메뉴 건너뛰기




Volumn 113, Issue , 2014, Pages 690-705

Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach

Author keywords

Dynamic uncertainty; Renewable wind energy; Stochastic system; Support vector regression; Unscented Kalman filter; Wind speed prediction

Indexed keywords

COMPUTER SIMULATION; ELECTRIC POWER GENERATION; ELECTRIC UTILITIES; FORECASTING; MODEL PREDICTIVE CONTROL; NEURAL NETWORKS; NONLINEAR FILTERING; OPTIMIZATION; PREDICTIVE CONTROL SYSTEMS; REGRESSION ANALYSIS; STOCHASTIC MODELS; STOCHASTIC SYSTEMS; VECTORS; WIND EFFECTS; WIND POWER;

EID: 84883355288     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2013.08.025     Document Type: Article
Times cited : (289)

References (46)
  • 1
    • 85021220284 scopus 로고    scopus 로고
    • AWEA. AWEA 3rd quarter 2012 public market report; 2012.
    • AWEA. AWEA 3rd quarter 2012 public market report; 2012.http://www.awea.org/learnabout/industrystats/index.cfm.
  • 2
    • 78650045524 scopus 로고    scopus 로고
    • A review of wind power and wind speed forecasting methods with different time horizons. In: North American power symposium. Arlington, TX, USA;
    • Soman S, Zareipour H, Malik O, Mandal P. A review of wind power and wind speed forecasting methods with different time horizons. In: North American power symposium. Arlington, TX, USA; 2010. p. 1-8.
    • (2010) , pp. 1-8
    • Soman, S.1    Zareipour, H.2    Malik, O.3    Mandal, P.4
  • 3
    • 65949122124 scopus 로고    scopus 로고
    • Energy analysis in a wind speed prognostic model as a wind farm sitting selection tool: a case study in Southern Greece
    • Xydis G., Koroneos C., Loizidou M. Energy analysis in a wind speed prognostic model as a wind farm sitting selection tool: a case study in Southern Greece. Appl Energy 2009, 86:2411-2420.
    • (2009) Appl Energy , vol.86 , pp. 2411-2420
    • Xydis, G.1    Koroneos, C.2    Loizidou, M.3
  • 4
    • 56949092137 scopus 로고    scopus 로고
    • Investigation of wind characteristics and assessment of wind-generation potentiality in Uludaǧ-Bursa, Turkey
    • Ucar A., Balo F. Investigation of wind characteristics and assessment of wind-generation potentiality in Uludaǧ-Bursa, Turkey. Appl Energy 2009, 86:333-339.
    • (2009) Appl Energy , vol.86 , pp. 333-339
    • Ucar, A.1    Balo, F.2
  • 5
    • 54149110925 scopus 로고    scopus 로고
    • A new strategy for wind speed forecasting using artificial intelligent methods
    • Monfared M., Rastegar H., Kojabadi H. A new strategy for wind speed forecasting using artificial intelligent methods. Renew Energy 2009, 34:845-848.
    • (2009) Renew Energy , vol.34 , pp. 845-848
    • Monfared, M.1    Rastegar, H.2    Kojabadi, H.3
  • 6
    • 61749097513 scopus 로고    scopus 로고
    • Skill forecasting from ensemble predictions of wind power
    • Pinson P., Nielsen H., Madsen H., Kariniotakis G. Skill forecasting from ensemble predictions of wind power. Appl Energy 2009, 86:1326-1334.
    • (2009) Appl Energy , vol.86 , pp. 1326-1334
    • Pinson, P.1    Nielsen, H.2    Madsen, H.3    Kariniotakis, G.4
  • 7
    • 33947303690 scopus 로고    scopus 로고
    • An advanced statistical method for wind power forecasting
    • Sideratos G., Hatziargyriou N. An advanced statistical method for wind power forecasting. IEEE Trans Power Syst 2007, 22:258-265.
    • (2007) IEEE Trans Power Syst , vol.22 , pp. 258-265
    • Sideratos, G.1    Hatziargyriou, N.2
  • 8
    • 39549091063 scopus 로고    scopus 로고
    • The origins of computer weather prediction and climate modeling
    • Lynch P. The origins of computer weather prediction and climate modeling. J Comput Phys 2008, 227:3431-3444.
    • (2008) J Comput Phys , vol.227 , pp. 3431-3444
    • Lynch, P.1
  • 10
    • 33751107713 scopus 로고    scopus 로고
    • Applications of Kalman filters based on non-linear functions to numerical weather predictions
    • Galanis G., Louka P., Katsafados P., Kallos G., Pytharoulis I. Applications of Kalman filters based on non-linear functions to numerical weather predictions. Ann Geophys 2006, 24:2451-2460.
    • (2006) Ann Geophys , vol.24 , pp. 2451-2460
    • Galanis, G.1    Louka, P.2    Katsafados, P.3    Kallos, G.4    Pytharoulis, I.5
  • 11
    • 84862912812 scopus 로고    scopus 로고
    • Kalman filter and analog schemes to postprocess numerical weather predictions
    • Monache L., Nipen T., Liu Y., Roux G., Stull R. Kalman filter and analog schemes to postprocess numerical weather predictions. Mon Weather Rev 2011, 139:3554-3570.
    • (2011) Mon Weather Rev , vol.139 , pp. 3554-3570
    • Monache, L.1    Nipen, T.2    Liu, Y.3    Roux, G.4    Stull, R.5
  • 12
    • 84864827118 scopus 로고    scopus 로고
    • Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output
    • Cassola F., Burlando M. Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output. Appl Energy 2012, 99:154-166.
    • (2012) Appl Energy , vol.99 , pp. 154-166
    • Cassola, F.1    Burlando, M.2
  • 13
    • 78650561071 scopus 로고    scopus 로고
    • Error analysis of short term wind power prediction models
    • De Giorgi M., Ficarella A., Tarantino M. Error analysis of short term wind power prediction models. Appl Energy 2011, 88:1298-1311.
    • (2011) Appl Energy , vol.88 , pp. 1298-1311
    • De Giorgi, M.1    Ficarella, A.2    Tarantino, M.3
  • 14
    • 0036779031 scopus 로고    scopus 로고
    • A novel approach for the forecasting of mean hourly wind speed time series
    • Sfetsos A. A novel approach for the forecasting of mean hourly wind speed time series. Renew Energy 2002, 27:163-174.
    • (2002) Renew Energy , vol.27 , pp. 163-174
    • Sfetsos, A.1
  • 15
    • 35549001332 scopus 로고    scopus 로고
    • Short term wind speed forecasting for wind turbine applications using linear prediction method
    • Riahy G., Abedi M. Short term wind speed forecasting for wind turbine applications using linear prediction method. Renew Energy 2008, 33:35-41.
    • (2008) Renew Energy , vol.33 , pp. 35-41
    • Riahy, G.1    Abedi, M.2
  • 16
    • 34547909295 scopus 로고    scopus 로고
    • Short-term wind power forecast based on ARX models
    • Durán M., Cros D., Riquelme J. Short-term wind power forecast based on ARX models. J Energy Eng 2007, 133:172-180.
    • (2007) J Energy Eng , vol.133 , pp. 172-180
    • Durán, M.1    Cros, D.2    Riquelme, J.3
  • 17
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • Kavasseri R., Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renew Energy 2009, 34:1388-1393.
    • (2009) Renew Energy , vol.34 , pp. 1388-1393
    • Kavasseri, R.1    Seetharaman, K.2
  • 18
    • 78650562310 scopus 로고    scopus 로고
    • ARMA based approaches for forecasting the tuple of wind speed and direction
    • Erdem E., Shi J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl Energy 2011, 88:1405-1414.
    • (2011) Appl Energy , vol.88 , pp. 1405-1414
    • Erdem, E.1    Shi, J.2
  • 19
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Li G., Shi J. On comparing three artificial neural networks for wind speed forecasting. Appl Energy 2010, 87:2313-2320.
    • (2010) Appl Energy , vol.87 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 20
    • 55349098201 scopus 로고    scopus 로고
    • Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models
    • Jursa R., Rohrig K. Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models. Int J Forecast 2008, 24:694-709.
    • (2008) Int J Forecast , vol.24 , pp. 694-709
    • Jursa, R.1    Rohrig, K.2
  • 21
    • 71849085127 scopus 로고    scopus 로고
    • The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria
    • Fadare D. The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energy 2010, 87:934-942.
    • (2010) Appl Energy , vol.87 , pp. 934-942
    • Fadare, D.1
  • 22
    • 84869882813 scopus 로고    scopus 로고
    • Generalized feed-forward based method for wind energy prediction
    • Celik A., Kolhe M. Generalized feed-forward based method for wind energy prediction. Appl Energy 2013, 101:582-588.
    • (2013) Appl Energy , vol.101 , pp. 582-588
    • Celik, A.1    Kolhe, M.2
  • 24
  • 25
    • 70449412872 scopus 로고    scopus 로고
    • Comparison of feedforward and feedback neural network architectures for short term wind speed prediction. In: Proceedings of international joint conference on neural networks. Atlanta, Georgia, USA;
    • Welch R, Ruffing S, Venayagamoorthy G. Comparison of feedforward and feedback neural network architectures for short term wind speed prediction. In: Proceedings of international joint conference on neural networks. Atlanta, Georgia, USA; 2009. p. 3335-40.
    • (2009) , pp. 3335-3340
    • Welch, R.1    Ruffing, S.2    Venayagamoorthy, G.3
  • 26
    • 84858144499 scopus 로고    scopus 로고
    • An analysis of wind speed prediction using artificial neural networks: a case study in Manjil, Iran
    • Assareh E., Behrang M., Ghalambaz M., Noghrehabadi A., Ghanbarzadeh A. An analysis of wind speed prediction using artificial neural networks: a case study in Manjil, Iran. Energy Sour 2012, 34:636-644.
    • (2012) Energy Sour , vol.34 , pp. 636-644
    • Assareh, E.1    Behrang, M.2    Ghalambaz, M.3    Noghrehabadi, A.4    Ghanbarzadeh, A.5
  • 27
    • 84860255082 scopus 로고    scopus 로고
    • Forecasting wind speed with recurrent neural networks
    • Cao Q., Ewing B., Thompson M. Forecasting wind speed with recurrent neural networks. Eur J Oper Res 2012, 221:148-154.
    • (2012) Eur J Oper Res , vol.221 , pp. 148-154
    • Cao, Q.1    Ewing, B.2    Thompson, M.3
  • 31
    • 77949570119 scopus 로고    scopus 로고
    • A hybrid statistical method to predict wind speed and wind power
    • Liu H., Tian H.-Q., Chen C., Li Y. A hybrid statistical method to predict wind speed and wind power. Renew Energy 2010, 35:1857-1861.
    • (2010) Renew Energy , vol.35 , pp. 1857-1861
    • Liu, H.1    Tian, H.-Q.2    Chen, C.3    Li, Y.4
  • 32
    • 84862213628 scopus 로고    scopus 로고
    • Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
    • Liu H., Tian H.-Q., Li Y.-F. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl Energy 2012, 98:415-424.
    • (2012) Appl Energy , vol.98 , pp. 415-424
    • Liu, H.1    Tian, H.-Q.2    Li, Y.-F.3
  • 33
    • 78049513565 scopus 로고    scopus 로고
    • Very short-term wind speed prediction: a new artificial neural network-Markov chain model
    • Pourmousavi Kani S., Ardehali M. Very short-term wind speed prediction: a new artificial neural network-Markov chain model. Energy Convers Manage 2011, 52:738-745.
    • (2011) Energy Convers Manage , vol.52 , pp. 738-745
    • Pourmousavi Kani, S.1    Ardehali, M.2
  • 35
    • 71849084254 scopus 로고    scopus 로고
    • A methodology to generate statistically dependent wind speed scenarios
    • Morales J., Mínguez R., Conejo A. A methodology to generate statistically dependent wind speed scenarios. Appl Energy 2010, 87:843-855.
    • (2010) Appl Energy , vol.87 , pp. 843-855
    • Morales, J.1    Mínguez, R.2    Conejo, A.3
  • 36
    • 33847369874 scopus 로고    scopus 로고
    • A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
    • Barbounis T., Theocharis J. A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation. Neurocomputing 2007, 70:1525-1542.
    • (2007) Neurocomputing , vol.70 , pp. 1525-1542
    • Barbounis, T.1    Theocharis, J.2
  • 37
    • 34250762015 scopus 로고    scopus 로고
    • Application of artificial neural networks for the wind speed prediction of target station using reference stations data
    • Bilgili M., Sahin B., Yasar A. Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renew Energy 2007, 32:2350-2360.
    • (2007) Renew Energy , vol.32 , pp. 2350-2360
    • Bilgili, M.1    Sahin, B.2    Yasar, A.3
  • 41
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing. In: Advances in neural information processing systems
    • Vapnik V, Goldwich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing. In: Advances in neural information processing systems, vol. 9; 1997. p. 182-93.
    • (1997) , vol.9 , pp. 182-193
    • Vapnik, V.1    Goldwich, S.2    Smola, A.3
  • 42
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • Chang C.-C., Lin C.-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011, 2:27:1-27:27.
    • (2011) ACM Trans Intell Syst Technol , vol.2 , pp. 2701-2727
    • Chang, C.-C.1    Lin, C.-J.2
  • 43
    • 84883344715 scopus 로고    scopus 로고
    • Support vector machines for classification and regression. ISIS technical report 14, University of Southampton;
    • Gunn S. Support vector machines for classification and regression. ISIS technical report 14, University of Southampton; 1998.
    • (1998)
    • Gunn, S.1
  • 44
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A., Scholköpf B. A tutorial on support vector regression. Stat Comput 2004, 14:199-222.
    • (2004) Stat Comput , vol.14 , pp. 199-222
    • Smola, A.1    Scholköpf, B.2
  • 45
    • 84962432583 scopus 로고    scopus 로고
    • The unscented Kalman filter for nonlinear estimation. In: Adaptive systems for signal processing, communications, and control symposium 2000. AS-SPCC. The IEEE 2000. Lake Louise, Alberta, Canada;
    • Wan E, Van Der Merwe R. The unscented Kalman filter for nonlinear estimation. In: Adaptive systems for signal processing, communications, and control symposium 2000. AS-SPCC. The IEEE 2000. Lake Louise, Alberta, Canada; 2000. p. 153-8.
    • (2000) , pp. 153-158
    • Wan, E.1    Van Der Merwe, R.2
  • 46
    • 84883326327 scopus 로고    scopus 로고
    • Unscented Kalman filter tutorial. In: Workshop on large-scale quantification of uncertainty. Sandia National Laboratories, USA;
    • Terejanu G. Unscented Kalman filter tutorial. In: Workshop on large-scale quantification of uncertainty. Sandia National Laboratories, USA; 2009. p. 1-6.
    • (2009) , pp. 1-6
    • Terejanu, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.