf B (2000) The kernel trick for distances. In: Leen TK, Dietterich TG, Tresp V (eds) NIPS. MIT Press, Cambridge, pp 301-307.
-
(2000)
NIPS
, pp. 301-307
-
-
Schölkopf, B.1
-
52
-
-
34548067155
-
Evolving kernels for SVM classification
-
Lipson H (ed), ACM, New York
-
Sullivan K, Luke S (2007) Evolving kernels for SVM classification. In: Lipson H (ed) GECCO 2007. ACM, New York, pp 1702- 1707.
-
(2007)
GECCO 2007
, pp. 1702-1707
-
-
Sullivan, K.1
Luke, S.2
-
53
-
-
0001842954
-
A study of reproduction in generational and steady state Genetic Algorithms
-
Rawlins GJE (ed), Morgan Kaufmann, San Mateo
-
Syswerda G (1991) A study of reproduction in generational and steady state Genetic Algorithms. In: Rawlins GJE (ed) FOGA. Morgan Kaufmann, San Mateo, pp 94-101.
-
(1991)
FOGA
, pp. 94-101
-
-
Syswerda, G.1
-
55
-
-
84958985297
-
Learning to predict the leave-one-out error of kernel based classifiers
-
Artificial Neural Networks - ICANN 2001
-
Tsuda K, Rätsch G, Mika S, Müller K-R (2001) Learning to predict the leave-one-out error of kernel based classifiers. In: LNCS, vol 2130, pp 331-338. (Pubitemid 33316980)
-
(2001)
Lecture Notes in Computer Science
, Issue.2130
, pp. 331-338
-
-
Tsuda, K.1
Ratsch, G.2
Mika, S.3
Muller, K.-R.4
-
57
-
-
0034264380
-
Bounds on error expectation for SVM
-
Vapnik V, Chapelle O (2000) Bounds on error expectation for SVM. Neural Comput 12(9):2013-2036.
-
(2000)
Neural Comput
, vol.12
, Issue.9
, pp. 2013-2036
-
-
Vapnik, V.1
Chapelle, O.2
-
58
-
-
84860668408
-
Hybrid ensemble approach for classification
-
Verma B, Hassan S (2009) Hybrid ensemble approach for classification. Appl Intell, 1-21.
-
(2009)
Appl Intell
, pp. 1-21
-
-
Verma, B.1
Hassan, S.2
-
59
-
-
0003267918
-
GACV for support vector machines
-
Smola B, SchRolkopf S (eds), MIT Press, Cambridge
-
Wahba G, Lin Y, Zhang H (1999) GACV for support vector machines. In: Smola B, SchRolkopf S (eds) Advances in large margin classifiers. MIT Press, Cambridge.
-
(1999)
Advances in Large Margin Classifiers
-
-
Wahba, G.1
Lin, Y.2
Zhang, H.3
-
60
-
-
34547980120
-
A kernel path algorithm for SVM
-
ACMPress, New York
-
Wang G, Yeung D-Y, Lochovsky FH (2007) A kernel path algorithm for SVM. In: ICML 07. ACMPress, New York, pp 951-958.
-
(2007)
ICML 07
, pp. 951-958
-
-
Wang, G.1
Yeung, D.-Y.2
Lochovsky, F.H.3
-
63
-
-
33646417903
-
Model-based transductive learning of the kernel matrix
-
Zhang Z, Kwok JT, Yeung D-Y (2006) Model-based transductive learning of the kernel matrix. Mach Learn 63(1):69-101.
-
(2006)
Mach Learn
, vol.63
, Issue.1
, pp. 69-101
-
-
Zhang, Z.1
Kwok, J.T.2
Yeung, D.-Y.3
|