-
1
-
-
0002958315
-
Knowledge discovery in real databases: a report on the IJCAR 89 workshop.
-
Piatetsky-Shapiro G. Knowledge discovery in real databases: a report on the IJCAR 89 workshop. AI Mag. 1991, 11(5):68-70.
-
(1991)
AI Mag.
, vol.11
, Issue.5
, pp. 68-70
-
-
Piatetsky-Shapiro, G.1
-
2
-
-
70149110596
-
The status of the P versus NP problem.
-
Fortnow L. The status of the P versus NP problem. Commun 2009, 52(9):78-86.
-
(2009)
Commun
, vol.52
, Issue.9
, pp. 78-86
-
-
Fortnow, L.1
-
5
-
-
85020425245
-
-
Miller H, Han J., eds., 2nd ed. New York: John Wiley & Sons
-
Miller H, Han J., eds. Geographical Data Mining and Knowledge Discovery, 2nd ed. New York: John Wiley & Sons, 2009.
-
(2009)
Geographical Data Mining and Knowledge Discovery
-
-
-
6
-
-
84879531824
-
-
Kargupta H, Han J, Yu P, Motwani R, Kumar V., eds. Next Generation of Data Mining. Boca Raton, FL: CRC Press and Taylor & Francis
-
Kargupta H, Han J, Yu P, Motwani R, Kumar V., eds. Next Generation of Data Mining. Boca Raton, FL: CRC Press and Taylor & Francis, 2008.
-
(2008)
-
-
-
7
-
-
33749319347
-
Interestingness measures for data mining: a survey.
-
Geng L, Hamilton HJ. Interestingness measures for data mining: a survey. ACM Comput Surv 2006, 38(3):1-32.
-
(2006)
ACM Comput Surv
, vol.38
, Issue.3
, pp. 1-32
-
-
Geng, L.1
Hamilton, H.J.2
-
8
-
-
0002475334
-
A review of software packages for data mining.
-
Goebel M, Gruenwald L. A review of software packages for data mining. SIGKDD Explor 1999, 1(1):20-32.
-
(1999)
SIGKDD Explor
, vol.1
, Issue.1
, pp. 20-32
-
-
Goebel, M.1
Gruenwald, L.2
-
9
-
-
0242541986
-
A survey of data mining and knowledge discovery software tools.
-
Haughton D, Deichmann J, Eshghi A, Sayek S, Teebagy N, Topi H. A survey of data mining and knowledge discovery software tools. Am Stat 2003, 57(4):290-309.
-
(2003)
Am Stat
, vol.57
, Issue.4
, pp. 290-309
-
-
Haughton, D.1
Deichmann, J.2
Eshghi, A.3
Sayek, S.4
Teebagy, N.5
Topi, H.6
-
12
-
-
78650684523
-
-
eds. . Heidelberg, Germany: Springer-Verlag, 2009.
-
Coello CA, Dehuri S, Ghosh S., eds. Swarm Intelligence for Multi-objective Problems in Data Mining. Heidelberg, Germany: Springer-Verlag, 2009.
-
Swarm Intelligence for Multi-objective Problems in Data Mining
-
-
Coello, C.A.1
Dehuri, S.2
Ghosh, S.3
-
13
-
-
57849101005
-
-
eds. . Heidelberg, Germany: Springer-Verlag, 2008.
-
Ghosh A, Dehuri S, Ghosh S., eds. Multi-objective Evolutionary Algorithms for Knowledge Di scovery in Databases. Heidelberg, Germany: Springer-Verlag, 2008.
-
Multi-objective Evolutionary Algorithms for Knowledge Di scovery in Databases
-
-
Ghosh, A.1
Dehuri, S.2
Ghosh, S.3
-
15
-
-
55549103698
-
KEEL: a software tool to assess evolutionary algorithms for data mining problems.
-
Alcal-Fdez J, Snchez L, Garca S, del Jesus MJ, Ventura S, Garrell JM, Otero J, Romero C, Bacardit J, Rivas VM, et al. KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput 2009, 13(3):307-318.
-
(2009)
Soft Comput
, vol.13
, Issue.3
, pp. 307-318
-
-
Alcal-Fdez, J.1
Snchez, L.2
Garca, S.3
del Jesus, M.J.4
Ventura, S.5
Garrell, J.M.6
Otero, J.7
Romero, C.8
Bacardit, J.9
Rivas, V.M.10
-
17
-
-
84879523574
-
-
A learning system based on genetic tive algorithm. Ph.D. dissertation, University of Pittsburgh, Pittsburgh, PA, 1980.
-
Smith SF. A learning system based on genetic tive algorithm. Ph.D. dissertation, University of Pittsburgh, Pittsburgh, PA, 1980.
-
-
-
Smith, S.F.1
-
18
-
-
0020938473
-
-
Flexible learning of problem solving heuristics through adaptive search. In: Proceedings of 8th International Joint Conference on Artificial Intelligence
-
Smith SF. Flexible learning of problem solving heuristics through adaptive search. In: Proceedings of 8th International Joint Conference on Artificial Intelligence, 1983, 422-425.
-
(1983)
, pp. 422-425
-
-
Smith, S.F.1
-
19
-
-
0000746883
-
Escaping brittleness: the possibilities of general purpose learning algorithms applied to parallel-rule based systems.
-
Holland JH. Escaping brittleness: the possibilities of general purpose learning algorithms applied to parallel-rule based systems. Mach Learn: An Artif Intell Approach 1986, 2:593-623.
-
(1986)
Mach Learn: An Artif Intell Approach
, vol.2
, pp. 593-623
-
-
Holland, J.H.1
-
20
-
-
0024735689
-
-
Classifier systems and genetic algorithms. Artif Intell 1989, 40(1-3)
-
Booker LB. Goldberg DE, Holland JH. Classifier systems and genetic algorithms. Artif Intell 1989, 40(1-3):235-283.
-
-
-
Booker, L.B.1
Goldberg, D.E.2
Holland, J.H.3
-
21
-
-
84971641220
-
SIA: a supervised inductive algorithm with genetic search for learning attributes based concepts
-
In: . LNAI 667, Berlin, Germany: Springer-Verlag
-
Venturini G. SIA: a supervised inductive algorithm with genetic search for learning attributes based concepts. In: Proceedings of European Conference on Machine Learning. LNAI 667, Berlin, Germany: Springer-Verlag, 1993, 280-296.
-
(1993)
Proceedings of European Conference on Machine Learning
, pp. 280-296
-
-
Venturini, G.1
-
22
-
-
0027696043
-
Competition based induction of decision models from examples
-
Greene DP. Smith SF. Competition based induction of decision models from examples. Mach Learn 1993, 13(2-3), 229-257.
-
(1993)
Mach Learn
, vol.13
, Issue.2-3
, pp. 229-257
-
-
Greene, D.P.1
Smith, S.F.2
-
23
-
-
60549099603
-
Fr3: a fuzzy rule learner for inducing reliable classifier.
-
Huhn J, Hullermeier E. Fr3: a fuzzy rule learner for inducing reliable classifier. IEEE Trans Fuzzy Syst 2009, 17:138-149.
-
(2009)
IEEE Trans Fuzzy Syst
, vol.17
, pp. 138-149
-
-
Huhn, J.1
Hullermeier, E.2
-
24
-
-
78751629935
-
Fuzzy sets in machine learning and data mining.
-
Hullermeier E. Fuzzy sets in machine learning and data mining. Appl Soft Comput J 2011, 11:1493-1505.
-
(2011)
Appl Soft Comput J
, vol.11
, pp. 1493-1505
-
-
Hullermeier, E.1
-
25
-
-
84873126615
-
Fuzzy machine learning and data mining.
-
Hullermeier E. Fuzzy machine learning and data mining. WIREs Data Mining Knowl Discov 2011, 1:269-283.
-
(2011)
WIREs Data Mining Knowl Discov
, vol.1
, pp. 269-283
-
-
Hullermeier, E.1
-
29
-
-
84873116265
-
Gene expression modular analysis an overview from the data mining perspective
-
Alberto P-M. Gene expression modular analysis an overview from the data mining perspective. WIREs Data Mining Knowl Discov 2011, 1:381-396.
-
(2011)
WIREs Data Mining Knowl Discov
, vol.1
, pp. 381-396
-
-
Alberto, P.-M.1
-
31
-
-
84873159181
-
Evolutionary design of decision trees for medical application.
-
Kokol P, Pohorec S, Stiglic G, Podgorelec V. Evolutionary design of decision trees for medical application. WIREs Data Mining Knowl Discov 2012, 2:237-254.
-
(2012)
WIREs Data Mining Knowl Discov
, vol.2
, pp. 237-254
-
-
Kokol, P.1
Pohorec, S.2
Stiglic, G.3
Podgorelec, V.4
-
35
-
-
0030129318
-
A data reduction method for intrusion detection
-
Lam K-Y, Hui L, Chung S-L . A data reduction method for intrusion detection. J Syst Software 1996, 33:101-108.
-
(1996)
J Syst Software
, vol.33
, pp. 101-108
-
-
Lam, K.-Y.1
Hui, L.2
Chung, S.-L.3
-
36
-
-
84885774862
-
A framework for constructing features and models for intrusion detection systems.
-
Lee W, Stolfo SJ. A framework for constructing features and models for intrusion detection systems. ACM Trans Inform Syst Security 2000, 3(4):227-261.
-
(2000)
ACM Trans Inform Syst Security
, vol.3
, Issue.4
, pp. 227-261
-
-
Lee, W.1
Stolfo, S.J.2
-
38
-
-
84861092128
-
Evolutionary selection for training set selection
-
Nicolas G-P . Evolutionary selection for training set selection. WIREs Data Mining Knowl Discov 2011, 1:512-523.
-
(2011)
WIREs Data Mining Knowl Discov
, vol.1
, pp. 512-523
-
-
Nicolas, G.-P.1
-
39
-
-
26444454606
-
Feature selection for unsupervised learning
-
Dy JG, Broadley CE. Feature selection for unsupervised learning, J Mach Learn Res 2004, 5(5):845-889.
-
(2004)
J Mach Learn Res
, vol.5
, Issue.5
, pp. 845-889
-
-
Dy, J.G.1
Broadley, C.E.2
-
40
-
-
0026839971
-
Fast genetic selection of features for neural network classifiers.
-
Brill FZ, Brown DE, Martin WN. Fast genetic selection of features for neural network classifiers. IEEE Trans Neural Netw 1998, 3(2):324-328.
-
(1998)
IEEE Trans Neural Netw
, vol.3
, Issue.2
, pp. 324-328
-
-
Brill, F.Z.1
Brown, D.E.2
Martin, W.N.3
-
42
-
-
0032028297
-
Feature subset selection using a genetic algorithm
-
Yang J, Honavar V. Feature subset selection using a genetic algorithm, IEEE Intell SystTheir Appl 1998, 13(2):44-49.
-
(1998)
IEEE Intell SystTheir Appl
, vol.13
, Issue.2
, pp. 44-49
-
-
Yang, J.1
Honavar, V.2
-
43
-
-
0024895461
-
A note on genetic algorithms for large-scale feature selection.
-
Siedlecki W, Sklansky J. A note on genetic algorithms for large-scale feature selection. Pattern Recogn Lett 1989, 10:335-347.
-
(1989)
Pattern Recogn Lett
, vol.10
, pp. 335-347
-
-
Siedlecki, W.1
Sklansky, J.2
-
44
-
-
2442699339
-
Multi-objective rule mining using genetic algorithms
-
Ghosh A, Nath B. Multi-objective rule mining using genetic algorithms. Information Sciences 2004, 163:123-133.
-
(2004)
Information Sciences
, vol.163
, pp. 123-133
-
-
Ghosh, A.1
Nath, B.2
-
45
-
-
84879522829
-
-
Ghosh A, Dehuri S, Ghosh S. Eds. . Berlin, Germany: Springer-Verlag
-
Ghosh A, Dehuri S, Ghosh S. Eds. Multiobjective Association Rule Mining. Berlin, Germany: Springer-Verlag, 2008.
-
(2008)
Multiobjective Association Rule Mining
-
-
-
46
-
-
0034819176
-
A genetic approach to the automatic clustering problem.
-
Tseng LY, Yang SB. A genetic approach to the automatic clustering problem. Pattern Recogn 2001, 34:415-424.
-
(2001)
Pattern Recogn
, vol.34
, pp. 415-424
-
-
Tseng, L.Y.1
Yang, S.B.2
-
48
-
-
0032594811
-
Applying genetic algorithms to search for the best hierarchical clustering of a dataset.
-
Lozano JA, Larranaga P. Applying genetic algorithms to search for the best hierarchical clustering of a dataset. Pattern Recogn Lett 1999, 20:911-918.
-
(1999)
Pattern Recogn Lett
, vol.20
, pp. 911-918
-
-
Lozano, J.A.1
Larranaga, P.2
-
49
-
-
63049111403
-
A survey of evolutionary algorithms for clustering
-
Hruschka ER, Campello RJGB, Freitas AA, deCarvalho A. A survey of evolutionary algorithms for clustering. IEEE Trans Syst Man Cybern C. 2009, 39(2):133-154.
-
(2009)
IEEE Trans Syst Man Cybern C
, vol.39
, Issue.2
, pp. 133-154
-
-
Hruschka, E.R.1
Campello, R.J.G.B.2
Freitas, A.A.3
deCarvalho, A.4
-
51
-
-
0042842434
-
Evaluation of global image thresholding for change detection.
-
Rosin PL, Ioannidis E. Evaluation of global image thresholding for change detection. Pattern Recogn Lett 2003, 24:2345-2356.
-
(2003)
Pattern Recogn Lett
, vol.24
, pp. 2345-2356
-
-
Rosin, P.L.1
Ioannidis, E.2
-
52
-
-
0002337827
-
Machine learning and data mining.
-
Mitchell T. Machine learning and data mining. Commun ACM 1999, 42(11):31-36.
-
(1999)
Commun ACM
, vol.42
, Issue.11
, pp. 31-36
-
-
Mitchell, T.1
-
53
-
-
84879526937
-
-
Dehuri S, Cho S-B., eds. . London: Imperial College Press
-
Dehuri S, Cho S-B., eds. Knowledge Mining Using Intelligent Agents. London: Imperial College Press, 2010.
-
(2010)
Knowledge Mining Using Intelligent Agents
-
-
-
54
-
-
80052291111
-
-
Lim CP, Jain LC, Dehuri S., eds. . Heidelberg, Germany: Springer-Verlag
-
Lim CP, Jain LC, Dehuri S., eds. Innovations in Swarm Intelligence. Heidelberg, Germany: Springer-Verlag, 2009.
-
(2009)
Innovations in Swarm Intelligence
-
-
-
58
-
-
0037592480
-
Evolution strategies: a comprehensive introduction.
-
Bayer HG, Schwefel H-R. Evolution strategies: a comprehensive introduction. J Natural Comput 2002, 1(1):3-52.
-
(2002)
J Natural Comput
, vol.1
, Issue.1
, pp. 3-52
-
-
Bayer, H.G.1
Schwefel, H.-R.2
-
64
-
-
84879537212
-
-
Population based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Carnegie Mellon University
-
Baluja S. Population based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Carnegie Mellon University, 1994.
-
(1994)
-
-
Baluja, S.1
-
67
-
-
84879519395
-
-
Multiple objective optimization with vector evaluated genetic algorithms. In ICGA 85
-
Schaffer JD. Multiple objective optimization with vector evaluated genetic algorithms. In ICGA 85, 1985, 93-100.
-
(1985)
, pp. 93-100
-
-
Schaffer, J.D.1
-
69
-
-
0033318858
-
Multi-objective evolutionary algorithms: a comparative case study and strength pareto approach.
-
Ziztler E, Thiele L. Multi-objective evolutionary algorithms: a comparative case study and strength pareto approach. IEEE Trans Evol Comput 1999, 3:257-271.
-
(1999)
IEEE Trans Evol Comput
, vol.3
, pp. 257-271
-
-
Ziztler, E.1
Thiele, L.2
-
70
-
-
0036530772
-
A fast and elitist multi-objective genetic algorithm: Nsga-ii.
-
Deb K, Agrawal S, Pratap A, Meyarivan T. A fast and elitist multi-objective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 2002, 6(2):182-197.
-
(2002)
IEEE Trans Evol Comput
, vol.6
, Issue.2
, pp. 182-197
-
-
Deb, K.1
Agrawal, S.2
Pratap, A.3
Meyarivan, T.4
-
71
-
-
84879512511
-
-
An evolutionary algorithms for multi-objective optimization: the strength pareto approach. TIK Report 43, Swiss Federal Institute of Technology (ETZ), Zurich, Swizerland
-
Zitzler E, Thiele L. An evolutionary algorithms for multi-objective optimization: the strength pareto approach. TIK Report 43, Swiss Federal Institute of Technology (ETZ), Zurich, Swizerland, 1998.
-
(1998)
-
-
Zitzler, E.1
Thiele, L.2
-
72
-
-
2942547409
-
SPEA2: improving the strength pareto evolutionary algorithm for multi-objective optimization
-
In: Zitzler E, Glannakoglou KC, Tsahalis D, Periaux J, Papailiou K, Fogarty T, eds. . Barcelona, Spain: International Center for Numerical Methods in Engineering (CIMNE)
-
Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength pareto evolutionary algorithm for multi-objective optimization. In: Zitzler E, Glannakoglou KC, Tsahalis D, Periaux J, Papailiou K, Fogarty T, eds. Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems. Barcelona, Spain: International Center for Numerical Methods in Engineering (CIMNE), 2002, 95-100.
-
(2002)
Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems
, pp. 95-100
-
-
Zitzler, E.1
Laumanns, M.2
Thiele, L.3
-
74
-
-
0033114942
-
Implementation of evolutionary fuzzy systems.
-
Shi Y, Eberhart R, Chen Y. Implementation of evolutionary fuzzy systems. IEEE Trans Fuzzy Syst 1999, 7(2):109-119.
-
(1999)
IEEE Trans Fuzzy Syst
, vol.7
, Issue.2
, pp. 109-119
-
-
Shi, Y.1
Eberhart, R.2
Chen, Y.3
-
75
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R, John GH. Wrappers for feature subset selection, Artif Intell 1997, 97(1-2):273-324.
-
(1997)
Artif Intell
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
80
-
-
0030696435
-
-
Using feature selection to aid an iconic search through an image database. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
-
Messer K, Kittler J. Using feature selection to aid an iconic search through an image database. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 1997, 1605-2608.
-
(1997)
, pp. 1605-2608
-
-
Messer, K.1
Kittler, J.2
-
81
-
-
0032296755
-
-
A classification based similarity metric for 3Dimage retrieval. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition
-
Liu Y, Dellaert F. A classification based similarity metric for 3Dimage retrieval. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 1998, 800-805.
-
(1998)
, pp. 800-805
-
-
Liu, Y.1
Dellaert, F.2
-
82
-
-
0033700111
-
-
Advanced local feature selection in medical diagnostics. In: Proceedings of 13th IEEE Symposium on Computer-Based Medical Systems
-
Puuronen S, Tsymbal A, Skrypnik I. Advanced local feature selection in medical diagnostics. In: Proceedings of 13th IEEE Symposium on Computer-Based Medical Systems, 2000, 25-30.
-
(2000)
, pp. 25-30
-
-
Puuronen, S.1
Tsymbal, A.2
Skrypnik, I.3
-
83
-
-
0032689676
-
-
Multiscale feature selection in stereo. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition
-
Ishikawa H. Multiscale feature selection in stereo. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 1999, 132-137.
-
(1999)
, pp. 132-137
-
-
Ishikawa, H.1
-
84
-
-
0033211104
-
Analysis of class separation and combination of class dependent features for handwriting recognition
-
Oh I-S, Lee JS, Suen CY. Analysis of class separation and combination of class dependent features for handwriting recognition, IEEE Trans Pattern Anal Mach Intell 1999, 21(10):1089-1094.
-
(1999)
IEEE Trans Pattern Anal Mach Intell
, vol.21
, Issue.10
, pp. 1089-1094
-
-
Oh, I.-S.1
Lee, J.S.2
Suen, C.Y.3
-
86
-
-
67449169301
-
-
A filter approach to feature selection based on mutual information. In: Proceedings of 5th IEEE International Conference on Cognitive Informatics
-
Huang J, Cai Y, Xu X. A filter approach to feature selection based on mutual information. In: Proceedings of 5th IEEE International Conference on Cognitive Informatics, 2006, 84-89.
-
(2006)
, pp. 84-89
-
-
Huang, J.1
Cai, Y.2
Xu, X.3
-
87
-
-
38449087399
-
Tombilla-Sanroman M. Filter Methods for Feature Selection-A Comparative Study
-
In Yin H, Tino P, Corchado E, Byrne W, Yao X, eds. . Berlin Heidelberg: Springer-Verlag
-
Sanchez-Marona N, Alonso-Betanzos A, Tombilla-Sanroman M. Filter Methods for Feature Selection-A Comparative Study. In Yin H, Tino P, Corchado E, Byrne W, Yao X, eds. Intelligent Data engineering and Automated Learning (IDEAL 2007), LNCS, vol. 4881. Berlin Heidelberg: Springer-Verlag, 2007, 178-187.
-
(2007)
Intelligent Data engineering and Automated Learning (IDEAL 2007), LNCS, vol. 4881
, pp. 178-187
-
-
Sanchez-Marona, N.1
Alonso-Betanzos, A.2
-
89
-
-
0000751098
-
Using learning to facilitate the evolution of features for recognizing visual concepts.
-
Bala J. Using learning to facilitate the evolution of features for recognizing visual concepts. Evol Comput 1996, 4(3):297-312.
-
(1996)
Evol Comput
, vol.4
, Issue.3
, pp. 297-312
-
-
Bala, J.1
-
90
-
-
0002640910
-
Hybrid learning using genetic algorithms and decision trees for pattern classification
-
In: . Montréal Québec, Canada: Morgan Kaufmann
-
Bala J, Huang J, Vafaie H, Dejong K, Wechsler H. Hybrid learning using genetic algorithms and decision trees for pattern classification. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI'95). Montréal Québec, Canada: Morgan Kaufmann, 1995, 719-724.
-
(1995)
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI'95)
, pp. 719-724
-
-
Bala, J.1
Huang, J.2
Vafaie, H.3
Dejong, K.4
Wechsler, H.5
-
91
-
-
2342484130
-
Nonstandard crossover for a standard representation- commonality based feature subset selection
-
In: . Orlando, FL: Morgan Kaufmann
-
Chen S, Guerra-Salcedo C, Smith S. Nonstandard crossover for a standard representation- commonality based feature subset selection. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'99). Orlando, FL: Morgan Kaufmann, 1999, 129-134.
-
(1999)
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'99)
, pp. 129-134
-
-
Chen, S.1
Guerra-Salcedo, C.2
Smith, S.3
-
92
-
-
84879508197
-
-
Genetic search for feature subset selection: A comparison between CHC and GENESIS. In: Genetic Programming 1998: Proceedings of the Third Annual Conference, 1999, 504-509.
-
Guerra-Salcedo C. Genetic search for feature subset selection: A comparison between CHC and GENESIS. In: Genetic Programming 1998: Proceedings of the Third Annual Conference, 1999, 504-509.
-
-
-
Guerra-Salcedo, C.1
-
94
-
-
84958633471
-
-
On the scalability of genetic algorithms to very large scale feature selection. In: Proceedings of the Real World applications of Evolutionary Computation (EvoWorkshops 2000), LNCS 1803. Berlin, Germany: Springer-Verlag
-
Moser A, Murty MN. On the scalability of genetic algorithms to very large scale feature selection. In: Proceedings of the Real World applications of Evolutionary Computation (EvoWorkshops 2000), LNCS 1803. Berlin, Germany: Springer-Verlag, 2000, 77-86.
-
(2000)
, pp. 77-86
-
-
Moser, A.1
Murty, M.N.2
-
95
-
-
0000859501
-
-
Multi-objective pattern and feature selection by a genetic algorithm. In Proceedings of the 2000 Genetic and Evolutionary Computation Conference (GECCO' 2000)
-
Ishibuchi H, Nakashima T. Multi-objective pattern and feature selection by a genetic algorithm. In Proceedings of the 2000 Genetic and Evolutionary Computation Conference (GECCO' 2000), 2000, 1069-1076.
-
(2000)
, pp. 1069-1076
-
-
Ishibuchi, H.1
Nakashima, T.2
-
96
-
-
84879508408
-
-
Feature Selection Mechanisms for Ensemble Creation: A Genetic Search Perspective. Technical Report WS-99-06, Menlo Park, CA:AAAI Press
-
Guerra-Salcedo C, Whitley D. Feature Selection Mechanisms for Ensemble Creation: A Genetic Search Perspective. Technical Report WS-99-06, Menlo Park, CA:AAAI Press, 1999, 13-17.
-
(1999)
, pp. 13-17
-
-
Guerra-Salcedo, C.1
Whitley, D.2
-
97
-
-
76749096459
-
IFS-CoCo: instance and feature selection based on cooperative coevolution with nearest neighbor rule
-
Derrac J, Garcia S, Herrera F. IFS-CoCo: instance and feature selection based on cooperative coevolution with nearest neighbor rule. Pattern Recogn 2010, 43(6):2082-2105.
-
(2010)
Pattern Recogn
, vol.43
, Issue.6
, pp. 2082-2105
-
-
Derrac, J.1
Garcia, S.2
Herrera, F.3
-
98
-
-
34447343762
-
A hybrid genetic algorithm for feature selection wrapper based on mutual information.
-
Huang Y, Cai J, Xu X. A hybrid genetic algorithm for feature selection wrapper based on mutual information. Pattern Recogn Lett 2007, 28:1825-1844.
-
(2007)
Pattern Recogn Lett
, vol.28
, pp. 1825-1844
-
-
Huang, Y.1
Cai, J.2
Xu, X.3
-
99
-
-
76249107498
-
Involving new local search in hybrid genetic algorithm for feature selection
-
Kabir MM, Shahjahan M, Murase K. Involving new local search in hybrid genetic algorithm for feature selection. Lect Notes in Comput Sci 2009, 5864: 150-158.
-
(2009)
Lect Notes in Comput Sci
, vol.5864
, pp. 150-158
-
-
Kabir, M.M.1
Shahjahan, M.2
Murase, K.3
-
100
-
-
77956738009
-
Sequential multi-criteria feature selection algorithm based on agent genetic algorithm.
-
Li Y, Zeng X. Sequential multi-criteria feature selection algorithm based on agent genetic algorithm. Appl Intell 2010, 33(2):117-131.
-
(2010)
Appl Intell
, vol.33
, Issue.2
, pp. 117-131
-
-
Li, Y.1
Zeng, X.2
-
101
-
-
0034274591
-
A comparison of prediction accuracy, complexity and training time of thirty three old and new classification algorithms.
-
Lim TS, Loh W-Y, Shih Y-S. A comparison of prediction accuracy, complexity and training time of thirty three old and new classification algorithms. Mach Learn J 2000, 40:203-228.
-
(2000)
Mach Learn J
, vol.40
, pp. 203-228
-
-
Lim, T.S.1
Loh, W.-Y.2
Shih, Y.-S.3
-
104
-
-
33744584654
-
Induction of decision trees.
-
Quinlan JR. Induction of decision trees. J Mach Learn 1986, 1(1):81-106.
-
(1986)
J Mach Learn
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
105
-
-
77952642202
-
Incremental induction of decision trees.
-
Utgoff PE. Incremental induction of decision trees. J Mach Learn 1989, 4:161-186.
-
(1989)
J Mach Learn
, vol.4
, pp. 161-186
-
-
Utgoff, P.E.1
-
107
-
-
85152519885
-
-
An improved algorithm for incremental induction of decision trees. In: Proceedings of 11th International Conference on Machine Learning.
-
Utgoff PE. An improved algorithm for incremental induction of decision trees. In: Proceedings of 11th International Conference on Machine Learning.1994, 318-325.
-
(1994)
, pp. 318-325
-
-
Utgoff, P.E.1
-
109
-
-
84856275943
-
Classification and Regression Trees
-
Loh W-Y. Classification and Regression Trees, WIREs Data Mining Knowl Discov 2011, 1:14-23.
-
(2011)
WIREs Data Mining Knowl Discov
, vol.1
, pp. 14-23
-
-
Loh, W.-Y.1
-
110
-
-
33747873415
-
Predictive and comprehensible rule discovery using a multi-objective genetic algorithms.
-
Dehuri S, Mall R. Predictive and comprehensible rule discovery using a multi-objective genetic algorithms. Knowl-Based Syst 2006, 19:413-421.
-
(2006)
Knowl-Based Syst
, vol.19
, pp. 413-421
-
-
Dehuri, S.1
Mall, R.2
-
111
-
-
27144442442
-
Discovering interesting patterns for investment decision making with GLOWER: a genetic learner overlaid with entropy reduction.
-
Dhar V, Chou D, Provost F. Discovering interesting patterns for investment decision making with GLOWER: a genetic learner overlaid with entropy reduction. Data Mining Knowl Discov J 2000, 4(4):251-280.
-
(2000)
Data Mining Knowl Discov J
, vol.4
, Issue.4
, pp. 251-280
-
-
Dhar, V.1
Chou, D.2
Provost, F.3
-
112
-
-
84879541197
-
-
Testing different sharing methods in concept learning. TUCS Technical Report, 71, Center for Computer Science, Finland
-
Hekanaho J. Testing different sharing methods in concept learning. TUCS Technical Report, 71, Center for Computer Science, Finland, 1996.
-
(1996)
-
-
Hekanaho, J.1
-
113
-
-
33847141517
-
Timeweaver: a genetic algorithm for identifying predictive patterns in sequences of events
-
In: . San Mateo, CA: Morgan Kaufmann
-
Weiss GM. Timeweaver: a genetic algorithm for identifying predictive patterns in sequences of events. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'99). San Mateo, CA: Morgan Kaufmann, 1999, 718-725.
-
(1999)
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'99)
, pp. 718-725
-
-
Weiss, G.M.1
-
114
-
-
0012141368
-
A survey of evolutionary algorithms for data mining and knowledge discovery
-
In Ghosh A, Tsutsui S, eds. . Berlin, Germany: Springer-Verlag
-
Freitas AA. A survey of evolutionary algorithms for data mining and knowledge discovery. In Ghosh A, Tsutsui S, eds. Advances in Evolutionary Computation. Berlin, Germany: Springer-Verlag, 2002, 819-845.
-
(2002)
Advances in Evolutionary Computation
, pp. 819-845
-
-
Freitas, A.A.1
-
115
-
-
0027696178
-
-
A knowledge intensive genetic algorithm for supervised learning
-
Janikow CZ. A knowledge intensive genetic algorithm for supervised learning, Mach Learn 1993, 13:189-228.
-
(1993)
Mach Learn
, vol.13
, pp. 189-228
-
-
Janikow, C.Z.1
-
117
-
-
0000662737
-
Search intensive concept induction.
-
Giordana A, Neri F. Search intensive concept induction. Evol Comput 1995, 3(4):375-416.
-
(1995)
Evol Comput
, vol.3
, Issue.4
, pp. 375-416
-
-
Giordana, A.1
Neri, F.2
-
118
-
-
84947768788
-
-
In: Proceedings of the 12th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE'99). LNCS, 1611. Berlin, Germany: Springer-Verlag
-
Mansilla EB, Mekaouche A, Guiu JMG. A study of genetic classifier system based on the Pittsburg approach on a medical domain. In: Proceedings of the 12th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE'99). LNCS, 1611. Berlin, Germany: Springer-Verlag, 1999, 175-184.
-
(1999)
A study of genetic classifier system based on the Pittsburg approach on a medical domain
, pp. 175-184
-
-
Mansilla, E.B.1
Mekaouche, A.2
Guiu, J.M.G.3
-
119
-
-
84956869878
-
An evolutionary algorithm using multivariate discritization for decision rule induction
-
In: . LNCS 1704, Berlin, Germany: Springer-Verlag
-
Kwedlo W, Kretowski M. An evolutionary algorithm using multivariate discritization for decision rule induction. In: Proceedings of the 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD' 99). LNCS 1704, Berlin, Germany: Springer-Verlag, 1999, 392-397.
-
(1999)
Proceedings of the 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD' 99)
, pp. 392-397
-
-
Kwedlo, W.1
Kretowski, M.2
-
120
-
-
70349777604
-
Genetic algorithms for multi-criterion classification and clustering in data mining.
-
Dehuri S, Ghosh A, Mall R. Genetic algorithms for multi-criterion classification and clustering in data mining. Int J Comput Inform Sci 2006, 4(3):143-154.
-
(2006)
Int J Comput Inform Sci
, vol.4
, Issue.3
, pp. 143-154
-
-
Dehuri, S.1
Ghosh, A.2
Mall, R.3
-
121
-
-
34548498617
-
Application of elitist multi-objective genetic algorithm for classification rule generation
-
Dehuri S, Patnaik S, Ghosh A, Mall R. Application of elitist multi-objective genetic algorithm for classification rule generation, Appl Soft Comput 2008, 8:477-487.
-
(2008)
Appl Soft Comput
, vol.8
, pp. 477-487
-
-
Dehuri, S.1
Patnaik, S.2
Ghosh, A.3
Mall, R.4
-
122
-
-
84879532326
-
-
Background knowledge in ga based concept learning. In: Proceedings of the 13th International Conference on Machine Learning (ICML'96)
-
Hekanaho J. Background knowledge in ga based concept learning. In: Proceedings of the 13th International Conference on Machine Learning (ICML'96), 1996, 234-242.
-
(1996)
, pp. 234-242
-
-
Hekanaho, J.1
-
123
-
-
84879543499
-
-
Pattern discovery from data using genetic algorithms. In: Proceedings of the 1st Pacific Asia Conference on Knowledge Discovery and Data Mining
-
Pei M, Goodman ED, Punch WF. Pattern discovery from data using genetic algorithms. In: Proceedings of the 1st Pacific Asia Conference on Knowledge Discovery and Data Mining, 1997.
-
(1997)
-
-
Pei, M.1
Goodman, E.D.2
Punch, W.F.3
-
124
-
-
79956359210
-
Interactive evolution
-
In Back T, Fogel DB, Michalewicz T, eds. . London: Institute of Physics Publishing
-
Banzhaf W. Interactive evolution. In Back T, Fogel DB, Michalewicz T, eds. Evolutionary Computation 1. London: Institute of Physics Publishing, 2000, 132-135.
-
(2000)
Evolutionary Computation 1
, pp. 132-135
-
-
Banzhaf, W.1
-
126
-
-
2942569225
-
-
In:, ed. . Technical Report WS-99-06, Palto Alto, CA: AAAI Press
-
Thomas JD. Sycara K. In: Freitas AA, ed. Data Mining with Evolutionary Algorithms: Research Directions-Papers from the AAAI'99/GECCO'99 Workshop. Technical Report WS-99-06, Palto Alto, CA: AAAI Press, 1999, 7-11.
-
(1999)
Data Mining with Evolutionary Algorithms: Research Directions-Papers from the AAAI'99/GECCO'99 Workshop
, pp. 7-11
-
-
Thomas, J.D.1
Sycara, K.2
Freitas, A.A.3
-
130
-
-
0031988675
-
Extracting fuzzy rules for system modelling using a hybrid of genetic algorithms and kalman filter.
-
Wang L, Yen J. Extracting fuzzy rules for system modelling using a hybrid of genetic algorithms and kalman filter. Fuzzy Sets Syst 1999, 101:353-362.
-
(1999)
Fuzzy Sets Syst
, vol.101
, pp. 353-362
-
-
Wang, L.1
Yen, J.2
-
131
-
-
0031988674
-
Learning maximal structure rules in fuzzy logic for knowledge acquisition in expert system.
-
Castro JL, Castro-Schez JJ. Zurita J. Learning maximal structure rules in fuzzy logic for knowledge acquisition in expert system. Fuzzy Sets Syst 1999, 101:331-342.
-
(1999)
Fuzzy Sets Syst
, vol.101
, pp. 331-342
-
-
Castro, J.L.1
Castro-Schez, J.J.2
Zurita, J.3
-
132
-
-
84879536456
-
-
Constructing membership functions and generating weighted fuzzy rules from training data. In: Proceedings of the Ninth National Conference on Fuzzy theory and Its Applications
-
Chang C, Chen S. Constructing membership functions and generating weighted fuzzy rules from training data. In: Proceedings of the Ninth National Conference on Fuzzy theory and Its Applications, 2001, 708-713.
-
(2001)
, pp. 708-713
-
-
Chang, C.1
Chen, S.2
-
133
-
-
0030289773
-
Introduction of fuzzy rules and membership functions from training examples.
-
Hong T, Lee C. Introduction of fuzzy rules and membership functions from training examples. Fuzzy Sets Syst 1996, 84:33-47.
-
(1996)
Fuzzy Sets Syst
, vol.84
, pp. 33-47
-
-
Hong, T.1
Lee, C.2
-
134
-
-
0033078158
-
A new method for constructing membership functions and fuzzy rules from training examples.
-
Wu TP, Chen SM, A new method for constructing membership functions and fuzzy rules from training examples. IEEE Trans Syst Man Cybernetics B 1999, 29:25-40.
-
(1999)
IEEE Trans Syst Man Cybernetics B
, vol.29
, pp. 25-40
-
-
Wu, T.P.1
Chen, S.M.2
-
135
-
-
0034513025
-
A GA-based method for constructing fuzzy systems directly from numerical data.
-
Wong C-C, Chen C-C. A GA-based method for constructing fuzzy systems directly from numerical data. IEEE Trans Syste Man Cybern B 2002, 30:904-911.
-
(2002)
IEEE Trans Syste Man Cybern B
, vol.30
, pp. 904-911
-
-
Wong, C.-C.1
Chen, C.-C.2
-
136
-
-
0037361892
-
Learning fuzzy classification rules from labeled data.
-
Roubos J, Setnes M, Abony J. Learning fuzzy classification rules from labeled data. Inform Sci 2003, 150(1-2):77-93.
-
(2003)
Inform Sci
, vol.150
, Issue.1-2
, pp. 77-93
-
-
Roubos, J.1
Setnes, M.2
Abony, J.3
-
137
-
-
0034294243
-
GA-fuzzy modelling and classification: complexity and performance.
-
Setnes M, Roubos J. GA-fuzzy modelling and classification: complexity and performance. IEEE Trans Fuzzy Syst 2000, 8(5):509-522.
-
(2000)
IEEE Trans Fuzzy Syst
, vol.8
, Issue.5
, pp. 509-522
-
-
Setnes, M.1
Roubos, J.2
-
138
-
-
0002197262
-
Distributed representation of fuzzy rules and its application to pattern classification.
-
Ishibuchi H, Nozaki K, Tanaka H. Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Sets Syst 1992, 52(1):21-32.
-
(1992)
Fuzzy Sets Syst
, vol.52
, Issue.1
, pp. 21-32
-
-
Ishibuchi, H.1
Nozaki, K.2
Tanaka, H.3
-
139
-
-
0028482107
-
Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms
-
Ishibuchi H, Nozaki K, Yamamoto N, Tanaka H, 1994. Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms, Fuzzy Sets Syst 65(2/3): 237-253.
-
(1994)
Fuzzy Sets Syst
, vol.65
, Issue.2-3
, pp. 237-253
-
-
Ishibuchi, H.1
Nozaki, K.2
Yamamoto, N.3
Tanaka, H.4
-
140
-
-
0033116171
-
SLAVE: a genetic learning system based on iterative approach.
-
Gonzalez A, Perez R. SLAVE: a genetic learning system based on iterative approach. IEEE Trans Fuzzy Syst 1999, 7(2):176-191.
-
(1999)
IEEE Trans Fuzzy Syst
, vol.7
, Issue.2
, pp. 176-191
-
-
Gonzalez, A.1
Perez, R.2
-
141
-
-
0037230859
-
Finding fuzzy classification rules using data mining technique.
-
Hu Y, Chen R, Tzeng G. Finding fuzzy classification rules using data mining technique. Pattern Recogn Lett 2003, 24:509-519.
-
(2003)
Pattern Recogn Lett
, vol.24
, pp. 509-519
-
-
Hu, Y.1
Chen, R.2
Tzeng, G.3
-
142
-
-
1842587806
-
Design of accurate classifiers with compact fuzzy-rule base using evolutionary scatter partition of feature space.
-
Ho SY, Chen H, Ho SJ, Chen T. Design of accurate classifiers with compact fuzzy-rule base using evolutionary scatter partition of feature space. IEEE Trans Syst Man Cybernet B 2004, 34(2):1031-1044.
-
(2004)
IEEE Trans Syst Man Cybernet B
, vol.34
, Issue.2
, pp. 1031-1044
-
-
Ho, S.Y.1
Chen, H.2
Ho, S.J.3
Chen, T.4
-
143
-
-
44949187512
-
Generating fuzzy rules from training instances for fuzzy classification systems
-
Chen S, Tsai F. Generating fuzzy rules from training instances for fuzzy classification systems. Expert Syst Appl 2008, 35(3):611-621.
-
(2008)
Expert Syst Appl
, vol.35
, Issue.3
, pp. 611-621
-
-
Chen, S.1
Tsai, F.2
-
144
-
-
44949120844
-
Generating weighted fuzzy rules from training data for dealing with the iris data classification problem
-
Chen Y, Wang L, Chen S. Generating weighted fuzzy rules from training data for dealing with the iris data classification problem. Int J Appl Sci Eng 2006, 4(1):41-52.
-
(2006)
Int J Appl Sci Eng
, vol.4
, Issue.1
, pp. 41-52
-
-
Chen, Y.1
Wang, L.2
Chen, S.3
-
145
-
-
0029242750
-
A method for fuzzy rules extraction directly from numerical data and application to pattern classification.
-
Abe S, Lan M. A method for fuzzy rules extraction directly from numerical data and application to pattern classification. IEEE Trans Fuzzy Syst 1995, 3(1):18-28.
-
(1995)
IEEE Trans Fuzzy Syst
, vol.3
, Issue.1
, pp. 18-28
-
-
Abe, S.1
Lan, M.2
-
146
-
-
0029254092
-
Improving classification performance using fuzzy MLP and two-level selective partitioning of feature space.
-
Mitra S, Kuncheva LI. Improving classification performance using fuzzy MLP and two-level selective partitioning of feature space. Fuzzy Sets Syst 1995, 70(1):1-13.
-
(1995)
Fuzzy Sets Syst
, vol.70
, Issue.1
, pp. 1-13
-
-
Mitra, S.1
Kuncheva, L.I.2
-
147
-
-
0001703957
-
A neuro-fuzzy method to learn fuzzy classification rules from data.
-
Nauck D, Kruse R. A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets Syst 1997, 89(3):227-288.
-
(1997)
Fuzzy Sets Syst
, vol.89
, Issue.3
, pp. 227-288
-
-
Nauck, D.1
Kruse, R.2
-
148
-
-
0029243916
-
A neural-network-based fuzzy classifier
-
Uebele V, Abe S, Lan MS. A neural-network-based fuzzy classifier, IEEE Trans Systems, Man Cybernetics 1995, 25(2):353-361.
-
(1995)
IEEE Trans Systems, Man Cybernetics
, vol.25
, Issue.2
, pp. 353-361
-
-
Uebele, V.1
Abe, S.2
Lan, M.S.3
-
149
-
-
1242263791
-
A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification.
-
Chokrobotry U, Pal NR. A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification. IEEE Trans Neural Netw 2004, 15(1):110-123.
-
(2004)
IEEE Trans Neural Netw
, vol.15
, Issue.1
, pp. 110-123
-
-
Chokrobotry, U.1
Pal, N.R.2
-
150
-
-
0031209094
-
A fuzzy classifier with ellipsoidal regions
-
Abe S, Thawonmas R. A fuzzy classifier with ellipsoidal regions. IEEE Trans Fuzzy Syst 1997, 5(3):358-368.
-
(1997)
IEEE Trans Fuzzy Syst
, vol.5
, Issue.3
, pp. 358-368
-
-
Abe, S.1
Thawonmas, R.2
-
151
-
-
0347526082
-
Elicitation of classification rules by fuzzy data mining
-
Chung Hu Y, Hshiung Tzeng G. Elicitation of classification rules by fuzzy data mining. Appl Artif Intell 2003, 16(7-8):709-716.
-
(2003)
Appl Artif Intell
, vol.16
, Issue.7-8
, pp. 709-716
-
-
Chung Hu, Y.1
Hshiung Tzeng, G.2
-
152
-
-
9644252808
-
Elicitation of fuzzy association rules from positive and negative examples.
-
DeCock M, Cornelis C, Kerre EE. Elicitation of fuzzy association rules from positive and negative examples. Fuzzy Sets Syst 2003, 149(1):73-85.
-
(2003)
Fuzzy Sets Syst
, vol.149
, Issue.1
, pp. 73-85
-
-
DeCock, M.1
Cornelis, C.2
Kerre, E.E.3
-
153
-
-
0346781550
-
Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
-
Ishibuchi H, Yamamoto T. Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining, Fuzzy Sets Syst 2004, 141(1):59-88.
-
(2004)
Fuzzy Sets Syst
, vol.141
, Issue.1
, pp. 59-88
-
-
Ishibuchi, H.1
Yamamoto, T.2
-
154
-
-
0035426682
-
Three-objective genetic-based machine learning for linguistic rule extraction.
-
Ishibuchi H, Nakashima T, Murata T. Three-objective genetic-based machine learning for linguistic rule extraction. Inform Sci 2001, 134(1-4):109-133.
-
(2001)
Inform Sci
, vol.134
, Issue.1-4
, pp. 109-133
-
-
Ishibuchi, H.1
Nakashima, T.2
Murata, T.3
-
155
-
-
0036924127
-
Automatically constructing membership functions and generating fuzzy rules using genetic algorithms.
-
Chen SM, Chen Y. Automatically constructing membership functions and generating fuzzy rules using genetic algorithms. Cybern Syst 2002, 33(8):841-862.
-
(2002)
Cybern Syst
, vol.33
, Issue.8
, pp. 841-862
-
-
Chen, S.M.1
Chen, Y.2
-
156
-
-
0346781553
-
Ten years of genetic fuzzy systems: current framework and new trends.
-
Cordon O, Gomide F, Herrera F, Hoffmann F, Magdalena L. Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Syst 2004, 41:5-31.
-
(2004)
Fuzzy Sets Syst
, vol.41
, pp. 5-31
-
-
Cordon, O.1
Gomide, F.2
Herrera, F.3
Hoffmann, F.4
Magdalena, L.5
-
157
-
-
34547681970
-
Fuzzy classifier design using genetic algorithms
-
Zhou E, Khotanzad A. Fuzzy classifier design using genetic algorithms. Pattern Recogn 2007, 40:3401-3414.
-
(2007)
Pattern Recogn
, vol.40
, pp. 3401-3414
-
-
Zhou, E.1
Khotanzad, A.2
-
158
-
-
33750528950
-
Intrusion detection using a fuzzy genetics-based learning algorithm.
-
Saniee Adadeh M, Habibi J, Lucas C. Intrusion detection using a fuzzy genetics-based learning algorithm. J Netw Comput Appl 2007, 30:414-428.
-
(2007)
J Netw Comput Appl
, vol.30
, pp. 414-428
-
-
Saniee Adadeh, M.1
Habibi, J.2
Lucas, C.3
-
159
-
-
50249175159
-
-
Niching genetic feature selection algorithms applied to design of fuzzy rule-based classification systems. In: IEEE International Fuzzy System Conference, FUZZ-(IEEE'07)
-
Aguilera JJ, Chica M, del Jesus MJ. Herrera F, Niching genetic feature selection algorithms applied to design of fuzzy rule-based classification systems. In: IEEE International Fuzzy System Conference, FUZZ-(IEEE'07), 2007, 1-6.
-
(2007)
, pp. 1-6
-
-
Aguilera, J.J.1
Chica, M.2
del Jesus, M.J.3
Herrera, F.4
-
160
-
-
50549085684
-
SGERD, a steady-state genetic algorithm for extracting fuzzy classification rules from data.
-
Monsoori E, Zolghadri M, Katebi S. SGERD, a steady-state genetic algorithm for extracting fuzzy classification rules from data. IEEE Trans Fuzzy Syst 2008, 16(4):1061-1072.
-
(2008)
IEEE Trans Fuzzy Syst
, vol.16
, Issue.4
, pp. 1061-1072
-
-
Monsoori, E.1
Zolghadri, M.2
Katebi, S.3
-
161
-
-
0002191257
-
-
Design of an adaptive fuzzy logic controller using a genetic algorithms. In: Proceedings of Fourth International Conference on Genetic Algorithms
-
Karr CL. Design of an adaptive fuzzy logic controller using a genetic algorithms. In: Proceedings of Fourth International Conference on Genetic Algorithms, 1991, 450-457.
-
(1991)
, pp. 450-457
-
-
Karr, C.L.1
-
162
-
-
0027539712
-
Fuzzy controller of ph using genetic algorithms
-
Karr CL, Gentry EJ. Fuzzy controller of ph using genetic algorithms, IEEE Trans Fuzzy Syst 1993, 1(1):46-53.
-
(1993)
IEEE Trans Fuzzy Syst
, vol.1
, Issue.1
, pp. 46-53
-
-
Karr, C.L.1
Gentry, E.J.2
-
163
-
-
33845242735
-
Evolutionary my dear Watson-investigating committee based evolution of fuzzy rules for the detection of suspicious insurance claims
-
In: San Mateo, CA: Morgan Kaufmann
-
Bentley PJ. Evolutionary my dear Watson-investigating committee based evolution of fuzzy rules for the detection of suspicious insurance claims. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO' 2000). San Mateo, CA: Morgan Kaufmann, 2000, 702-709.
-
(2000)
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO' 2000)
, pp. 702-709
-
-
Bentley, P.J.1
-
164
-
-
84943259721
-
A fuzzy beam search rule induction algorithm
-
In:LNAI 1704, Berlin, Germany: Springer-Verlag
-
Fertig CS, Freitas AA, Arruda LVR, Kaestner C. A fuzzy beam search rule induction algorithm. In: Principles of data mining and knowledge discovery (Proceedings of 3rd European Conference-PKDD'99). LNAI 1704, Berlin, Germany: Springer-Verlag, 1999, 341-347.
-
(1999)
Principles of data mining and knowledge discovery (Proceedings of 3rd European Conference-PKDD'99)
, pp. 341-347
-
-
Fertig, C.S.1
Freitas, A.A.2
Arruda, L.V.R.3
Kaestner, C.4
-
165
-
-
0033676167
-
-
Mohan CK ClaDia: a fuzzy classifier system for disease diagnosis. In : Proceedings of the Congress on Evolutionary Computation (CEC'2000), 2000, 2
-
Walter D, Mohan CK ClaDia: a fuzzy classifier system for disease diagnosis. In : Proceedings of the Congress on Evolutionary Computation (CEC'2000), 2000, 2:1429-1435.
-
-
-
Walter, D.1
-
166
-
-
0033720305
-
-
Soft decision trees: a new approach using non-linear fuzzification. In: Proceedings of the 9th IEEE International Conference Fuzzy Systems (FUZZ IEEE' 2000)
-
Crockett KA, Bandar Z, Al Attar A. Soft decision trees: a new approach using non-linear fuzzification. In: Proceedings of the 9th IEEE International Conference Fuzzy Systems (FUZZ IEEE' 2000), 2000, 209-215.
-
(2000)
, pp. 209-215
-
-
Crockett, K.A.1
Bandar, Z.2
Al Attar, A.3
-
167
-
-
27144520587
-
Independent and simultaneous evolution of fuzzy sleep classifiers by genetic algorithms
-
In:San Mateo, CA: Morgan Kaufmann
-
Mota C, Ferreira H, Rosa A. Independent and simultaneous evolution of fuzzy sleep classifiers by genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO' 1999). San Mateo, CA: Morgan Kaufmann, 1999, 1622-1629.
-
(1999)
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO' 1999)
, pp. 1622-1629
-
-
Mota, C.1
Ferreira, H.2
Rosa, A.3
-
169
-
-
75149189017
-
Discovering fuzzy classification rules with genetic programming and co-evolution
-
In . LNAI 2168, Berlin, Germany: Springer-Verlag
-
Mendes W, Romao RF, Freitas AA, Pacheco RCS. Discovering fuzzy classification rules with genetic programming and co-evolution. In Principles of data mining and knowledge discovery (Proceedings of the 5th European Conference, PKDD'2001). LNAI 2168, Berlin, Germany: Springer-Verlag, 2001, 314-325.
-
(2001)
Principles of data mining and knowledge discovery (Proceedings of the 5th European Conference, PKDD'2001)
, pp. 314-325
-
-
Mendes, W.1
Romao, R.F.2
Freitas, A.A.3
Pacheco, R.C.S.4
-
170
-
-
50149096917
-
Genetic fuzzy systems: taxonomy current research trends and prospects.
-
Herrera F. Genetic fuzzy systems: taxonomy current research trends and prospects. Evol Intell 2008, 1:27-46.
-
(2008)
Evol Intell
, vol.1
, pp. 27-46
-
-
Herrera, F.1
-
171
-
-
84879539317
-
-
A GA-based approach to optimisation of fuzzy models learned from data. In:+ GECCO Program, New York
-
Castellano G, Fanelli A, Gentile E, Roselli T. A GA-based approach to optimisation of fuzzy models learned from data. In:+ GECCO Program, New York, 2002, 5-8.
-
(2002)
, pp. 5-8
-
-
Castellano, G.1
Fanelli, A.2
Gentile, E.3
Roselli, T.4
-
172
-
-
0035360372
-
Designing fuzzy inference systems from data: An interpretability oriented review.
-
Guillaume S. Designing fuzzy inference systems from data: An interpretability oriented review. IEEE Trans Fuzzy Syst 2001, 9(3):426-443.
-
(2001)
IEEE Trans Fuzzy Syst
, vol.9
, Issue.3
, pp. 426-443
-
-
Guillaume, S.1
-
173
-
-
84931451187
-
-
Accurate, transparent and compact fuzzy models for function approximation and dynamic modelling through multiobjective evolutionary optimisation. In: First International Conference on Evolutionary Multi-criterion Optimisation
-
Jimenez F, Gomez-Skarmeta AF, Roubos H, Babuska R. Accurate, transparent and compact fuzzy models for function approximation and dynamic modelling through multiobjective evolutionary optimisation. In: First International Conference on Evolutionary Multi-criterion Optimisation, 2001, 653-667.
-
(2001)
, pp. 653-667
-
-
Jimenez, F.1
Gomez-Skarmeta, A.F.2
Roubos, H.3
Babuska, R.4
-
174
-
-
0031627682
-
-
An approach to rule-base knowledge extraction. In: Proceedings of IEEE Conference on Fuzzy System
-
Jin Y, Vonseelen W, Sendhoff B. An approach to rule-base knowledge extraction. In: Proceedings of IEEE Conference on Fuzzy System, 1998, 1188-1193.
-
(1998)
, pp. 1188-1193
-
-
Jin, Y.1
Vonseelen, W.2
Sendhoff, B.3
-
175
-
-
0033279878
-
On generating FC3 fuzzy rule systems from data using evolution strategies.
-
Jin Y, Vonseelen W, Sendhoff B. On generating FC3 fuzzy rule systems from data using evolution strategies. IEEE Trans Syst Man Cybern 1999, 29(6):829-845.
-
(1999)
IEEE Trans Syst Man Cybern
, vol.29
, Issue.6
, pp. 829-845
-
-
Jin, Y.1
Vonseelen, W.2
Sendhoff, B.3
-
176
-
-
0038173250
-
Extracting interpretable fuzzy rules from RBF networks.
-
Jin Y, Sendhoff B. Extracting interpretable fuzzy rules from RBF networks. Neural Process Lett 2003, 17(2):149-164.
-
(2003)
Neural Process Lett
, vol.17
, Issue.2
, pp. 149-164
-
-
Jin, Y.1
Sendhoff, B.2
-
177
-
-
0034294243
-
GA-fuzzy modelling and classification: Complexity and performance.
-
Roubos H, Setnes M. GA-fuzzy modelling and classification: Complexity and performance. IEEE Trans Fuzzy Syst 2000, 8(5):509-522.
-
(2000)
IEEE Trans Fuzzy Syst
, vol.8
, Issue.5
, pp. 509-522
-
-
Roubos, H.1
Setnes, M.2
-
178
-
-
0033876069
-
Self-organised fuzzy system generation from training examples.
-
Rojas I, Pomares H, Ortega J, Prieto A. Self-organised fuzzy system generation from training examples. IEEE Trans Fuzzy Syst 2000, 8(1):23-36.
-
(2000)
IEEE Trans Fuzzy Syst
, vol.8
, Issue.1
, pp. 23-36
-
-
Rojas, I.1
Pomares, H.2
Ortega, J.3
Prieto, A.4
-
179
-
-
3543069982
-
-
Berlin, Germany: Springer-Verlag
-
Casillas J, Cordon O, Herrera F, Magdalena L. Accuracy Improvements in Linguistic Fuzzy Modelling. Berlin, Germany: Springer-Verlag, 2003.
-
(2003)
Accuracy Improvements in Linguistic Fuzzy Modelling
-
-
Casillas, J.1
Cordon, O.2
Herrera, F.3
Magdalena, L.4
-
180
-
-
33646072176
-
Hybrid learning models to get the interpretability-accuracy trade off in fuzzy modelling.
-
Alcala R, Alcala Fdez J, Casillas J, Cordon O, Herrera F. Hybrid learning models to get the interpretability-accuracy trade off in fuzzy modelling. Soft Comput 2006, 10:717-734.
-
(2006)
Soft Comput
, vol.10
, pp. 717-734
-
-
Alcala, R.1
Alcala Fdez, J.2
Casillas, J.3
Cordon, O.4
Herrera, F.5
-
181
-
-
33751186914
-
Analysis of interpretability-accuracy trade off of fuzzy systems by multi-objective fuzzy genetic-based machine learning.
-
Ishibuchi H, Nojima Y. Analysis of interpretability-accuracy trade off of fuzzy systems by multi-objective fuzzy genetic-based machine learning. Int J Appprox Reason 2007, 44(1):4-31.
-
(2007)
Int J Appprox Reason
, vol.44
, Issue.1
, pp. 4-31
-
-
Ishibuchi, H.1
Nojima, Y.2
-
182
-
-
79955551124
-
A historical review of evolutionary learning methods for mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems.
-
Cordon O. A historical review of evolutionary learning methods for mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems. Int J Approx Reason 2011, 52(6):894-913.
-
(2011)
Int J Approx Reason
, vol.52
, Issue.6
, pp. 894-913
-
-
Cordon, O.1
-
183
-
-
0033704546
-
Fuzzy modelling of high-dimensional systems: Complexity reduction and interpretability improvements.
-
Jin Y. Fuzzy modelling of high-dimensional systems: Complexity reduction and interpretability improvements. IEEE Trans Fuzzy Syst 2000, 8(2):212-221.
-
(2000)
IEEE Trans Fuzzy Syst
, vol.8
, Issue.2
, pp. 212-221
-
-
Jin, Y.1
-
184
-
-
0037308121
-
Fuzzy data analysis with NEFCLASS.
-
Nauck DD. Fuzzy data analysis with NEFCLASS. Approx Reason 2003, 32:103-130.
-
(2003)
Approx Reason
, vol.32
, pp. 103-130
-
-
Nauck, D.D.1
-
185
-
-
0034207436
-
A proposal for improving the accuracy of linguistic modelling.
-
Cordon O, Herrera F, Zwir I. A proposal for improving the accuracy of linguistic modelling. IEEE Trans Fuzzy Syst 2000, 8(3):335-344.
-
(2000)
IEEE Trans Fuzzy Syst
, vol.8
, Issue.3
, pp. 335-344
-
-
Cordon, O.1
Herrera, F.2
Zwir, I.3
-
186
-
-
11244318202
-
Interpretability issues in data-based learning of fuzzy systems.
-
Mikut R, Jakel J, Groll L. Interpretability issues in data-based learning of fuzzy systems. Fuzzy Sets and Systems 2005, 150:179-197.
-
(2005)
Fuzzy Sets and Systems
, vol.150
, pp. 179-197
-
-
Mikut, R.1
Jakel, J.2
Groll, L.3
-
188
-
-
79960555001
-
Interpretability of linguistic fuzzy rule based systems: an overview of interpretability measures
-
Gacto MJ, Alcala R, Herrera F. Interpretability of linguistic fuzzy rule based systems: an overview of interpretability measures. Information Science 2011, 181(20):4340-4360.
-
(2011)
Information Science
, vol.181
, Issue.20
, pp. 4340-4360
-
-
Gacto, M.J.1
Alcala, R.2
Herrera, F.3
-
189
-
-
77953111519
-
Integration of an index to preserve the semantic interpretability in the multi-objective evolutionary rule selection and tuning of linguistic fuzzy systems.
-
Gacto MJ, Alcala R, Herrera F. Integration of an index to preserve the semantic interpretability in the multi-objective evolutionary rule selection and tuning of linguistic fuzzy systems. IEEE Transactions on Fuzzy Systems 2010, 18:515-531.
-
(2010)
IEEE Transactions on Fuzzy Systems
, vol.18
, pp. 515-531
-
-
Gacto, M.J.1
Alcala, R.2
Herrera, F.3
-
190
-
-
52949088628
-
Low level interpretability and high level interpretability a unified view of data driven interpretable fuzzy system modeling.
-
Zhou SM, Gan JQ. Low level interpretability and high level interpretability a unified view of data driven interpretable fuzzy system modeling. Fuzzy Sets and Systems 2008, 159:3091-3131.
-
(2008)
Fuzzy Sets and Systems
, vol.159
, pp. 3091-3131
-
-
Zhou, S.M.1
Gan, J.Q.2
-
191
-
-
0029359001
-
Selecting fuzzy if-then rules for classification problems using genetic algorithms.
-
Ishibuchi H, Nozaki K, Yamamoto N, Tanaka H. Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Transactions on Fuzzy Systems 1995, 3(3):260-270.
-
(1995)
IEEE Transactions on Fuzzy Systems
, vol.3
, Issue.3
, pp. 260-270
-
-
Ishibuchi, H.1
Nozaki, K.2
Yamamoto, N.3
Tanaka, H.4
-
192
-
-
0032141635
-
A multi-objective genetic based local search algorithm and its application to flowshop scheduling.
-
Ishibuchi H, Murata T. A multi-objective genetic based local search algorithm and its application to flowshop scheduling. IEEE Tran Syst Man Cybernet C 1998, 28:392-403.
-
(1998)
IEEE Tran Syst Man Cybernet C
, vol.28
, pp. 392-403
-
-
Ishibuchi, H.1
Murata, T.2
-
193
-
-
0000919523
-
Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems.
-
Ishibuchi H, Murata T, Turksen I. Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems. Fuzzy Sets Syst 1997, 89(2):135-149.
-
(1997)
Fuzzy Sets Syst
, vol.89
, Issue.2
, pp. 135-149
-
-
Ishibuchi, H.1
Murata, T.2
Turksen, I.3
-
194
-
-
33750277513
-
-
Vol. 4193, PPSN IX. Berlin, Germany: Springer-Verlag
-
Ishibuchi H, Doi T, Nojima Y. Incorporation of Scalarizing Fitness Functions into Evolutionary Multi-objective Optimization Algorithms, Vol. 4193, PPSN IX. Berlin, Germany: Springer-Verlag, 2006.
-
(2006)
Incorporation of Scalarizing Fitness Functions into Evolutionary Multi-objective Optimization Algorithms
-
-
Ishibuchi, H.1
Doi, T.2
Nojima, Y.3
-
195
-
-
34250712183
-
-
Fuzzy data mining by heuristic rule extraction and multiobjective rule selection. In: 2006 IEEE International Conference on Fuzzy Systems, Canada
-
Isibuchi H, Nojima Y, Kuwajima I. Fuzzy data mining by heuristic rule extraction and multiobjective rule selection. In: 2006 IEEE International Conference on Fuzzy Systems, Canada2006, 1633-1640.
-
(2006)
, pp. 1633-1640
-
-
Isibuchi, H.1
Nojima, Y.2
Kuwajima, I.3
-
196
-
-
84860655856
-
A multi-objective genetic-based method for design fuzzy classification system
-
Chen J-L, Yuan-Long H, Zong-Yi X, Li-Min J, Zhong-Zhi T. A multi-objective genetic-based method for design fuzzy classification system, Int J Comput Sc Netw Secutity 2006, 6(8 A):110-117.
-
(2006)
Int J Comput Sc Netw Secutity
, vol.6
, Issue.8 A
, pp. 110-117
-
-
Chen, J.-L.1
Yuan-Long, H.2
Zong-Yi, X.3
Li-Min, J.4
Zhong-Zhi, T.5
-
197
-
-
35348831258
-
A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic rule-based system.
-
Alcala R, Gacto M, Herrera F. A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic rule-based system. Int J Uncertain, Fuzziness Knowled-Based Syst 2007, 15(5):539-557.
-
(2007)
Int J Uncertain, Fuzziness Knowled-Based Syst
, vol.15
, Issue.5
, pp. 539-557
-
-
Alcala, R.1
Gacto, M.2
Herrera, F.3
-
198
-
-
0000308566
-
Real-coded genetic algorithms and interval schemata.
-
Eshelman LJ, Schaffer JD. Real-coded genetic algorithms and interval schemata. Found Genetic Algorithms 1993, 2:187-202.
-
(1993)
Found Genetic Algorithms
, vol.2
, pp. 187-202
-
-
Eshelman, L.J.1
Schaffer, J.D.2
-
199
-
-
0001334115
-
The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination
-
Eshelman LJ, Schaffer JD. The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination. Foundat Genetic Algorithms 1991, 1:265-283.
-
(1991)
Foundat Genetic Algorithms
, vol.1
, pp. 265-283
-
-
Eshelman, L.J.1
Schaffer, J.D.2
-
200
-
-
58049200709
-
Adaptation and application of multi-objective evolutionary algorithm for rule selection and parameter tuning of fuzzy rule-based systems.
-
Gacto MJ, Alcala R, Herrera F. Adaptation and application of multi-objective evolutionary algorithm for rule selection and parameter tuning of fuzzy rule-based systems. Soft Comput 2009, 13:419-436.
-
(2009)
Soft Comput
, vol.13
, pp. 419-436
-
-
Gacto, M.J.1
Alcala, R.2
Herrera, F.3
-
201
-
-
42649122303
-
Fuzzy classifier identification using decision tree and multi-objective evolutionary algorithms.
-
Pulkkinen P, Koivisto H. Fuzzy classifier identification using decision tree and multi-objective evolutionary algorithms. Int J Approx Reason 2008, 48:526-283.
-
(2008)
Int J Approx Reason
, vol.48
, pp. 526-283
-
-
Pulkkinen, P.1
Koivisto, H.2
-
202
-
-
76849098957
-
A multi-objective genetic fuzzy system for obtaining compact and accurate fuzzy classifiers with transparent fuzzy partitions
-
In: . Miami Beach, FL: IEEE Press
-
Pulkkinen P. A multi-objective genetic fuzzy system for obtaining compact and accurate fuzzy classifiers with transparent fuzzy partitions. In: Proceedings of 8th International Conference on Machine Learning and Applications. Miami Beach, FL: IEEE Press, 2009, 84-94.
-
(2009)
Proceedings of 8th International Conference on Machine Learning and Applications
, pp. 84-94
-
-
Pulkkinen, P.1
-
203
-
-
78549275066
-
-
A multi-objective evolutionary algorithm with an interpretability improvement mechanism for linguistic fuzzy systems with adaptive defuzzification. In: IEEE World Congress on Computational Intelligence
-
Marquez A, Marquez F, Peregrin A. A multi-objective evolutionary algorithm with an interpretability improvement mechanism for linguistic fuzzy systems with adaptive defuzzification. In: IEEE World Congress on Computational Intelligence, 2010, 277-283.
-
(2010)
, pp. 277-283
-
-
Marquez, A.1
Marquez, F.2
Peregrin, A.3
-
204
-
-
84879530019
-
Parallel single and multi-objective genetic algorithms: a survey.
-
Mishra BSP, Dehuri S, Mall R, Ghosh A. Parallel single and multi-objective genetic algorithms: a survey. Int J Appl Evol Comput 2011, 2(2):21-58.
-
(2011)
Int J Appl Evol Comput
, vol.2
, Issue.2
, pp. 21-58
-
-
Mishra, B.S.P.1
Dehuri, S.2
Mall, R.3
Ghosh, A.4
-
207
-
-
31744443319
-
Genetic programming for simultaneous feature selection and classifier design.
-
Muni DP, Pal NR, Das J. Genetic programming for simultaneous feature selection and classifier design. IEEE Trans Syst Man Cybernet B 2006, 36(1):106-117.
-
(2006)
IEEE Trans Syst Man Cybernet B
, vol.36
, Issue.1
, pp. 106-117
-
-
Muni, D.P.1
Pal, N.R.2
Das, J.3
-
208
-
-
33749865403
-
Gp ensembles for large scale data classification.
-
Folino G, Pizzuti C, Spezzano G. Gp ensembles for large scale data classification. IEEE Trans Evol Comput 2006, 10(5):604-616.
-
(2006)
IEEE Trans Evol Comput
, vol.10
, Issue.5
, pp. 604-616
-
-
Folino, G.1
Pizzuti, C.2
Spezzano, G.3
-
209
-
-
0029535737
-
-
Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks
-
Kennedy J, Eberhart RC. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, 1995, 1942-1948.
-
(1995)
, pp. 1942-1948
-
-
Kennedy, J.1
Eberhart, R.C.2
-
210
-
-
0036464756
-
The particle swarm explosion, stability, convergence in a multi-dimensional complex space.
-
Clerc M, Kennedy J. The particle swarm explosion, stability, convergence in a multi-dimensional complex space. IEEE Trans Evol Comput 2002, 6(1):68-73.
-
(2002)
IEEE Trans Evol Comput
, vol.6
, Issue.1
, pp. 68-73
-
-
Clerc, M.1
Kennedy, J.2
-
211
-
-
60449120121
-
Multi-criterion pareto based particle swarm optimized polynomial neural network for classification: a review and state-of-the-art
-
Dehuri S, Cho S-B. Multi-criterion pareto based particle swarm optimized polynomial neural network for classification: a review and state-of-the-art, Comput Sci Rev 2009, 3(1):19-40.
-
(2009)
Comput Sci Rev
, vol.3
, Issue.1
, pp. 19-40
-
-
Dehuri, S.1
Cho, S.-B.2
-
214
-
-
34948865765
-
Classification with ant colony optimization.
-
Martens D, Backer MD, Haesen R, Vanthienen J, Snoeck M, Baesens B. Classification with ant colony optimization. IEEE Trans Evol Comput 2007, 11(5):651-665.
-
(2007)
IEEE Trans Evol Comput
, vol.11
, Issue.5
, pp. 651-665
-
-
Martens, D.1
Backer, M.D.2
Haesen, R.3
Vanthienen, J.4
Snoeck, M.5
Baesens, B.6
-
215
-
-
34250683045
-
Application of honey bee mating optimization algorithm on clustering.
-
Fathian M, Amiri B, Maroosi A. Application of honey bee mating optimization algorithm on clustering. Appl Math Comput 2007, 190:1502-1513.
-
(2007)
Appl Math Comput
, vol.190
, pp. 1502-1513
-
-
Fathian, M.1
Amiri, B.2
Maroosi, A.3
-
216
-
-
37249084064
-
Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems.
-
Karaboga D, Basturk B, Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. Lect Notes Artifi Intell 2007, 4529:789-798.
-
(2007)
Lect Notes Artifi Intell
, vol.4529
, pp. 789-798
-
-
Karaboga, D.1
Basturk, B.2
-
217
-
-
34548479029
-
On the performance of artificial bee colony (abc) algorithm.
-
Karaboga D, Basturk B. On the performance of artificial bee colony (abc) algorithm. Appl Soft Comput 2008, 8:687-697.
-
(2008)
Appl Soft Comput
, vol.8
, pp. 687-697
-
-
Karaboga, D.1
Basturk, B.2
|