-
1
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
Aizerman M.A., Braverman É.M., and Rozonoér L.I. 1964. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 25: 821-837.
-
(1964)
Automation and Remote Control
, vol.25
, pp. 821-837
-
-
Aizerman, M.A.1
Braverman, É.M.2
Rozonoér, L.I.3
-
5
-
-
0002935122
-
Combining support vector and mathematical programming methods for induction
-
Schölkopf B., Burges C.J.C., and Smola A.J., (Eds.), MIT Press, Cambridge, MA
-
Bennett K. 1999. Combining support vector and mathematical programming methods for induction. In: Schölkopf B., Burges C.J.C., and Smola A.J., (Eds.), Advances in Kernel Methods - SV Learning, MIT Press, Cambridge, MA, pp. 307-326.
-
(1999)
Advances in Kernel Methods - SV Learning
, pp. 307-326
-
-
Bennett, K.1
-
6
-
-
0026860799
-
Robust linear programming discrimination of two linearly inseparable sets
-
Bennett K.P. and Mangasarian O.L. 1992. Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software 1: 23-34.
-
(1992)
Optimization Methods and Software
, vol.1
, pp. 23-34
-
-
Bennett, K.P.1
Mangasarian, O.L.2
-
10
-
-
84902205493
-
Comparison of view-based object recognition algorithms using realistic 3D models
-
von der Malsburg C., von Seelen W., Vorbrüggen J.C., and Sendhoff B. (Eds.), Berlin. Springer Lecture Notes in Computer Science
-
Blanz V., Schölkopf B., Bülthoff H., Burges C., Vapnik V., and Vetter T. 1996. Comparison of view-based object recognition algorithms using realistic 3D models. In: von der Malsburg C., von Seelen W., Vorbrüggen J.C., and Sendhoff B. (Eds.), Artificial Neural Networks ICANN'96, Berlin. Springer Lecture Notes in Computer Science, Vol. 1112, pp. 251-256.
-
(1996)
Artificial Neural Networks ICANN'96
, vol.1112
, pp. 251-256
-
-
Blanz, V.1
Schölkopf, B.2
Bülthoff, H.3
Burges, C.4
Vapnik, V.5
Vetter, T.6
-
12
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Haussler D. (Ed.), ACM Press, Pittsburgh, PA
-
Boser B.E., Guyon I.M., and Vapnik VN. 1992. A training algorithm for optimal margin classifiers. In: Haussler D. (Ed.), Proceedings of the Annual Conference on Computational Learning Theory. ACM Press, Pittsburgh, PA, pp. 144-152.
-
(1992)
Proceedings of the Annual Conference on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
13
-
-
0004093835
-
Data mining: Overview and optimization opportunities
-
Technical Report 98-01, University of Wisconsin, Computer Sciences Department, Madison, January to appear
-
Bradley P.S., Fayyad U.M., and Mangasarian O.L. 1998. Data mining: Overview and optimization opportunities. Technical Report 98-01, University of Wisconsin, Computer Sciences Department, Madison, January. INFORMS Journal on Computing, to appear.
-
(1998)
INFORMS Journal on Computing
-
-
Bradley, P.S.1
Fayyad, U.M.2
Mangasarian, O.L.3
-
14
-
-
0002709342
-
Feature selection via concave minimization and support vector machines
-
Shavlik J. (Ed.), Morgan Kaufmann Publishers, San Francisco, California
-
Bradley P.S. and Mangasarian O.L. 1998. Feature selection via concave minimization and support vector machines. In: Shavlik J. (Ed.), Proceedings of the International Conference on Machine Learning. Morgan Kaufmann Publishers, San Francisco, California, pp. 82-90. ftp://ftp.cs.wisc.edu/math-prog/tech- reports/98-03.ps.Z.
-
(1998)
Proceedings of the International Conference on Machine Learning
, pp. 82-90
-
-
Bradley, P.S.1
Mangasarian, O.L.2
-
15
-
-
84966228742
-
Some stable methods for calculating inertia and solving symmetric linear systems
-
Bunch J.R. and Kaufman L. 1977. Some stable methods for calculating inertia and solving symmetric linear systems. Mathematics of Computation 31: 163-179.
-
(1977)
Mathematics of Computation
, vol.31
, pp. 163-179
-
-
Bunch, J.R.1
Kaufman, L.2
-
18
-
-
0002400882
-
Simplified support vector decision rules
-
L. Saitta (Ed.), Morgan Kaufmann Publishers, San Mateo, CA
-
Burges C.J.C. 1996. Simplified support vector decision rules. In L. Saitta (Ed.), Proceedings of the International Conference on Machine Learning, Morgan Kaufmann Publishers, San Mateo, CA, pp. 71-77.
-
(1996)
Proceedings of the International Conference on Machine Learning
, pp. 71-77
-
-
Burges, C.J.C.1
-
19
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C.J.C. 1998. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2): 121-167.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
20
-
-
0002615660
-
Geometry and invariance in kernel based methods
-
Schölkopf B., Burges C.J.C., and Smola A.J., (Eds.), MIT Press, Cambridge, MA
-
Burges C.J.C. 1999. Geometry and invariance in kernel based methods. In Schölkopf B., Burges C.J.C., and Smola A.J., (Eds.), Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge, MA, pp. 89-116.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 89-116
-
-
Burges, C.J.C.1
-
21
-
-
84898957872
-
Improving the accuracy and speed of support vector learning machines
-
Mozer M.C., Jordan M.I., and Petsche T., (Eds.), MIT Press, Cambridge, MA
-
Burges C.J.C. and Schölkopf B. 1997. Improving the accuracy and speed of support vector learning machines. In Mozer M.C., Jordan M.I., and Petsche T., (Eds.), Advances in Neural Information Processing Systems 9, MIT Press, Cambridge, MA, pp. 375-381.
-
(1997)
Advances in Neural Information Processing Systems 9
, pp. 375-381
-
-
Burges, C.J.C.1
Schölkopf, B.2
-
22
-
-
0346881149
-
Experimentally optimal ν in support vector regression for different noise models and parameter settings
-
Chalimourda A., Schölkopf B., and Smola A.J. 2004. Experimentally optimal ν in support vector regression for different noise models and parameter settings. Neural Networks 17(1): 127-141.
-
(2004)
Neural Networks
, vol.17
, Issue.1
, pp. 127-141
-
-
Chalimourda, A.1
Schölkopf, B.2
Smola, A.J.3
-
23
-
-
4043161141
-
The analysis of decomposition methods for support vector machines
-
SVM Workshop
-
Chang C.-C., Hsu C.-W., and Lin C.-J. 1999. The analysis of decomposition methods for support vector machines. In Proceeding of IJCAI99, SVM Workshop.
-
(1999)
Proceeding of IJCAI99
-
-
Chang, C.-C.1
Hsu, C.-W.2
Lin, C.-J.3
-
24
-
-
0000667930
-
Training ν-support vector classifiers: Theory and algorithms
-
Chang C.C. and Lin C.J. 2001. Training ν-support vector classifiers: Theory and algorithms. Neural Computation 13(9): 2119-2147.
-
(2001)
Neural Computation
, vol.13
, Issue.9
, pp. 2119-2147
-
-
Chang, C.C.1
Lin, C.J.2
-
27
-
-
34249753618
-
Support vector networks
-
Cortes C. and Vapnik V. 1995. Support vector networks. Machine Learning 20: 273-297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
28
-
-
0000541146
-
Asymptotic analysis of penalized likelihood and related estimators
-
Cox D. and O'Sullivan F. 1990. Asymptotic analysis of penalized likelihood and related estimators. Annals of Statistics 18: 1676-1695.
-
(1990)
Annals of Statistics
, vol.18
, pp. 1676-1695
-
-
Cox, D.1
O'Sullivan, F.2
-
34
-
-
84899013173
-
Support vector regression machines
-
MozerM.C., JordanM.I., and Petsche T. (Eds.), MIT Press, Cambridge, MA
-
Drucker H., Burges C.J.C., Kaufman L., Smola A., and Vapnik V. 1997. Support vector regression machines. In: MozerM.C., JordanM.I., and Petsche T. (Eds.), Advances in Neural Information Processing Systems 9, MIT Press, Cambridge, MA, pp. 155-161.
-
(1997)
Advances in Neural Information Processing Systems 9
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.C.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
39
-
-
0000249788
-
An equivalence between sparse approximation and support vector machines
-
Girosi F. 1998. An equivalence between sparse approximation and support vector machines. Neural Computation 10(6): 1455-1480.
-
(1998)
Neural Computation
, vol.10
, Issue.6
, pp. 1455-1480
-
-
Girosi, F.1
-
40
-
-
0004063539
-
-
A.I. Memo No. 1430, Artificial Intelligence Laboratory, Massachusetts Institute of Technology
-
Girosi E, Jones M., and Poggio T. 1993. Priors, stabilizers and basis functions: From regularization to radial, tensor and additive splines. A.I. Memo No. 1430, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
-
(1993)
Priors, Stabilizers and Basis Functions: From Regularization to Radial, Tensor and Additive Splines
-
-
Girosi, E.1
Jones, M.2
Poggio, T.3
-
41
-
-
0005396750
-
Automatic capacity tuning of very large VC-dimension classifiers
-
Hanson S.J., Cowan J.D., and Giles C.L. (Eds.), Morgan Kaufmann Publishers
-
Guyon I., Boser B., and Vapnik V. 1993. Automatic capacity tuning of very large VC-dimension classifiers. In: Hanson S.J., Cowan J.D., and Giles C.L. (Eds.), Advances in Neural Information Processing Systems 5. Morgan Kaufmann Publishers, pp. 147-155.
-
(1993)
Advances in Neural Information Processing Systems 5.
, pp. 147-155
-
-
Guyon, I.1
Boser, B.2
Vapnik, V.3
-
45
-
-
0003074296
-
Trends and controversies - Support vector machines
-
Hearst M.A., Schölkopf B., Dumais S., Osuna E., and Platt J. 1998. Trends and controversies - support vector machines. IEEE Intelligent Systems 13: 18-28.
-
(1998)
IEEE Intelligent Systems
, vol.13
, pp. 18-28
-
-
Hearst, M.A.1
Schölkopf, B.2
Dumais, S.3
Osuna, E.4
Platt, J.5
-
47
-
-
0000171374
-
Robust statistics: A review
-
Huber P.J. 1972. Robust statistics: A review. Annals of Statistics 43: 1041.
-
(1972)
Annals of Statistics
, vol.43
, pp. 1041
-
-
Huber, P.J.1
-
48
-
-
0004262735
-
-
John Wiley and Sons, New York
-
Huber P.J. 1981. Robust Statistics. John Wiley and Sons, New York.
-
(1981)
Robust Statistics
-
-
Huber, P.J.1
-
49
-
-
2142669059
-
IBM optimization subroutine library guide and reference
-
IBM Corporation. 1992. IBM optimization subroutine library guide and reference. IBM Systems Journal, 31, SC23-0519.
-
(1992)
IBM Systems Journal
, vol.31
-
-
-
51
-
-
0002714543
-
Making large-scale SVM learning practical
-
Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.), MIT Press, Cambridge, MA
-
Joachims T. 1999. Making large-scale SVM learning practical. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.), Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge, MA, pp. 169-184.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
53
-
-
0001559380
-
Solving the quadratic programming problem arising in support vector classification
-
Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.), MIT Press, Cambridge, MA
-
Kaufman L. 1999. Solving the quadratic programming problem arising in support vector classification. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.), Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge, MA, pp. 147-168
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 147-168
-
-
Kaufman, L.1
-
54
-
-
0004098720
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
Dept. of Mechanical and Production Engineering, Natl. Univ. Singapore, Singapore
-
Keerthi S.S., Shevade S.K., Bhattacharyya C., and Murthy K.R.K. 1999. Improvements to Platt's SMO algorithm for SVM classifier design. Technical Report CD-99-14, Dept. of Mechanical and Production Engineering, Natl. Univ. Singapore, Singapore.
-
(1999)
Technical Report CD-99-14
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
56
-
-
0000406385
-
A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
-
Kimeldorf G.S. and Wahba G. 1970. A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Annals of Mathematical Statistics 41: 495-502.
-
(1970)
Annals of Mathematical Statistics
, vol.41
, pp. 495-502
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
57
-
-
0015000439
-
Some results on Tchebycheffian spline functions
-
Kimeldorf G.S. and Wahba G. 1971. Some results on Tchebycheffian spline functions. J. Math. Anal. Applic. 33: 82-95.
-
(1971)
J. Math. Anal. Applic.
, vol.33
, pp. 82-95
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
58
-
-
0003357515
-
Maximal margin perceptron
-
Smola A.J., Bartlett P.L., Schölkopf B., and Schuurmans D. (Eds.), MIT Press, Cambridge, MA
-
Kowalczyk A. 2000. Maximal margin perceptron. In: Smola A.J., Bartlett P.L., Schölkopf B., and Schuurmans D. (Eds.), Advances in Large Margin Classifiers, MIT Press, Cambridge, MA, pp. 75-113.
-
(2000)
Advances in Large Margin Classifiers
, pp. 75-113
-
-
Kowalczyk, A.1
-
61
-
-
0003680739
-
An introduction to Kolmogorov Complexity and its applications
-
Springer, New York
-
Li M. and Vitányi P. 1993. An introduction to Kolmogorov Complexity and its applications. Texts and Monographs in Computer Science. Springer, New York.
-
(1993)
Texts and Monographs in Computer Science
-
-
Li, M.1
Vitányi, P.2
-
62
-
-
0035506741
-
On the convergence of the decomposition method for support vector machines
-
Lin C.J. 2001. On the convergence of the decomposition method for support vector machines. IEEE Transactions on Neural Networks 12(6): 1288-1298.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.6
, pp. 1288-1298
-
-
Lin, C.J.1
-
63
-
-
0011327883
-
On implementing Mehrotra's predictor-corrector interior point method for linear programming
-
Dept. of Civil Engineering and Operations Research, Princeton University
-
Lustig I.J., Marsten R.E., and Shanno D.F. 1990. On implementing Mehrotra's predictor-corrector interior point method for linear programming. Princeton Technical Report SOR 90-03., Dept. of Civil Engineering and Operations Research, Princeton University.
-
(1990)
Princeton Technical Report SOR 90-03.
-
-
Lustig, I.J.1
Marsten, R.E.2
Shanno, D.F.3
-
64
-
-
0000022796
-
On implementing Mehrotra's predictor-corrector interior point method for linear programming
-
Lustig I.J., Marsten R.E., and Shanno D.F. 1992. On implementing Mehrotra's predictor-corrector interior point method for linear programming. SIAM Journal on Optimization 2(3): 435-449.
-
(1992)
SIAM Journal on Optimization
, vol.2
, Issue.3
, pp. 435-449
-
-
Lustig, I.J.1
Marsten, R.E.2
Shanno, D.F.3
-
65
-
-
0003748256
-
-
PhD thesis, Computation and Neural Systems, California Institute of Technology, Pasadena, CA
-
MacKay D.J.C. 1991. Bayesian Methods for Adaptive Models. PhD thesis, Computation and Neural Systems, California Institute of Technology, Pasadena, CA.
-
(1991)
Bayesian Methods for Adaptive Models
-
-
MacKay, D.J.C.1
-
66
-
-
0000963583
-
Linear and nonlinear separation of patterns by linear programming
-
Mangasarian O.L. 1965. Linear and nonlinear separation of patterns by linear programming. Operations Research 13: 444-452.
-
(1965)
Operations Research
, vol.13
, pp. 444-452
-
-
Mangasarian, O.L.1
-
69
-
-
0002941010
-
Support vector machines for dynamic reconstruction of a chaotic system
-
Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.), MIT Press, Cambridge, MA
-
Mattera D. and Haykin S. 1999. Support vector machines for dynamic reconstruction of a chaotic system. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.), Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge, MA, pp. 211-242.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 211-242
-
-
Mattera, D.1
Haykin, S.2
-
71
-
-
0001961709
-
-
Springer, New York, NY
-
Megiddo N. 1989. Progressin Mathematical Programming, chapter Pathways to the optimal set in linear programming, Springer, New York, NY, pp. 131-158.
-
(1989)
Progressin Mathematical Programming, Chapter Pathways to the Optimal Set in Linear Programming
, pp. 131-158
-
-
Megiddo, N.1
-
72
-
-
0000561116
-
On the implementation of a (primal-dual) interior point method
-
Mehrotra S. and Sun J. 1992. On the implementation of a (primal-dual) interior point method. SIAM Journal on Optimization 2(4): 575-601.
-
(1992)
SIAM Journal on Optimization
, vol.2
, Issue.4
, pp. 575-601
-
-
Mehrotra, S.1
Sun, J.2
-
73
-
-
0001500115
-
Functions of positive and negative type and their connection with the theory of integral equations
-
Mercer J. 1909. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London A 209: 415-446.
-
(1909)
Philosophical Transactions of the Royal Society, London A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
76
-
-
84956628443
-
Predicting time series with support vector machines
-
Gerstner W., Germond A., Hasler M., and Nicoud J.-D. (Eds.), Berlin. Springer Lecture Notes in Computer Science
-
Müller K.-R., Smola A., Rätsch G., Schölkopf B., Kohlmorgen J., and Vapnik V. 1997. Predicting time series with support vector machines. In: Gerstner W., Germond A., Hasler M., and Nicoud J.-D. (Eds.), Artificial Neural Networks ICANN'97, Berlin. Springer Lecture Notes in Computer Science Vol. 1327 pp. 999-1004.
-
(1997)
Artificial Neural Networks ICANN'97
, vol.1327
, pp. 999-1004
-
-
Müller, K.-R.1
Smola, A.2
Rätsch, G.3
Schölkopf, B.4
Kohlmorgen, J.5
Vapnik, V.6
-
77
-
-
0003446306
-
-
Technical Report SOL 83-20R, Stanford University, CA, USA, Revised 1987
-
Murtagh B.A. and Saunders M.A. 1983. MINOS 5.1 user's guide. Technical Report SOL 83-20R, Stanford University, CA, USA, Revised 1987.
-
(1983)
MINOS 5.1 User's Guide
-
-
Murtagh, B.A.1
Saunders, M.A.2
-
80
-
-
79957590676
-
Certain topics in telegraph transmission theory
-
Nyquist. H. 1928. Certain topics in telegraph transmission theory. Trans. A.I.E.E., pp. 617-644.
-
(1928)
Trans. A.I.E.E.
, pp. 617-644
-
-
Nyquist, H.1
-
81
-
-
0031334889
-
An improved training algorithm for support vector machines
-
Principe J., Gile L., Morgan N., and Wilson E. (Eds.), New York, IEEE
-
Osuna E., Freund R., and Girosi F. 1997. An improved training algorithm for support vector machines. In Principe J., Gile L., Morgan N., and Wilson E. (Eds.), Neural Networks for Signal Processing VII - Proceedings of the 1997 IEEE Workshop, pp. 276-285, New York, IEEE.
-
(1997)
Neural Networks for Signal Processing VII - Proceedings of the 1997 IEEE Workshop
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
82
-
-
0001562735
-
Reducing the run-time complexity in support vector regression
-
Schölkopf B., Burges C.J.C., and Smola A. J. (Eds.), Cambridge, MA, MIT Press
-
Osuna E. and Girosi F. 1999. Reducing the run-time complexity in support vector regression. In: Schölkopf B., Burges C.J.C., and Smola A. J. (Eds.), Advances in Kernel Methods - Support Vector Learning, pp. 271-284, Cambridge, MA, MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 271-284
-
-
Osuna, E.1
Girosi, F.2
-
84
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.), Cambridge, MA, MIT Press
-
Platt J. 1999. Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.) Advances in Kernel Methods - Support Vector Learning, pp. 185-208, Cambridge, MA, MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
85
-
-
0016765357
-
On optimal nonlinear associative recall
-
Poggio T. 1975. On optimal nonlinear associative recall. Biological Cybernetics, 19: 201-209.
-
(1975)
Biological Cybernetics
, vol.19
, pp. 201-209
-
-
Poggio, T.1
-
87
-
-
0018015137
-
Modeling by shortest data description
-
Rissanen J. 1978. Modeling by shortest data description. Automatica, 14: 465-471.
-
(1978)
Automatica
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
89
-
-
0004296379
-
Support vector machine-reference manual
-
Department of Computer Science, Royal Holloway, University of London, Egham, UK. SVM
-
Saunders C., Stitson M.O., Weston J., Bottou L., Schölkopf B., and Smola A. 1998. Support vector machine-reference manual. Technical Report CSD-TR-98-03, Department of Computer Science, Royal Holloway, University of London, Egham, UK. SVM available at http://svm.dcs.rhbnc.ac.uk/.
-
(1998)
Technical Report CSD-TR-98-03
-
-
Saunders, C.1
Stitson, M.O.2
Weston, J.3
Bottou, L.4
Schölkopf, B.5
Smola, A.6
-
90
-
-
0001878701
-
Positive definite functions on spheres
-
Schoenberg I. 1942. Positive definite functions on spheres. Duke Math. J., 9: 96-108.
-
(1942)
Duke Math. J.
, vol.9
, pp. 96-108
-
-
Schoenberg, I.1
-
91
-
-
84856983285
-
-
R. Oldenbourg Verlag, München. Doktorarbeit, TU Berlin. Download
-
Schölkopf B. 1997. Support Vector Learning. R. Oldenbourg Verlag, München. Doktorarbeit, TU Berlin. Download: http://www.kernel-machines.org.
-
(1997)
Support Vector Learning
-
-
Schölkopf, B.1
-
92
-
-
0002845829
-
Extracting support data for a given task
-
Fayyad U.M. and Uthurusamy R. (Eds.), Menlo Park, AAAI Press
-
Schölkopf B., Burges C., and Vapnik V. 1995. Extracting support data for a given task. In: Fayyad U.M. and Uthurusamy R. (Eds.), Proceedings, First International Conference on Knowledge Discovery & Data Mining, Menlo Park, AAAI Press.
-
(1995)
Proceedings, First International Conference on Knowledge Discovery & Data Mining
-
-
Schölkopf, B.1
Burges, C.2
Vapnik, V.3
-
93
-
-
84902142380
-
Incorporating invariances in support vector learning machines
-
von der Malsburg C., von Seelen W., Vorbrüggen J. C., and Sendhoff B. (Eds.), Berlin, Springer Lecture Notes in Computer Science
-
Schölkopf B., Burges C., and Vapnik V. 1996. Incorporating invariances in support vector learning machines. In: von der Malsburg C., von Seelen W., Vorbrüggen J. C., and Sendhoff B. (Eds.), Artificial Neural Networks ICANN'96, pp. 47-52, Berlin, Springer Lecture Notes in Computer Science, Vol. 1112.
-
(1996)
Artificial Neural Networks ICANN'96
, vol.1112
, pp. 47-52
-
-
Schölkopf, B.1
Burges, C.2
Vapnik, V.3
-
95
-
-
7544240447
-
A generalized representer theorem
-
NeuroCOLT, 2000. To appear in Proceedings of the Annual Conference on Learning Theory, Springer (2001)
-
Schölkopf B., Herbrich R., Smola A.J., and Williamson R.C. 2001. A generalized representer theorem. Technical Report 2000-81. NeuroCOLT, 2000. To appear in Proceedings of the Annual Conference on Learning Theory, Springer (2001).
-
(2001)
Technical Report 2000-81
-
-
Schölkopf, B.1
Herbrich, R.2
Smola, A.J.3
Williamson, R.C.4
-
96
-
-
0032594954
-
Input space vs. feature space in kernel-based methods
-
Schölkopf B., Mika S., Burges C., Knirsch P., Müller K.-R., Rätsch G., and Smola A. 1999b. Input space vs. feature space in kernel-based methods. IEEE Transactions on Neural Networks, 10(5): 1000-1017.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.3
Knirsch, P.4
Müller, K.-R.5
Rätsch, G.6
Smola, A.7
-
97
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
Schölkopf B., Platt J., Shawe-Taylorl, Smola A.J., and Williamson R.C. 2001. Estimating the support of a high-dimensional distribution. Neural Computation, 13(7): 1443-1471.
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.2
Shawe-Taylorl3
Smola, A.J.4
Williamson, R.C.5
-
98
-
-
51749084180
-
Prior knowledge in support vector kernels
-
Jordan M.I., Kearns M.J., and Solla S.A. (Eds.), MIT Press. Cambridge, MA
-
Schölkopf B., Simard P., Smola A., and Vapnik V. 1998a. Prior knowledge in support vector kernels. In: Jordan M.I., Kearns M.J., and Solla S.A. (Eds.) Advances in Neural Information Processing Systems 10, MIT Press. Cambridge, MA, pp. 640-646.
-
(1998)
Advances in Neural Information Processing Systems 10
, pp. 640-646
-
-
Schölkopf, B.1
Simard, P.2
Smola, A.3
Vapnik, V.4
-
99
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf B., Smola A., and Müller K.-R. 1998b. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10: 1299-1319.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
100
-
-
17444438778
-
New support vector algorithms
-
Schölkopf B., Smola A., Williamson R.C., and Bartlett P.L. 2000. New support vector algorithms. Neural Computation, 12: 1207-1245.
-
(2000)
Neural Computation
, vol.12
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.2
Williamson, R.C.3
Bartlett, P.L.4
-
102
-
-
0031272926
-
Comparing support vector machines with Gaussian kernels to radial basis function classifiers
-
Schölkopf B., Sung K., Burges C., Girosi F., Niyogi P., Poggio T., and Vapnik V. 1997. Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 45: 2758-2765.
-
(1997)
IEEE Transactions on Signal Processing
, vol.45
, pp. 2758-2765
-
-
Schölkopf, B.1
Sung, K.2
Burges, C.3
Girosi, F.4
Niyogi, P.5
Poggio, T.6
Vapnik, V.7
-
103
-
-
84856043672
-
A mathematical theory of communication
-
Shannon C.E. 1948. A mathematical theory of communication. Bell System Technical Journal, 27: 379-423, 623-656.
-
(1948)
Bell System Technical Journal
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
-
104
-
-
0032166068
-
Structural risk minimization over data-dependent hierarchies
-
Shawe-Taylor J., Bartlett P.L., Williamson R.C., and Anthony M. 1998. Structural risk minimization over data-dependent hierarchies. IEEE Transactions on Information Theory, 44(5): 1926-1940.
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, Issue.5
, pp. 1926-1940
-
-
Shawe-Taylor, J.1
Bartlett, P.L.2
Williamson, R.C.3
Anthony, M.4
-
105
-
-
0037721392
-
Asymptotically optimal choice of ε-loss for support vector machines
-
Niklasson L., Bodén M., and Ziemke T. (Eds.), Berlin, Springer
-
Smola A., Murata N., Schölkopf B., and Müller K.-R. 1998a. Asymptotically optimal choice of ε-loss for support vector machines. In: Niklasson L., Bodén M., and Ziemke T. (Eds.) Proceedings of the International Conference on Artificial Neural Networks, Perspectives in Neural Computing, pp. 105-110, Berlin, Springer.
-
(1998)
Proceedings of the International Conference on Artificial Neural Networks, Perspectives in Neural Computing
, pp. 105-110
-
-
Smola, A.1
Murata, N.2
Schölkopf, B.3
Müller, K.-R.4
-
106
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
Smola A., Schölkopf B., and Müller K.-R. 1998b. The connection between regularization operators and support vector kernels. Neural Networks, 11: 637-649.
-
(1998)
Neural Networks
, vol.11
, pp. 637-649
-
-
Smola, A.1
Schölkopf, B.2
Müller, K.-R.3
-
107
-
-
0006503735
-
General cost functions for support vector regression
-
Downs T., Frean M., and Gallagher M. (Eds.), Brisbane, Australia. University of Queensland
-
Smola A., Schölkopf B., and Müller K.-R. 1998c. General cost functions for support vector regression. In: Downs T., Frean M., and Gallagher M. (Eds.) Proc. of the Ninth Australian Conf. on Neural Networks, pp. 79-83, Brisbane, Australia. University of Queensland.
-
(1998)
Proc. of the Ninth Australian Conf. on Neural Networks
, pp. 79-83
-
-
Smola, A.1
Schölkopf, B.2
Müller, K.-R.3
-
108
-
-
0033339941
-
Linear programs for automatic accuracy control in regression
-
Conference Publications No. 470, London. IEE
-
Smola A., Schölkopf B., and Rätsch G. 1999. Linear programs for automatic accuracy control in regression. In: Ninth International Conference on Artificial Neural Networks, Conference Publications No. 470, pp. 575-580, London. IEE.
-
(1999)
Ninth International Conference on Artificial Neural Networks
, pp. 575-580
-
-
Smola, A.1
Schölkopf, B.2
Rätsch, G.3
-
110
-
-
0004094721
-
-
PhD thesis, Technische Universität Berlin. GMD Research Series No. 25
-
Smola A.J. 1998. Learning with Kernels. PhD thesis, Technische Universität Berlin. GMD Research Series No. 25.
-
(1998)
Learning with Kernels
-
-
Smola, A.J.1
-
111
-
-
0003093256
-
Entropy numbers for convex combinations and MLPs
-
Smola A.J., Bartlett PL., Schölkopf B., and Schuurmans D. (Eds.), MIT Press, Cambridge, MA
-
Smola A.J., Elisseeff A., Schölkopf B., and Williamson R.C. 2000. Entropy numbers for convex combinations and MLPs. In Smola A.J., Bartlett PL., Schölkopf B., and Schuurmans D. (Eds.) Advances in Large Margin Classifiers, MIT Press, Cambridge, MA, pp. 369-387.
-
(2000)
Advances in Large Margin Classifiers
, pp. 369-387
-
-
Smola, A.J.1
Elisseeff, A.2
Schölkopf, B.3
Williamson, R.C.4
-
112
-
-
84898955546
-
Regularization with dot-product kernels
-
Leen T.K., Dietterich T.G., and Tresp V. (Eds.), MIT Press
-
Smola A.J., Óvári Z.L., and Williamson R.C. 2001. Regularization with dot-product kernels. In: Leen T.K., Dietterich T.G., and Tresp V. (Eds.) Advances in Neural Information Processing Systems 13, MIT Press, pp. 308-314.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 308-314
-
-
Smola, A.J.1
Óvári, Z.L.2
Williamson, R.C.3
-
113
-
-
24044515976
-
On a kernel-based method for pattern recognition, regression, approximation and operator inversion
-
Smola A.J. and Schölkopf B. 1998a. On a kernel-based method for pattern recognition, regression, approximation and operator inversion. Algorithmica, 22: 211-231.
-
(1998)
Algorithmica
, vol.22
, pp. 211-231
-
-
Smola, A.J.1
Schölkopf, B.2
-
114
-
-
0003401675
-
A tutorial on support vector regression
-
Royal Holloway College, University of London, UK
-
Smola A.J. and Schölkopf B. 1998b. A tutorial on support vector regression. NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK.
-
(1998)
NeuroCOLT Technical Report NC-TR-98-030
-
-
Smola, A.J.1
Schölkopf, B.2
-
115
-
-
0002493574
-
Sparse greedy matrix approximation for machine learning
-
Langley P. (Ed.), Morgan Kaufmann Publishers, San Francisco
-
Smola A.J. and Schölkopf B. 2000. Sparse greedy matrix approximation for machine learning. In: Langley P. (Ed.), Proceedings of the International Conference on Machine Learning, Morgan Kaufmann Publishers, San Francisco, pp. 911-918.
-
(2000)
Proceedings of the International Conference on Machine Learning
, pp. 911-918
-
-
Smola, A.J.1
Schölkopf, B.2
-
116
-
-
0002081773
-
Support vector regression with ANOVA decomposition kernels
-
Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.), MIT Press Cambridge, MA
-
Stitson M., Gammerman A., Vapnik V., Vovk V., Watkins C., and Weston J. 1999. Support vector regression with ANOVA decomposition kernels. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.), Advances in Kernel Methods - Support Vector Learning, MIT Press Cambridge, MA, pp. 285-292.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 285-292
-
-
Stitson, M.1
Gammerman, A.2
Vapnik, V.3
Vovk, V.4
Watkins, C.5
Weston, J.6
-
117
-
-
0001227575
-
Additive regression and other nonparametric models
-
Stone C.J. 1985. Additive regression and other nonparametric models. Annals of Statistics, 13: 689-705.
-
(1985)
Annals of Statistics
, vol.13
, pp. 689-705
-
-
Stone, C.J.1
-
118
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictors
-
with discussion
-
Stone M. 1974. Cross-validatory choice and assessment of statistical predictors (with discussion). Journal of the Royal Statistical Society, B36: 111-147.
-
(1974)
Journal of the Royal Statistical Society
, vol.B36
, pp. 111-147
-
-
Stone, M.1
-
119
-
-
4043141291
-
Improved generalization via tolerant training
-
University of Wisconsin, Madison
-
Street W.N. and Mangasarian O.L. 1995. Improved generalization via tolerant training. Technical Report MP-TR-95-11, University of Wisconsin, Madison.
-
(1995)
Technical Report MP-TR-95-11
-
-
Street, W.N.1
Mangasarian, O.L.2
-
121
-
-
84899032239
-
The relevance vector machine
-
Solla S.A., Leen T.K., and Müller K.-R. (Eds.), MIT Press, Cambridge, MA
-
Tipping M.E. 2000. The relevance vector machine. In: Solla S.A., Leen T.K., and Müller K.-R. (Eds.), Advances in Neural Information Processing Systems 12, MIT Press, Cambridge, MA, pp. 652-658.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 652-658
-
-
Tipping, M.E.1
-
123
-
-
0003664630
-
LOQO user's manual - Version 3.10
-
Princeton University, Statistics and Operations Research, Code
-
Vanderbei R.J. 1997. LOQO user's manual - version 3.10. Technical Report SOR-97-08, Princeton University, Statistics and Operations Research, Code available at http://www.princeton.edu/ ~rvdb/.
-
(1997)
Technical Report SOR-97-08
-
-
Vanderbei, R.J.1
-
126
-
-
0002817067
-
Three remarks on the support vector method of function estimation
-
Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.), MIT Press, Cambridge, MA
-
Vapnik. V. 1999. Three remarks on the support vector method of function estimation. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.), Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge, MA, pp. 25-42.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 25-42
-
-
Vapnik, V.1
-
130
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
Mozer M.C., Jordan M.I., and Petsche T. (Eds.), MA, MIT Press, Cambridge
-
Vapnik V., Golowich S., and Smola A. 1997. Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M.C., Jordan M.I., and Petsche T. (Eds.) Advances in Neural Information Processing Systems 9, MA, MIT Press, Cambridge. pp. 281-287.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
-
131
-
-
0010864753
-
Pattern recognition using generalized portrait method
-
Vapnik V. and Lerner A. 1963. Pattern recognition using generalized portrait method. Automation and Remote Control, 24: 774-780.
-
(1963)
Automation and Remote Control
, vol.24
, pp. 774-780
-
-
Vapnik, V.1
Lerner, A.2
-
133
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
Vapnik V.N. and Chervonenkis A.Y. 1971. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2): 264-281.
-
(1971)
Theory of Probability and Its Applications
, vol.16
, Issue.2
, pp. 264-281
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
-
134
-
-
0005173689
-
Spline bases, regularization, and generalized cross-validation for solving approximation problems with large quantities of noisy data
-
Ward J. and Cheney E. (Eds.), Academic Press, Austin, TX
-
Wahba G. 1980. Spline bases, regularization, and generalized cross-validation for solving approximation problems with large quantities of noisy data. In: Ward J. and Cheney E. (Eds.), Proceedings of the International Conference on Approximation theory in honour of George Lorenz, Academic Press, Austin, TX, pp. 8-10.
-
(1980)
Proceedings of the International Conference on Approximation Theory in Honour of George Lorenz
, pp. 8-10
-
-
Wahba, G.1
-
136
-
-
0001873883
-
Support vector machines, reproducing kernel Hubert spaces and the randomized GACV
-
Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.), MIT Press, Cambridge, MA
-
Wahba G. 1999. Support vector machines, reproducing kernel Hubert spaces and the randomized GACV. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.), Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge, MA. pp. 69-88.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 69-88
-
-
Wahba, G.1
-
137
-
-
0001873884
-
Support vector density estimation
-
Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.), MIT Press, Cambridge, MA
-
Weston J., Gammerman A., Stitson M., Vapnik V., Vovk V., and Watkins C. 1999. Support vector density estimation. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds.) Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge, MA. pp. 293-306.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 293-306
-
-
Weston, J.1
Gammerman, A.2
Stitson, M.3
Vapnik, V.4
Vovk, V.5
Watkins, C.6
-
138
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
Jordan M.I. (Ed.), Kluwer Academic
-
Williams C.K.I. 1998. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In: Jordan M.I. (Ed.), Learning and Inference in Graphical Models, Kluwer Academic, pp. 599-621.
-
(1998)
Learning and Inference in Graphical Models
, pp. 599-621
-
-
Williams, C.K.I.1
-
139
-
-
0035441827
-
Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators
-
Technical Report 19, NeuroCOLT, Published (2001)
-
Williamson R.C., Smola A.J., and Schölkopf B. 1998. Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators. Technical Report 19, NeuroCOLT, http://www.neurocolt.com. Published in IEEE Transactions on Information Theory, 47(6): 2516-2532 (2001).
-
(1998)
IEEE Transactions on Information Theory
, vol.47
, Issue.6
, pp. 2516-2532
-
-
Williamson, R.C.1
Smola, A.J.2
Schölkopf, B.3
|