메뉴 건너뛰기




Volumn 3, Issue 2, 2013, Pages 83-108

Revisiting evolutionary algorithms in feature selection and nonfuzzy/fuzzy rule based classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION RULE DISCOVERY; DOMAIN OF KNOWLEDGE; FEATURE SELECTION ALGORITHM; KNOWLEDGE DISCOVERY IN DATABASE; MULTI-OBJECTIVE GENETIC ALGORITHM; MULTI-OBJECTIVE PROBLEM; OPTIMIZATION PROBLEMS; RULE-BASED CLASSIFICATION;

EID: 84879531800     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.1087     Document Type: Article
Times cited : (11)

References (217)
  • 1
    • 0002958315 scopus 로고
    • Knowledge discovery in real databases: a report on the IJCAR 89 workshop.
    • Piatetsky-Shapiro G. Knowledge discovery in real databases: a report on the IJCAR 89 workshop. AI Mag. 1991, 11(5):68-70.
    • (1991) AI Mag. , vol.11 , Issue.5 , pp. 68-70
    • Piatetsky-Shapiro, G.1
  • 2
    • 70149110596 scopus 로고    scopus 로고
    • The status of the P versus NP problem.
    • Fortnow L. The status of the P versus NP problem. Commun 2009, 52(9):78-86.
    • (2009) Commun , vol.52 , Issue.9 , pp. 78-86
    • Fortnow, L.1
  • 5
    • 85020425245 scopus 로고    scopus 로고
    • Miller H, Han J., eds., 2nd ed. New York: John Wiley & Sons
    • Miller H, Han J., eds. Geographical Data Mining and Knowledge Discovery, 2nd ed. New York: John Wiley & Sons, 2009.
    • (2009) Geographical Data Mining and Knowledge Discovery
  • 6
    • 84879531824 scopus 로고    scopus 로고
    • Kargupta H, Han J, Yu P, Motwani R, Kumar V., eds. Next Generation of Data Mining. Boca Raton, FL: CRC Press and Taylor & Francis
    • Kargupta H, Han J, Yu P, Motwani R, Kumar V., eds. Next Generation of Data Mining. Boca Raton, FL: CRC Press and Taylor & Francis, 2008.
    • (2008)
  • 7
    • 33749319347 scopus 로고    scopus 로고
    • Interestingness measures for data mining: a survey.
    • Geng L, Hamilton HJ. Interestingness measures for data mining: a survey. ACM Comput Surv 2006, 38(3):1-32.
    • (2006) ACM Comput Surv , vol.38 , Issue.3 , pp. 1-32
    • Geng, L.1    Hamilton, H.J.2
  • 8
    • 0002475334 scopus 로고    scopus 로고
    • A review of software packages for data mining.
    • Goebel M, Gruenwald L. A review of software packages for data mining. SIGKDD Explor 1999, 1(1):20-32.
    • (1999) SIGKDD Explor , vol.1 , Issue.1 , pp. 20-32
    • Goebel, M.1    Gruenwald, L.2
  • 17
    • 84879523574 scopus 로고    scopus 로고
    • A learning system based on genetic tive algorithm. Ph.D. dissertation, University of Pittsburgh, Pittsburgh, PA, 1980.
    • Smith SF. A learning system based on genetic tive algorithm. Ph.D. dissertation, University of Pittsburgh, Pittsburgh, PA, 1980.
    • Smith, S.F.1
  • 18
    • 0020938473 scopus 로고
    • Flexible learning of problem solving heuristics through adaptive search. In: Proceedings of 8th International Joint Conference on Artificial Intelligence
    • Smith SF. Flexible learning of problem solving heuristics through adaptive search. In: Proceedings of 8th International Joint Conference on Artificial Intelligence, 1983, 422-425.
    • (1983) , pp. 422-425
    • Smith, S.F.1
  • 19
    • 0000746883 scopus 로고
    • Escaping brittleness: the possibilities of general purpose learning algorithms applied to parallel-rule based systems.
    • Holland JH. Escaping brittleness: the possibilities of general purpose learning algorithms applied to parallel-rule based systems. Mach Learn: An Artif Intell Approach 1986, 2:593-623.
    • (1986) Mach Learn: An Artif Intell Approach , vol.2 , pp. 593-623
    • Holland, J.H.1
  • 20
    • 0024735689 scopus 로고    scopus 로고
    • Classifier systems and genetic algorithms. Artif Intell 1989, 40(1-3)
    • Booker LB. Goldberg DE, Holland JH. Classifier systems and genetic algorithms. Artif Intell 1989, 40(1-3):235-283.
    • Booker, L.B.1    Goldberg, D.E.2    Holland, J.H.3
  • 21
    • 84971641220 scopus 로고
    • SIA: a supervised inductive algorithm with genetic search for learning attributes based concepts
    • In: . LNAI 667, Berlin, Germany: Springer-Verlag
    • Venturini G. SIA: a supervised inductive algorithm with genetic search for learning attributes based concepts. In: Proceedings of European Conference on Machine Learning. LNAI 667, Berlin, Germany: Springer-Verlag, 1993, 280-296.
    • (1993) Proceedings of European Conference on Machine Learning , pp. 280-296
    • Venturini, G.1
  • 22
    • 0027696043 scopus 로고
    • Competition based induction of decision models from examples
    • Greene DP. Smith SF. Competition based induction of decision models from examples. Mach Learn 1993, 13(2-3), 229-257.
    • (1993) Mach Learn , vol.13 , Issue.2-3 , pp. 229-257
    • Greene, D.P.1    Smith, S.F.2
  • 23
    • 60549099603 scopus 로고    scopus 로고
    • Fr3: a fuzzy rule learner for inducing reliable classifier.
    • Huhn J, Hullermeier E. Fr3: a fuzzy rule learner for inducing reliable classifier. IEEE Trans Fuzzy Syst 2009, 17:138-149.
    • (2009) IEEE Trans Fuzzy Syst , vol.17 , pp. 138-149
    • Huhn, J.1    Hullermeier, E.2
  • 24
    • 78751629935 scopus 로고    scopus 로고
    • Fuzzy sets in machine learning and data mining.
    • Hullermeier E. Fuzzy sets in machine learning and data mining. Appl Soft Comput J 2011, 11:1493-1505.
    • (2011) Appl Soft Comput J , vol.11 , pp. 1493-1505
    • Hullermeier, E.1
  • 25
  • 29
    • 84873116265 scopus 로고    scopus 로고
    • Gene expression modular analysis an overview from the data mining perspective
    • Alberto P-M. Gene expression modular analysis an overview from the data mining perspective. WIREs Data Mining Knowl Discov 2011, 1:381-396.
    • (2011) WIREs Data Mining Knowl Discov , vol.1 , pp. 381-396
    • Alberto, P.-M.1
  • 35
    • 0030129318 scopus 로고    scopus 로고
    • A data reduction method for intrusion detection
    • Lam K-Y, Hui L, Chung S-L . A data reduction method for intrusion detection. J Syst Software 1996, 33:101-108.
    • (1996) J Syst Software , vol.33 , pp. 101-108
    • Lam, K.-Y.1    Hui, L.2    Chung, S.-L.3
  • 36
    • 84885774862 scopus 로고    scopus 로고
    • A framework for constructing features and models for intrusion detection systems.
    • Lee W, Stolfo SJ. A framework for constructing features and models for intrusion detection systems. ACM Trans Inform Syst Security 2000, 3(4):227-261.
    • (2000) ACM Trans Inform Syst Security , vol.3 , Issue.4 , pp. 227-261
    • Lee, W.1    Stolfo, S.J.2
  • 38
    • 84861092128 scopus 로고    scopus 로고
    • Evolutionary selection for training set selection
    • Nicolas G-P . Evolutionary selection for training set selection. WIREs Data Mining Knowl Discov 2011, 1:512-523.
    • (2011) WIREs Data Mining Knowl Discov , vol.1 , pp. 512-523
    • Nicolas, G.-P.1
  • 39
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • Dy JG, Broadley CE. Feature selection for unsupervised learning, J Mach Learn Res 2004, 5(5):845-889.
    • (2004) J Mach Learn Res , vol.5 , Issue.5 , pp. 845-889
    • Dy, J.G.1    Broadley, C.E.2
  • 40
    • 0026839971 scopus 로고    scopus 로고
    • Fast genetic selection of features for neural network classifiers.
    • Brill FZ, Brown DE, Martin WN. Fast genetic selection of features for neural network classifiers. IEEE Trans Neural Netw 1998, 3(2):324-328.
    • (1998) IEEE Trans Neural Netw , vol.3 , Issue.2 , pp. 324-328
    • Brill, F.Z.1    Brown, D.E.2    Martin, W.N.3
  • 42
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Yang J, Honavar V. Feature subset selection using a genetic algorithm, IEEE Intell SystTheir Appl 1998, 13(2):44-49.
    • (1998) IEEE Intell SystTheir Appl , vol.13 , Issue.2 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 43
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection.
    • Siedlecki W, Sklansky J. A note on genetic algorithms for large-scale feature selection. Pattern Recogn Lett 1989, 10:335-347.
    • (1989) Pattern Recogn Lett , vol.10 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 44
    • 2442699339 scopus 로고    scopus 로고
    • Multi-objective rule mining using genetic algorithms
    • Ghosh A, Nath B. Multi-objective rule mining using genetic algorithms. Information Sciences 2004, 163:123-133.
    • (2004) Information Sciences , vol.163 , pp. 123-133
    • Ghosh, A.1    Nath, B.2
  • 45
    • 84879522829 scopus 로고    scopus 로고
    • Ghosh A, Dehuri S, Ghosh S. Eds. . Berlin, Germany: Springer-Verlag
    • Ghosh A, Dehuri S, Ghosh S. Eds. Multiobjective Association Rule Mining. Berlin, Germany: Springer-Verlag, 2008.
    • (2008) Multiobjective Association Rule Mining
  • 46
    • 0034819176 scopus 로고    scopus 로고
    • A genetic approach to the automatic clustering problem.
    • Tseng LY, Yang SB. A genetic approach to the automatic clustering problem. Pattern Recogn 2001, 34:415-424.
    • (2001) Pattern Recogn , vol.34 , pp. 415-424
    • Tseng, L.Y.1    Yang, S.B.2
  • 48
    • 0032594811 scopus 로고    scopus 로고
    • Applying genetic algorithms to search for the best hierarchical clustering of a dataset.
    • Lozano JA, Larranaga P. Applying genetic algorithms to search for the best hierarchical clustering of a dataset. Pattern Recogn Lett 1999, 20:911-918.
    • (1999) Pattern Recogn Lett , vol.20 , pp. 911-918
    • Lozano, J.A.1    Larranaga, P.2
  • 51
    • 0042842434 scopus 로고    scopus 로고
    • Evaluation of global image thresholding for change detection.
    • Rosin PL, Ioannidis E. Evaluation of global image thresholding for change detection. Pattern Recogn Lett 2003, 24:2345-2356.
    • (2003) Pattern Recogn Lett , vol.24 , pp. 2345-2356
    • Rosin, P.L.1    Ioannidis, E.2
  • 52
    • 0002337827 scopus 로고    scopus 로고
    • Machine learning and data mining.
    • Mitchell T. Machine learning and data mining. Commun ACM 1999, 42(11):31-36.
    • (1999) Commun ACM , vol.42 , Issue.11 , pp. 31-36
    • Mitchell, T.1
  • 53
    • 84879526937 scopus 로고    scopus 로고
    • Dehuri S, Cho S-B., eds. . London: Imperial College Press
    • Dehuri S, Cho S-B., eds. Knowledge Mining Using Intelligent Agents. London: Imperial College Press, 2010.
    • (2010) Knowledge Mining Using Intelligent Agents
  • 54
    • 80052291111 scopus 로고    scopus 로고
    • Lim CP, Jain LC, Dehuri S., eds. . Heidelberg, Germany: Springer-Verlag
    • Lim CP, Jain LC, Dehuri S., eds. Innovations in Swarm Intelligence. Heidelberg, Germany: Springer-Verlag, 2009.
    • (2009) Innovations in Swarm Intelligence
  • 58
    • 0037592480 scopus 로고    scopus 로고
    • Evolution strategies: a comprehensive introduction.
    • Bayer HG, Schwefel H-R. Evolution strategies: a comprehensive introduction. J Natural Comput 2002, 1(1):3-52.
    • (2002) J Natural Comput , vol.1 , Issue.1 , pp. 3-52
    • Bayer, H.G.1    Schwefel, H.-R.2
  • 64
    • 84879537212 scopus 로고
    • Population based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Carnegie Mellon University
    • Baluja S. Population based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Carnegie Mellon University, 1994.
    • (1994)
    • Baluja, S.1
  • 67
    • 84879519395 scopus 로고
    • Multiple objective optimization with vector evaluated genetic algorithms. In ICGA 85
    • Schaffer JD. Multiple objective optimization with vector evaluated genetic algorithms. In ICGA 85, 1985, 93-100.
    • (1985) , pp. 93-100
    • Schaffer, J.D.1
  • 69
    • 0033318858 scopus 로고    scopus 로고
    • Multi-objective evolutionary algorithms: a comparative case study and strength pareto approach.
    • Ziztler E, Thiele L. Multi-objective evolutionary algorithms: a comparative case study and strength pareto approach. IEEE Trans Evol Comput 1999, 3:257-271.
    • (1999) IEEE Trans Evol Comput , vol.3 , pp. 257-271
    • Ziztler, E.1    Thiele, L.2
  • 70
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multi-objective genetic algorithm: Nsga-ii.
    • Deb K, Agrawal S, Pratap A, Meyarivan T. A fast and elitist multi-objective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 2002, 6(2):182-197.
    • (2002) IEEE Trans Evol Comput , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Agrawal, S.2    Pratap, A.3    Meyarivan, T.4
  • 71
    • 84879512511 scopus 로고    scopus 로고
    • An evolutionary algorithms for multi-objective optimization: the strength pareto approach. TIK Report 43, Swiss Federal Institute of Technology (ETZ), Zurich, Swizerland
    • Zitzler E, Thiele L. An evolutionary algorithms for multi-objective optimization: the strength pareto approach. TIK Report 43, Swiss Federal Institute of Technology (ETZ), Zurich, Swizerland, 1998.
    • (1998)
    • Zitzler, E.1    Thiele, L.2
  • 72
    • 2942547409 scopus 로고    scopus 로고
    • SPEA2: improving the strength pareto evolutionary algorithm for multi-objective optimization
    • In: Zitzler E, Glannakoglou KC, Tsahalis D, Periaux J, Papailiou K, Fogarty T, eds. . Barcelona, Spain: International Center for Numerical Methods in Engineering (CIMNE)
    • Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength pareto evolutionary algorithm for multi-objective optimization. In: Zitzler E, Glannakoglou KC, Tsahalis D, Periaux J, Papailiou K, Fogarty T, eds. Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems. Barcelona, Spain: International Center for Numerical Methods in Engineering (CIMNE), 2002, 95-100.
    • (2002) Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems , pp. 95-100
    • Zitzler, E.1    Laumanns, M.2    Thiele, L.3
  • 74
    • 0033114942 scopus 로고    scopus 로고
    • Implementation of evolutionary fuzzy systems.
    • Shi Y, Eberhart R, Chen Y. Implementation of evolutionary fuzzy systems. IEEE Trans Fuzzy Syst 1999, 7(2):109-119.
    • (1999) IEEE Trans Fuzzy Syst , vol.7 , Issue.2 , pp. 109-119
    • Shi, Y.1    Eberhart, R.2    Chen, Y.3
  • 75
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH. Wrappers for feature subset selection, Artif Intell 1997, 97(1-2):273-324.
    • (1997) Artif Intell , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 80
    • 0030696435 scopus 로고    scopus 로고
    • Using feature selection to aid an iconic search through an image database. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
    • Messer K, Kittler J. Using feature selection to aid an iconic search through an image database. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 1997, 1605-2608.
    • (1997) , pp. 1605-2608
    • Messer, K.1    Kittler, J.2
  • 81
    • 0032296755 scopus 로고    scopus 로고
    • A classification based similarity metric for 3Dimage retrieval. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition
    • Liu Y, Dellaert F. A classification based similarity metric for 3Dimage retrieval. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 1998, 800-805.
    • (1998) , pp. 800-805
    • Liu, Y.1    Dellaert, F.2
  • 82
    • 0033700111 scopus 로고    scopus 로고
    • Advanced local feature selection in medical diagnostics. In: Proceedings of 13th IEEE Symposium on Computer-Based Medical Systems
    • Puuronen S, Tsymbal A, Skrypnik I. Advanced local feature selection in medical diagnostics. In: Proceedings of 13th IEEE Symposium on Computer-Based Medical Systems, 2000, 25-30.
    • (2000) , pp. 25-30
    • Puuronen, S.1    Tsymbal, A.2    Skrypnik, I.3
  • 83
    • 0032689676 scopus 로고    scopus 로고
    • Multiscale feature selection in stereo. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition
    • Ishikawa H. Multiscale feature selection in stereo. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 1999, 132-137.
    • (1999) , pp. 132-137
    • Ishikawa, H.1
  • 84
    • 0033211104 scopus 로고    scopus 로고
    • Analysis of class separation and combination of class dependent features for handwriting recognition
    • Oh I-S, Lee JS, Suen CY. Analysis of class separation and combination of class dependent features for handwriting recognition, IEEE Trans Pattern Anal Mach Intell 1999, 21(10):1089-1094.
    • (1999) IEEE Trans Pattern Anal Mach Intell , vol.21 , Issue.10 , pp. 1089-1094
    • Oh, I.-S.1    Lee, J.S.2    Suen, C.Y.3
  • 86
    • 67449169301 scopus 로고    scopus 로고
    • A filter approach to feature selection based on mutual information. In: Proceedings of 5th IEEE International Conference on Cognitive Informatics
    • Huang J, Cai Y, Xu X. A filter approach to feature selection based on mutual information. In: Proceedings of 5th IEEE International Conference on Cognitive Informatics, 2006, 84-89.
    • (2006) , pp. 84-89
    • Huang, J.1    Cai, Y.2    Xu, X.3
  • 87
    • 38449087399 scopus 로고    scopus 로고
    • Tombilla-Sanroman M. Filter Methods for Feature Selection-A Comparative Study
    • In Yin H, Tino P, Corchado E, Byrne W, Yao X, eds. . Berlin Heidelberg: Springer-Verlag
    • Sanchez-Marona N, Alonso-Betanzos A, Tombilla-Sanroman M. Filter Methods for Feature Selection-A Comparative Study. In Yin H, Tino P, Corchado E, Byrne W, Yao X, eds. Intelligent Data engineering and Automated Learning (IDEAL 2007), LNCS, vol. 4881. Berlin Heidelberg: Springer-Verlag, 2007, 178-187.
    • (2007) Intelligent Data engineering and Automated Learning (IDEAL 2007), LNCS, vol. 4881 , pp. 178-187
    • Sanchez-Marona, N.1    Alonso-Betanzos, A.2
  • 89
    • 0000751098 scopus 로고    scopus 로고
    • Using learning to facilitate the evolution of features for recognizing visual concepts.
    • Bala J. Using learning to facilitate the evolution of features for recognizing visual concepts. Evol Comput 1996, 4(3):297-312.
    • (1996) Evol Comput , vol.4 , Issue.3 , pp. 297-312
    • Bala, J.1
  • 92
    • 84879508197 scopus 로고    scopus 로고
    • Genetic search for feature subset selection: A comparison between CHC and GENESIS. In: Genetic Programming 1998: Proceedings of the Third Annual Conference, 1999, 504-509.
    • Guerra-Salcedo C. Genetic search for feature subset selection: A comparison between CHC and GENESIS. In: Genetic Programming 1998: Proceedings of the Third Annual Conference, 1999, 504-509.
    • Guerra-Salcedo, C.1
  • 94
    • 84958633471 scopus 로고    scopus 로고
    • On the scalability of genetic algorithms to very large scale feature selection. In: Proceedings of the Real World applications of Evolutionary Computation (EvoWorkshops 2000), LNCS 1803. Berlin, Germany: Springer-Verlag
    • Moser A, Murty MN. On the scalability of genetic algorithms to very large scale feature selection. In: Proceedings of the Real World applications of Evolutionary Computation (EvoWorkshops 2000), LNCS 1803. Berlin, Germany: Springer-Verlag, 2000, 77-86.
    • (2000) , pp. 77-86
    • Moser, A.1    Murty, M.N.2
  • 95
    • 0000859501 scopus 로고    scopus 로고
    • Multi-objective pattern and feature selection by a genetic algorithm. In Proceedings of the 2000 Genetic and Evolutionary Computation Conference (GECCO' 2000)
    • Ishibuchi H, Nakashima T. Multi-objective pattern and feature selection by a genetic algorithm. In Proceedings of the 2000 Genetic and Evolutionary Computation Conference (GECCO' 2000), 2000, 1069-1076.
    • (2000) , pp. 1069-1076
    • Ishibuchi, H.1    Nakashima, T.2
  • 96
    • 84879508408 scopus 로고    scopus 로고
    • Feature Selection Mechanisms for Ensemble Creation: A Genetic Search Perspective. Technical Report WS-99-06, Menlo Park, CA:AAAI Press
    • Guerra-Salcedo C, Whitley D. Feature Selection Mechanisms for Ensemble Creation: A Genetic Search Perspective. Technical Report WS-99-06, Menlo Park, CA:AAAI Press, 1999, 13-17.
    • (1999) , pp. 13-17
    • Guerra-Salcedo, C.1    Whitley, D.2
  • 97
    • 76749096459 scopus 로고    scopus 로고
    • IFS-CoCo: instance and feature selection based on cooperative coevolution with nearest neighbor rule
    • Derrac J, Garcia S, Herrera F. IFS-CoCo: instance and feature selection based on cooperative coevolution with nearest neighbor rule. Pattern Recogn 2010, 43(6):2082-2105.
    • (2010) Pattern Recogn , vol.43 , Issue.6 , pp. 2082-2105
    • Derrac, J.1    Garcia, S.2    Herrera, F.3
  • 98
    • 34447343762 scopus 로고    scopus 로고
    • A hybrid genetic algorithm for feature selection wrapper based on mutual information.
    • Huang Y, Cai J, Xu X. A hybrid genetic algorithm for feature selection wrapper based on mutual information. Pattern Recogn Lett 2007, 28:1825-1844.
    • (2007) Pattern Recogn Lett , vol.28 , pp. 1825-1844
    • Huang, Y.1    Cai, J.2    Xu, X.3
  • 99
    • 76249107498 scopus 로고    scopus 로고
    • Involving new local search in hybrid genetic algorithm for feature selection
    • Kabir MM, Shahjahan M, Murase K. Involving new local search in hybrid genetic algorithm for feature selection. Lect Notes in Comput Sci 2009, 5864: 150-158.
    • (2009) Lect Notes in Comput Sci , vol.5864 , pp. 150-158
    • Kabir, M.M.1    Shahjahan, M.2    Murase, K.3
  • 100
    • 77956738009 scopus 로고    scopus 로고
    • Sequential multi-criteria feature selection algorithm based on agent genetic algorithm.
    • Li Y, Zeng X. Sequential multi-criteria feature selection algorithm based on agent genetic algorithm. Appl Intell 2010, 33(2):117-131.
    • (2010) Appl Intell , vol.33 , Issue.2 , pp. 117-131
    • Li, Y.1    Zeng, X.2
  • 101
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity and training time of thirty three old and new classification algorithms.
    • Lim TS, Loh W-Y, Shih Y-S. A comparison of prediction accuracy, complexity and training time of thirty three old and new classification algorithms. Mach Learn J 2000, 40:203-228.
    • (2000) Mach Learn J , vol.40 , pp. 203-228
    • Lim, T.S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 104
    • 33744584654 scopus 로고
    • Induction of decision trees.
    • Quinlan JR. Induction of decision trees. J Mach Learn 1986, 1(1):81-106.
    • (1986) J Mach Learn , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 105
    • 77952642202 scopus 로고
    • Incremental induction of decision trees.
    • Utgoff PE. Incremental induction of decision trees. J Mach Learn 1989, 4:161-186.
    • (1989) J Mach Learn , vol.4 , pp. 161-186
    • Utgoff, P.E.1
  • 107
    • 85152519885 scopus 로고
    • An improved algorithm for incremental induction of decision trees. In: Proceedings of 11th International Conference on Machine Learning.
    • Utgoff PE. An improved algorithm for incremental induction of decision trees. In: Proceedings of 11th International Conference on Machine Learning.1994, 318-325.
    • (1994) , pp. 318-325
    • Utgoff, P.E.1
  • 109
    • 84856275943 scopus 로고    scopus 로고
    • Classification and Regression Trees
    • Loh W-Y. Classification and Regression Trees, WIREs Data Mining Knowl Discov 2011, 1:14-23.
    • (2011) WIREs Data Mining Knowl Discov , vol.1 , pp. 14-23
    • Loh, W.-Y.1
  • 110
    • 33747873415 scopus 로고    scopus 로고
    • Predictive and comprehensible rule discovery using a multi-objective genetic algorithms.
    • Dehuri S, Mall R. Predictive and comprehensible rule discovery using a multi-objective genetic algorithms. Knowl-Based Syst 2006, 19:413-421.
    • (2006) Knowl-Based Syst , vol.19 , pp. 413-421
    • Dehuri, S.1    Mall, R.2
  • 111
    • 27144442442 scopus 로고    scopus 로고
    • Discovering interesting patterns for investment decision making with GLOWER: a genetic learner overlaid with entropy reduction.
    • Dhar V, Chou D, Provost F. Discovering interesting patterns for investment decision making with GLOWER: a genetic learner overlaid with entropy reduction. Data Mining Knowl Discov J 2000, 4(4):251-280.
    • (2000) Data Mining Knowl Discov J , vol.4 , Issue.4 , pp. 251-280
    • Dhar, V.1    Chou, D.2    Provost, F.3
  • 112
    • 84879541197 scopus 로고    scopus 로고
    • Testing different sharing methods in concept learning. TUCS Technical Report, 71, Center for Computer Science, Finland
    • Hekanaho J. Testing different sharing methods in concept learning. TUCS Technical Report, 71, Center for Computer Science, Finland, 1996.
    • (1996)
    • Hekanaho, J.1
  • 113
    • 33847141517 scopus 로고    scopus 로고
    • Timeweaver: a genetic algorithm for identifying predictive patterns in sequences of events
    • In: . San Mateo, CA: Morgan Kaufmann
    • Weiss GM. Timeweaver: a genetic algorithm for identifying predictive patterns in sequences of events. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'99). San Mateo, CA: Morgan Kaufmann, 1999, 718-725.
    • (1999) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'99) , pp. 718-725
    • Weiss, G.M.1
  • 114
    • 0012141368 scopus 로고    scopus 로고
    • A survey of evolutionary algorithms for data mining and knowledge discovery
    • In Ghosh A, Tsutsui S, eds. . Berlin, Germany: Springer-Verlag
    • Freitas AA. A survey of evolutionary algorithms for data mining and knowledge discovery. In Ghosh A, Tsutsui S, eds. Advances in Evolutionary Computation. Berlin, Germany: Springer-Verlag, 2002, 819-845.
    • (2002) Advances in Evolutionary Computation , pp. 819-845
    • Freitas, A.A.1
  • 115
    • 0027696178 scopus 로고
    • A knowledge intensive genetic algorithm for supervised learning
    • Janikow CZ. A knowledge intensive genetic algorithm for supervised learning, Mach Learn 1993, 13:189-228.
    • (1993) Mach Learn , vol.13 , pp. 189-228
    • Janikow, C.Z.1
  • 117
    • 0000662737 scopus 로고
    • Search intensive concept induction.
    • Giordana A, Neri F. Search intensive concept induction. Evol Comput 1995, 3(4):375-416.
    • (1995) Evol Comput , vol.3 , Issue.4 , pp. 375-416
    • Giordana, A.1    Neri, F.2
  • 118
    • 84947768788 scopus 로고    scopus 로고
    • In: Proceedings of the 12th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE'99). LNCS, 1611. Berlin, Germany: Springer-Verlag
    • Mansilla EB, Mekaouche A, Guiu JMG. A study of genetic classifier system based on the Pittsburg approach on a medical domain. In: Proceedings of the 12th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE'99). LNCS, 1611. Berlin, Germany: Springer-Verlag, 1999, 175-184.
    • (1999) A study of genetic classifier system based on the Pittsburg approach on a medical domain , pp. 175-184
    • Mansilla, E.B.1    Mekaouche, A.2    Guiu, J.M.G.3
  • 120
    • 70349777604 scopus 로고    scopus 로고
    • Genetic algorithms for multi-criterion classification and clustering in data mining.
    • Dehuri S, Ghosh A, Mall R. Genetic algorithms for multi-criterion classification and clustering in data mining. Int J Comput Inform Sci 2006, 4(3):143-154.
    • (2006) Int J Comput Inform Sci , vol.4 , Issue.3 , pp. 143-154
    • Dehuri, S.1    Ghosh, A.2    Mall, R.3
  • 121
    • 34548498617 scopus 로고    scopus 로고
    • Application of elitist multi-objective genetic algorithm for classification rule generation
    • Dehuri S, Patnaik S, Ghosh A, Mall R. Application of elitist multi-objective genetic algorithm for classification rule generation, Appl Soft Comput 2008, 8:477-487.
    • (2008) Appl Soft Comput , vol.8 , pp. 477-487
    • Dehuri, S.1    Patnaik, S.2    Ghosh, A.3    Mall, R.4
  • 122
    • 84879532326 scopus 로고    scopus 로고
    • Background knowledge in ga based concept learning. In: Proceedings of the 13th International Conference on Machine Learning (ICML'96)
    • Hekanaho J. Background knowledge in ga based concept learning. In: Proceedings of the 13th International Conference on Machine Learning (ICML'96), 1996, 234-242.
    • (1996) , pp. 234-242
    • Hekanaho, J.1
  • 123
    • 84879543499 scopus 로고    scopus 로고
    • Pattern discovery from data using genetic algorithms. In: Proceedings of the 1st Pacific Asia Conference on Knowledge Discovery and Data Mining
    • Pei M, Goodman ED, Punch WF. Pattern discovery from data using genetic algorithms. In: Proceedings of the 1st Pacific Asia Conference on Knowledge Discovery and Data Mining, 1997.
    • (1997)
    • Pei, M.1    Goodman, E.D.2    Punch, W.F.3
  • 124
    • 79956359210 scopus 로고    scopus 로고
    • Interactive evolution
    • In Back T, Fogel DB, Michalewicz T, eds. . London: Institute of Physics Publishing
    • Banzhaf W. Interactive evolution. In Back T, Fogel DB, Michalewicz T, eds. Evolutionary Computation 1. London: Institute of Physics Publishing, 2000, 132-135.
    • (2000) Evolutionary Computation 1 , pp. 132-135
    • Banzhaf, W.1
  • 130
    • 0031988675 scopus 로고    scopus 로고
    • Extracting fuzzy rules for system modelling using a hybrid of genetic algorithms and kalman filter.
    • Wang L, Yen J. Extracting fuzzy rules for system modelling using a hybrid of genetic algorithms and kalman filter. Fuzzy Sets Syst 1999, 101:353-362.
    • (1999) Fuzzy Sets Syst , vol.101 , pp. 353-362
    • Wang, L.1    Yen, J.2
  • 131
    • 0031988674 scopus 로고    scopus 로고
    • Learning maximal structure rules in fuzzy logic for knowledge acquisition in expert system.
    • Castro JL, Castro-Schez JJ. Zurita J. Learning maximal structure rules in fuzzy logic for knowledge acquisition in expert system. Fuzzy Sets Syst 1999, 101:331-342.
    • (1999) Fuzzy Sets Syst , vol.101 , pp. 331-342
    • Castro, J.L.1    Castro-Schez, J.J.2    Zurita, J.3
  • 132
    • 84879536456 scopus 로고    scopus 로고
    • Constructing membership functions and generating weighted fuzzy rules from training data. In: Proceedings of the Ninth National Conference on Fuzzy theory and Its Applications
    • Chang C, Chen S. Constructing membership functions and generating weighted fuzzy rules from training data. In: Proceedings of the Ninth National Conference on Fuzzy theory and Its Applications, 2001, 708-713.
    • (2001) , pp. 708-713
    • Chang, C.1    Chen, S.2
  • 133
    • 0030289773 scopus 로고    scopus 로고
    • Introduction of fuzzy rules and membership functions from training examples.
    • Hong T, Lee C. Introduction of fuzzy rules and membership functions from training examples. Fuzzy Sets Syst 1996, 84:33-47.
    • (1996) Fuzzy Sets Syst , vol.84 , pp. 33-47
    • Hong, T.1    Lee, C.2
  • 134
    • 0033078158 scopus 로고    scopus 로고
    • A new method for constructing membership functions and fuzzy rules from training examples.
    • Wu TP, Chen SM, A new method for constructing membership functions and fuzzy rules from training examples. IEEE Trans Syst Man Cybernetics B 1999, 29:25-40.
    • (1999) IEEE Trans Syst Man Cybernetics B , vol.29 , pp. 25-40
    • Wu, T.P.1    Chen, S.M.2
  • 135
    • 0034513025 scopus 로고    scopus 로고
    • A GA-based method for constructing fuzzy systems directly from numerical data.
    • Wong C-C, Chen C-C. A GA-based method for constructing fuzzy systems directly from numerical data. IEEE Trans Syste Man Cybern B 2002, 30:904-911.
    • (2002) IEEE Trans Syste Man Cybern B , vol.30 , pp. 904-911
    • Wong, C.-C.1    Chen, C.-C.2
  • 136
    • 0037361892 scopus 로고    scopus 로고
    • Learning fuzzy classification rules from labeled data.
    • Roubos J, Setnes M, Abony J. Learning fuzzy classification rules from labeled data. Inform Sci 2003, 150(1-2):77-93.
    • (2003) Inform Sci , vol.150 , Issue.1-2 , pp. 77-93
    • Roubos, J.1    Setnes, M.2    Abony, J.3
  • 137
    • 0034294243 scopus 로고    scopus 로고
    • GA-fuzzy modelling and classification: complexity and performance.
    • Setnes M, Roubos J. GA-fuzzy modelling and classification: complexity and performance. IEEE Trans Fuzzy Syst 2000, 8(5):509-522.
    • (2000) IEEE Trans Fuzzy Syst , vol.8 , Issue.5 , pp. 509-522
    • Setnes, M.1    Roubos, J.2
  • 138
    • 0002197262 scopus 로고
    • Distributed representation of fuzzy rules and its application to pattern classification.
    • Ishibuchi H, Nozaki K, Tanaka H. Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Sets Syst 1992, 52(1):21-32.
    • (1992) Fuzzy Sets Syst , vol.52 , Issue.1 , pp. 21-32
    • Ishibuchi, H.1    Nozaki, K.2    Tanaka, H.3
  • 139
    • 0028482107 scopus 로고
    • Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms
    • Ishibuchi H, Nozaki K, Yamamoto N, Tanaka H, 1994. Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms, Fuzzy Sets Syst 65(2/3): 237-253.
    • (1994) Fuzzy Sets Syst , vol.65 , Issue.2-3 , pp. 237-253
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 140
    • 0033116171 scopus 로고    scopus 로고
    • SLAVE: a genetic learning system based on iterative approach.
    • Gonzalez A, Perez R. SLAVE: a genetic learning system based on iterative approach. IEEE Trans Fuzzy Syst 1999, 7(2):176-191.
    • (1999) IEEE Trans Fuzzy Syst , vol.7 , Issue.2 , pp. 176-191
    • Gonzalez, A.1    Perez, R.2
  • 141
    • 0037230859 scopus 로고    scopus 로고
    • Finding fuzzy classification rules using data mining technique.
    • Hu Y, Chen R, Tzeng G. Finding fuzzy classification rules using data mining technique. Pattern Recogn Lett 2003, 24:509-519.
    • (2003) Pattern Recogn Lett , vol.24 , pp. 509-519
    • Hu, Y.1    Chen, R.2    Tzeng, G.3
  • 142
    • 1842587806 scopus 로고    scopus 로고
    • Design of accurate classifiers with compact fuzzy-rule base using evolutionary scatter partition of feature space.
    • Ho SY, Chen H, Ho SJ, Chen T. Design of accurate classifiers with compact fuzzy-rule base using evolutionary scatter partition of feature space. IEEE Trans Syst Man Cybernet B 2004, 34(2):1031-1044.
    • (2004) IEEE Trans Syst Man Cybernet B , vol.34 , Issue.2 , pp. 1031-1044
    • Ho, S.Y.1    Chen, H.2    Ho, S.J.3    Chen, T.4
  • 143
    • 44949187512 scopus 로고    scopus 로고
    • Generating fuzzy rules from training instances for fuzzy classification systems
    • Chen S, Tsai F. Generating fuzzy rules from training instances for fuzzy classification systems. Expert Syst Appl 2008, 35(3):611-621.
    • (2008) Expert Syst Appl , vol.35 , Issue.3 , pp. 611-621
    • Chen, S.1    Tsai, F.2
  • 144
    • 44949120844 scopus 로고    scopus 로고
    • Generating weighted fuzzy rules from training data for dealing with the iris data classification problem
    • Chen Y, Wang L, Chen S. Generating weighted fuzzy rules from training data for dealing with the iris data classification problem. Int J Appl Sci Eng 2006, 4(1):41-52.
    • (2006) Int J Appl Sci Eng , vol.4 , Issue.1 , pp. 41-52
    • Chen, Y.1    Wang, L.2    Chen, S.3
  • 145
    • 0029242750 scopus 로고
    • A method for fuzzy rules extraction directly from numerical data and application to pattern classification.
    • Abe S, Lan M. A method for fuzzy rules extraction directly from numerical data and application to pattern classification. IEEE Trans Fuzzy Syst 1995, 3(1):18-28.
    • (1995) IEEE Trans Fuzzy Syst , vol.3 , Issue.1 , pp. 18-28
    • Abe, S.1    Lan, M.2
  • 146
    • 0029254092 scopus 로고
    • Improving classification performance using fuzzy MLP and two-level selective partitioning of feature space.
    • Mitra S, Kuncheva LI. Improving classification performance using fuzzy MLP and two-level selective partitioning of feature space. Fuzzy Sets Syst 1995, 70(1):1-13.
    • (1995) Fuzzy Sets Syst , vol.70 , Issue.1 , pp. 1-13
    • Mitra, S.1    Kuncheva, L.I.2
  • 147
    • 0001703957 scopus 로고    scopus 로고
    • A neuro-fuzzy method to learn fuzzy classification rules from data.
    • Nauck D, Kruse R. A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets Syst 1997, 89(3):227-288.
    • (1997) Fuzzy Sets Syst , vol.89 , Issue.3 , pp. 227-288
    • Nauck, D.1    Kruse, R.2
  • 149
    • 1242263791 scopus 로고    scopus 로고
    • A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification.
    • Chokrobotry U, Pal NR. A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification. IEEE Trans Neural Netw 2004, 15(1):110-123.
    • (2004) IEEE Trans Neural Netw , vol.15 , Issue.1 , pp. 110-123
    • Chokrobotry, U.1    Pal, N.R.2
  • 150
    • 0031209094 scopus 로고    scopus 로고
    • A fuzzy classifier with ellipsoidal regions
    • Abe S, Thawonmas R. A fuzzy classifier with ellipsoidal regions. IEEE Trans Fuzzy Syst 1997, 5(3):358-368.
    • (1997) IEEE Trans Fuzzy Syst , vol.5 , Issue.3 , pp. 358-368
    • Abe, S.1    Thawonmas, R.2
  • 151
    • 0347526082 scopus 로고    scopus 로고
    • Elicitation of classification rules by fuzzy data mining
    • Chung Hu Y, Hshiung Tzeng G. Elicitation of classification rules by fuzzy data mining. Appl Artif Intell 2003, 16(7-8):709-716.
    • (2003) Appl Artif Intell , vol.16 , Issue.7-8 , pp. 709-716
    • Chung Hu, Y.1    Hshiung Tzeng, G.2
  • 152
    • 9644252808 scopus 로고    scopus 로고
    • Elicitation of fuzzy association rules from positive and negative examples.
    • DeCock M, Cornelis C, Kerre EE. Elicitation of fuzzy association rules from positive and negative examples. Fuzzy Sets Syst 2003, 149(1):73-85.
    • (2003) Fuzzy Sets Syst , vol.149 , Issue.1 , pp. 73-85
    • DeCock, M.1    Cornelis, C.2    Kerre, E.E.3
  • 153
    • 0346781550 scopus 로고    scopus 로고
    • Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
    • Ishibuchi H, Yamamoto T. Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining, Fuzzy Sets Syst 2004, 141(1):59-88.
    • (2004) Fuzzy Sets Syst , vol.141 , Issue.1 , pp. 59-88
    • Ishibuchi, H.1    Yamamoto, T.2
  • 154
    • 0035426682 scopus 로고    scopus 로고
    • Three-objective genetic-based machine learning for linguistic rule extraction.
    • Ishibuchi H, Nakashima T, Murata T. Three-objective genetic-based machine learning for linguistic rule extraction. Inform Sci 2001, 134(1-4):109-133.
    • (2001) Inform Sci , vol.134 , Issue.1-4 , pp. 109-133
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 155
    • 0036924127 scopus 로고    scopus 로고
    • Automatically constructing membership functions and generating fuzzy rules using genetic algorithms.
    • Chen SM, Chen Y. Automatically constructing membership functions and generating fuzzy rules using genetic algorithms. Cybern Syst 2002, 33(8):841-862.
    • (2002) Cybern Syst , vol.33 , Issue.8 , pp. 841-862
    • Chen, S.M.1    Chen, Y.2
  • 157
    • 34547681970 scopus 로고    scopus 로고
    • Fuzzy classifier design using genetic algorithms
    • Zhou E, Khotanzad A. Fuzzy classifier design using genetic algorithms. Pattern Recogn 2007, 40:3401-3414.
    • (2007) Pattern Recogn , vol.40 , pp. 3401-3414
    • Zhou, E.1    Khotanzad, A.2
  • 158
    • 33750528950 scopus 로고    scopus 로고
    • Intrusion detection using a fuzzy genetics-based learning algorithm.
    • Saniee Adadeh M, Habibi J, Lucas C. Intrusion detection using a fuzzy genetics-based learning algorithm. J Netw Comput Appl 2007, 30:414-428.
    • (2007) J Netw Comput Appl , vol.30 , pp. 414-428
    • Saniee Adadeh, M.1    Habibi, J.2    Lucas, C.3
  • 159
    • 50249175159 scopus 로고    scopus 로고
    • Niching genetic feature selection algorithms applied to design of fuzzy rule-based classification systems. In: IEEE International Fuzzy System Conference, FUZZ-(IEEE'07)
    • Aguilera JJ, Chica M, del Jesus MJ. Herrera F, Niching genetic feature selection algorithms applied to design of fuzzy rule-based classification systems. In: IEEE International Fuzzy System Conference, FUZZ-(IEEE'07), 2007, 1-6.
    • (2007) , pp. 1-6
    • Aguilera, J.J.1    Chica, M.2    del Jesus, M.J.3    Herrera, F.4
  • 160
    • 50549085684 scopus 로고    scopus 로고
    • SGERD, a steady-state genetic algorithm for extracting fuzzy classification rules from data.
    • Monsoori E, Zolghadri M, Katebi S. SGERD, a steady-state genetic algorithm for extracting fuzzy classification rules from data. IEEE Trans Fuzzy Syst 2008, 16(4):1061-1072.
    • (2008) IEEE Trans Fuzzy Syst , vol.16 , Issue.4 , pp. 1061-1072
    • Monsoori, E.1    Zolghadri, M.2    Katebi, S.3
  • 161
    • 0002191257 scopus 로고
    • Design of an adaptive fuzzy logic controller using a genetic algorithms. In: Proceedings of Fourth International Conference on Genetic Algorithms
    • Karr CL. Design of an adaptive fuzzy logic controller using a genetic algorithms. In: Proceedings of Fourth International Conference on Genetic Algorithms, 1991, 450-457.
    • (1991) , pp. 450-457
    • Karr, C.L.1
  • 162
    • 0027539712 scopus 로고
    • Fuzzy controller of ph using genetic algorithms
    • Karr CL, Gentry EJ. Fuzzy controller of ph using genetic algorithms, IEEE Trans Fuzzy Syst 1993, 1(1):46-53.
    • (1993) IEEE Trans Fuzzy Syst , vol.1 , Issue.1 , pp. 46-53
    • Karr, C.L.1    Gentry, E.J.2
  • 163
    • 33845242735 scopus 로고    scopus 로고
    • Evolutionary my dear Watson-investigating committee based evolution of fuzzy rules for the detection of suspicious insurance claims
    • In: San Mateo, CA: Morgan Kaufmann
    • Bentley PJ. Evolutionary my dear Watson-investigating committee based evolution of fuzzy rules for the detection of suspicious insurance claims. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO' 2000). San Mateo, CA: Morgan Kaufmann, 2000, 702-709.
    • (2000) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO' 2000) , pp. 702-709
    • Bentley, P.J.1
  • 165
    • 0033676167 scopus 로고    scopus 로고
    • Mohan CK ClaDia: a fuzzy classifier system for disease diagnosis. In : Proceedings of the Congress on Evolutionary Computation (CEC'2000), 2000, 2
    • Walter D, Mohan CK ClaDia: a fuzzy classifier system for disease diagnosis. In : Proceedings of the Congress on Evolutionary Computation (CEC'2000), 2000, 2:1429-1435.
    • Walter, D.1
  • 166
    • 0033720305 scopus 로고    scopus 로고
    • Soft decision trees: a new approach using non-linear fuzzification. In: Proceedings of the 9th IEEE International Conference Fuzzy Systems (FUZZ IEEE' 2000)
    • Crockett KA, Bandar Z, Al Attar A. Soft decision trees: a new approach using non-linear fuzzification. In: Proceedings of the 9th IEEE International Conference Fuzzy Systems (FUZZ IEEE' 2000), 2000, 209-215.
    • (2000) , pp. 209-215
    • Crockett, K.A.1    Bandar, Z.2    Al Attar, A.3
  • 170
    • 50149096917 scopus 로고    scopus 로고
    • Genetic fuzzy systems: taxonomy current research trends and prospects.
    • Herrera F. Genetic fuzzy systems: taxonomy current research trends and prospects. Evol Intell 2008, 1:27-46.
    • (2008) Evol Intell , vol.1 , pp. 27-46
    • Herrera, F.1
  • 171
    • 84879539317 scopus 로고    scopus 로고
    • A GA-based approach to optimisation of fuzzy models learned from data. In:+ GECCO Program, New York
    • Castellano G, Fanelli A, Gentile E, Roselli T. A GA-based approach to optimisation of fuzzy models learned from data. In:+ GECCO Program, New York, 2002, 5-8.
    • (2002) , pp. 5-8
    • Castellano, G.1    Fanelli, A.2    Gentile, E.3    Roselli, T.4
  • 172
    • 0035360372 scopus 로고    scopus 로고
    • Designing fuzzy inference systems from data: An interpretability oriented review.
    • Guillaume S. Designing fuzzy inference systems from data: An interpretability oriented review. IEEE Trans Fuzzy Syst 2001, 9(3):426-443.
    • (2001) IEEE Trans Fuzzy Syst , vol.9 , Issue.3 , pp. 426-443
    • Guillaume, S.1
  • 173
    • 84931451187 scopus 로고    scopus 로고
    • Accurate, transparent and compact fuzzy models for function approximation and dynamic modelling through multiobjective evolutionary optimisation. In: First International Conference on Evolutionary Multi-criterion Optimisation
    • Jimenez F, Gomez-Skarmeta AF, Roubos H, Babuska R. Accurate, transparent and compact fuzzy models for function approximation and dynamic modelling through multiobjective evolutionary optimisation. In: First International Conference on Evolutionary Multi-criterion Optimisation, 2001, 653-667.
    • (2001) , pp. 653-667
    • Jimenez, F.1    Gomez-Skarmeta, A.F.2    Roubos, H.3    Babuska, R.4
  • 174
    • 0031627682 scopus 로고    scopus 로고
    • An approach to rule-base knowledge extraction. In: Proceedings of IEEE Conference on Fuzzy System
    • Jin Y, Vonseelen W, Sendhoff B. An approach to rule-base knowledge extraction. In: Proceedings of IEEE Conference on Fuzzy System, 1998, 1188-1193.
    • (1998) , pp. 1188-1193
    • Jin, Y.1    Vonseelen, W.2    Sendhoff, B.3
  • 175
    • 0033279878 scopus 로고    scopus 로고
    • On generating FC3 fuzzy rule systems from data using evolution strategies.
    • Jin Y, Vonseelen W, Sendhoff B. On generating FC3 fuzzy rule systems from data using evolution strategies. IEEE Trans Syst Man Cybern 1999, 29(6):829-845.
    • (1999) IEEE Trans Syst Man Cybern , vol.29 , Issue.6 , pp. 829-845
    • Jin, Y.1    Vonseelen, W.2    Sendhoff, B.3
  • 176
    • 0038173250 scopus 로고    scopus 로고
    • Extracting interpretable fuzzy rules from RBF networks.
    • Jin Y, Sendhoff B. Extracting interpretable fuzzy rules from RBF networks. Neural Process Lett 2003, 17(2):149-164.
    • (2003) Neural Process Lett , vol.17 , Issue.2 , pp. 149-164
    • Jin, Y.1    Sendhoff, B.2
  • 177
    • 0034294243 scopus 로고    scopus 로고
    • GA-fuzzy modelling and classification: Complexity and performance.
    • Roubos H, Setnes M. GA-fuzzy modelling and classification: Complexity and performance. IEEE Trans Fuzzy Syst 2000, 8(5):509-522.
    • (2000) IEEE Trans Fuzzy Syst , vol.8 , Issue.5 , pp. 509-522
    • Roubos, H.1    Setnes, M.2
  • 178
    • 0033876069 scopus 로고    scopus 로고
    • Self-organised fuzzy system generation from training examples.
    • Rojas I, Pomares H, Ortega J, Prieto A. Self-organised fuzzy system generation from training examples. IEEE Trans Fuzzy Syst 2000, 8(1):23-36.
    • (2000) IEEE Trans Fuzzy Syst , vol.8 , Issue.1 , pp. 23-36
    • Rojas, I.1    Pomares, H.2    Ortega, J.3    Prieto, A.4
  • 180
    • 33646072176 scopus 로고    scopus 로고
    • Hybrid learning models to get the interpretability-accuracy trade off in fuzzy modelling.
    • Alcala R, Alcala Fdez J, Casillas J, Cordon O, Herrera F. Hybrid learning models to get the interpretability-accuracy trade off in fuzzy modelling. Soft Comput 2006, 10:717-734.
    • (2006) Soft Comput , vol.10 , pp. 717-734
    • Alcala, R.1    Alcala Fdez, J.2    Casillas, J.3    Cordon, O.4    Herrera, F.5
  • 181
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of interpretability-accuracy trade off of fuzzy systems by multi-objective fuzzy genetic-based machine learning.
    • Ishibuchi H, Nojima Y. Analysis of interpretability-accuracy trade off of fuzzy systems by multi-objective fuzzy genetic-based machine learning. Int J Appprox Reason 2007, 44(1):4-31.
    • (2007) Int J Appprox Reason , vol.44 , Issue.1 , pp. 4-31
    • Ishibuchi, H.1    Nojima, Y.2
  • 182
    • 79955551124 scopus 로고    scopus 로고
    • A historical review of evolutionary learning methods for mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems.
    • Cordon O. A historical review of evolutionary learning methods for mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems. Int J Approx Reason 2011, 52(6):894-913.
    • (2011) Int J Approx Reason , vol.52 , Issue.6 , pp. 894-913
    • Cordon, O.1
  • 183
    • 0033704546 scopus 로고    scopus 로고
    • Fuzzy modelling of high-dimensional systems: Complexity reduction and interpretability improvements.
    • Jin Y. Fuzzy modelling of high-dimensional systems: Complexity reduction and interpretability improvements. IEEE Trans Fuzzy Syst 2000, 8(2):212-221.
    • (2000) IEEE Trans Fuzzy Syst , vol.8 , Issue.2 , pp. 212-221
    • Jin, Y.1
  • 184
    • 0037308121 scopus 로고    scopus 로고
    • Fuzzy data analysis with NEFCLASS.
    • Nauck DD. Fuzzy data analysis with NEFCLASS. Approx Reason 2003, 32:103-130.
    • (2003) Approx Reason , vol.32 , pp. 103-130
    • Nauck, D.D.1
  • 185
    • 0034207436 scopus 로고    scopus 로고
    • A proposal for improving the accuracy of linguistic modelling.
    • Cordon O, Herrera F, Zwir I. A proposal for improving the accuracy of linguistic modelling. IEEE Trans Fuzzy Syst 2000, 8(3):335-344.
    • (2000) IEEE Trans Fuzzy Syst , vol.8 , Issue.3 , pp. 335-344
    • Cordon, O.1    Herrera, F.2    Zwir, I.3
  • 186
    • 11244318202 scopus 로고    scopus 로고
    • Interpretability issues in data-based learning of fuzzy systems.
    • Mikut R, Jakel J, Groll L. Interpretability issues in data-based learning of fuzzy systems. Fuzzy Sets and Systems 2005, 150:179-197.
    • (2005) Fuzzy Sets and Systems , vol.150 , pp. 179-197
    • Mikut, R.1    Jakel, J.2    Groll, L.3
  • 188
    • 79960555001 scopus 로고    scopus 로고
    • Interpretability of linguistic fuzzy rule based systems: an overview of interpretability measures
    • Gacto MJ, Alcala R, Herrera F. Interpretability of linguistic fuzzy rule based systems: an overview of interpretability measures. Information Science 2011, 181(20):4340-4360.
    • (2011) Information Science , vol.181 , Issue.20 , pp. 4340-4360
    • Gacto, M.J.1    Alcala, R.2    Herrera, F.3
  • 189
    • 77953111519 scopus 로고    scopus 로고
    • Integration of an index to preserve the semantic interpretability in the multi-objective evolutionary rule selection and tuning of linguistic fuzzy systems.
    • Gacto MJ, Alcala R, Herrera F. Integration of an index to preserve the semantic interpretability in the multi-objective evolutionary rule selection and tuning of linguistic fuzzy systems. IEEE Transactions on Fuzzy Systems 2010, 18:515-531.
    • (2010) IEEE Transactions on Fuzzy Systems , vol.18 , pp. 515-531
    • Gacto, M.J.1    Alcala, R.2    Herrera, F.3
  • 190
    • 52949088628 scopus 로고    scopus 로고
    • Low level interpretability and high level interpretability a unified view of data driven interpretable fuzzy system modeling.
    • Zhou SM, Gan JQ. Low level interpretability and high level interpretability a unified view of data driven interpretable fuzzy system modeling. Fuzzy Sets and Systems 2008, 159:3091-3131.
    • (2008) Fuzzy Sets and Systems , vol.159 , pp. 3091-3131
    • Zhou, S.M.1    Gan, J.Q.2
  • 191
    • 0029359001 scopus 로고
    • Selecting fuzzy if-then rules for classification problems using genetic algorithms.
    • Ishibuchi H, Nozaki K, Yamamoto N, Tanaka H. Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Transactions on Fuzzy Systems 1995, 3(3):260-270.
    • (1995) IEEE Transactions on Fuzzy Systems , vol.3 , Issue.3 , pp. 260-270
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 192
    • 0032141635 scopus 로고    scopus 로고
    • A multi-objective genetic based local search algorithm and its application to flowshop scheduling.
    • Ishibuchi H, Murata T. A multi-objective genetic based local search algorithm and its application to flowshop scheduling. IEEE Tran Syst Man Cybernet C 1998, 28:392-403.
    • (1998) IEEE Tran Syst Man Cybernet C , vol.28 , pp. 392-403
    • Ishibuchi, H.1    Murata, T.2
  • 193
    • 0000919523 scopus 로고    scopus 로고
    • Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems.
    • Ishibuchi H, Murata T, Turksen I. Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems. Fuzzy Sets Syst 1997, 89(2):135-149.
    • (1997) Fuzzy Sets Syst , vol.89 , Issue.2 , pp. 135-149
    • Ishibuchi, H.1    Murata, T.2    Turksen, I.3
  • 195
    • 34250712183 scopus 로고    scopus 로고
    • Fuzzy data mining by heuristic rule extraction and multiobjective rule selection. In: 2006 IEEE International Conference on Fuzzy Systems, Canada
    • Isibuchi H, Nojima Y, Kuwajima I. Fuzzy data mining by heuristic rule extraction and multiobjective rule selection. In: 2006 IEEE International Conference on Fuzzy Systems, Canada2006, 1633-1640.
    • (2006) , pp. 1633-1640
    • Isibuchi, H.1    Nojima, Y.2    Kuwajima, I.3
  • 197
    • 35348831258 scopus 로고    scopus 로고
    • A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic rule-based system.
    • Alcala R, Gacto M, Herrera F. A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic rule-based system. Int J Uncertain, Fuzziness Knowled-Based Syst 2007, 15(5):539-557.
    • (2007) Int J Uncertain, Fuzziness Knowled-Based Syst , vol.15 , Issue.5 , pp. 539-557
    • Alcala, R.1    Gacto, M.2    Herrera, F.3
  • 198
    • 0000308566 scopus 로고
    • Real-coded genetic algorithms and interval schemata.
    • Eshelman LJ, Schaffer JD. Real-coded genetic algorithms and interval schemata. Found Genetic Algorithms 1993, 2:187-202.
    • (1993) Found Genetic Algorithms , vol.2 , pp. 187-202
    • Eshelman, L.J.1    Schaffer, J.D.2
  • 199
    • 0001334115 scopus 로고
    • The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination
    • Eshelman LJ, Schaffer JD. The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination. Foundat Genetic Algorithms 1991, 1:265-283.
    • (1991) Foundat Genetic Algorithms , vol.1 , pp. 265-283
    • Eshelman, L.J.1    Schaffer, J.D.2
  • 200
    • 58049200709 scopus 로고    scopus 로고
    • Adaptation and application of multi-objective evolutionary algorithm for rule selection and parameter tuning of fuzzy rule-based systems.
    • Gacto MJ, Alcala R, Herrera F. Adaptation and application of multi-objective evolutionary algorithm for rule selection and parameter tuning of fuzzy rule-based systems. Soft Comput 2009, 13:419-436.
    • (2009) Soft Comput , vol.13 , pp. 419-436
    • Gacto, M.J.1    Alcala, R.2    Herrera, F.3
  • 201
    • 42649122303 scopus 로고    scopus 로고
    • Fuzzy classifier identification using decision tree and multi-objective evolutionary algorithms.
    • Pulkkinen P, Koivisto H. Fuzzy classifier identification using decision tree and multi-objective evolutionary algorithms. Int J Approx Reason 2008, 48:526-283.
    • (2008) Int J Approx Reason , vol.48 , pp. 526-283
    • Pulkkinen, P.1    Koivisto, H.2
  • 202
    • 76849098957 scopus 로고    scopus 로고
    • A multi-objective genetic fuzzy system for obtaining compact and accurate fuzzy classifiers with transparent fuzzy partitions
    • In: . Miami Beach, FL: IEEE Press
    • Pulkkinen P. A multi-objective genetic fuzzy system for obtaining compact and accurate fuzzy classifiers with transparent fuzzy partitions. In: Proceedings of 8th International Conference on Machine Learning and Applications. Miami Beach, FL: IEEE Press, 2009, 84-94.
    • (2009) Proceedings of 8th International Conference on Machine Learning and Applications , pp. 84-94
    • Pulkkinen, P.1
  • 203
    • 78549275066 scopus 로고    scopus 로고
    • A multi-objective evolutionary algorithm with an interpretability improvement mechanism for linguistic fuzzy systems with adaptive defuzzification. In: IEEE World Congress on Computational Intelligence
    • Marquez A, Marquez F, Peregrin A. A multi-objective evolutionary algorithm with an interpretability improvement mechanism for linguistic fuzzy systems with adaptive defuzzification. In: IEEE World Congress on Computational Intelligence, 2010, 277-283.
    • (2010) , pp. 277-283
    • Marquez, A.1    Marquez, F.2    Peregrin, A.3
  • 204
    • 84879530019 scopus 로고    scopus 로고
    • Parallel single and multi-objective genetic algorithms: a survey.
    • Mishra BSP, Dehuri S, Mall R, Ghosh A. Parallel single and multi-objective genetic algorithms: a survey. Int J Appl Evol Comput 2011, 2(2):21-58.
    • (2011) Int J Appl Evol Comput , vol.2 , Issue.2 , pp. 21-58
    • Mishra, B.S.P.1    Dehuri, S.2    Mall, R.3    Ghosh, A.4
  • 207
    • 31744443319 scopus 로고    scopus 로고
    • Genetic programming for simultaneous feature selection and classifier design.
    • Muni DP, Pal NR, Das J. Genetic programming for simultaneous feature selection and classifier design. IEEE Trans Syst Man Cybernet B 2006, 36(1):106-117.
    • (2006) IEEE Trans Syst Man Cybernet B , vol.36 , Issue.1 , pp. 106-117
    • Muni, D.P.1    Pal, N.R.2    Das, J.3
  • 208
    • 33749865403 scopus 로고    scopus 로고
    • Gp ensembles for large scale data classification.
    • Folino G, Pizzuti C, Spezzano G. Gp ensembles for large scale data classification. IEEE Trans Evol Comput 2006, 10(5):604-616.
    • (2006) IEEE Trans Evol Comput , vol.10 , Issue.5 , pp. 604-616
    • Folino, G.1    Pizzuti, C.2    Spezzano, G.3
  • 209
    • 0029535737 scopus 로고
    • Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks
    • Kennedy J, Eberhart RC. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, 1995, 1942-1948.
    • (1995) , pp. 1942-1948
    • Kennedy, J.1    Eberhart, R.C.2
  • 210
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm explosion, stability, convergence in a multi-dimensional complex space.
    • Clerc M, Kennedy J. The particle swarm explosion, stability, convergence in a multi-dimensional complex space. IEEE Trans Evol Comput 2002, 6(1):68-73.
    • (2002) IEEE Trans Evol Comput , vol.6 , Issue.1 , pp. 68-73
    • Clerc, M.1    Kennedy, J.2
  • 211
    • 60449120121 scopus 로고    scopus 로고
    • Multi-criterion pareto based particle swarm optimized polynomial neural network for classification: a review and state-of-the-art
    • Dehuri S, Cho S-B. Multi-criterion pareto based particle swarm optimized polynomial neural network for classification: a review and state-of-the-art, Comput Sci Rev 2009, 3(1):19-40.
    • (2009) Comput Sci Rev , vol.3 , Issue.1 , pp. 19-40
    • Dehuri, S.1    Cho, S.-B.2
  • 215
    • 34250683045 scopus 로고    scopus 로고
    • Application of honey bee mating optimization algorithm on clustering.
    • Fathian M, Amiri B, Maroosi A. Application of honey bee mating optimization algorithm on clustering. Appl Math Comput 2007, 190:1502-1513.
    • (2007) Appl Math Comput , vol.190 , pp. 1502-1513
    • Fathian, M.1    Amiri, B.2    Maroosi, A.3
  • 216
    • 37249084064 scopus 로고    scopus 로고
    • Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems.
    • Karaboga D, Basturk B, Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. Lect Notes Artifi Intell 2007, 4529:789-798.
    • (2007) Lect Notes Artifi Intell , vol.4529 , pp. 789-798
    • Karaboga, D.1    Basturk, B.2
  • 217
    • 34548479029 scopus 로고    scopus 로고
    • On the performance of artificial bee colony (abc) algorithm.
    • Karaboga D, Basturk B. On the performance of artificial bee colony (abc) algorithm. Appl Soft Comput 2008, 8:687-697.
    • (2008) Appl Soft Comput , vol.8 , pp. 687-697
    • Karaboga, D.1    Basturk, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.