메뉴 건너뛰기




Volumn 73, Issue 10-12, 2010, Pages 2089-2096

Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm

Author keywords

CLPSO BFGS method; Model selection; Support vector machine

Indexed keywords

BFGS ALGORITHM; BFGS METHOD; BROYDEN-FLETCHER-GOLDFARB-SHANNO; CLPSO-BFGS METHOD; CROSS VALIDATION; GENERALIZATION BOUND; GENERALIZATION ERROR BOUNDS; GRID SEARCH; HYBRID METHOD; HYBRID STRATEGIES; INITIAL VALUES; LOCAL OPTIMA; MULTIPLE PARAMETERS; PARAMETER SETTING; PARTICLE SWARM OPTIMIZERS;

EID: 77952542640     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.02.013     Document Type: Article
Times cited : (51)

References (34)
  • 3
    • 0035272287 scopus 로고    scopus 로고
    • An introduction to kernel based method
    • Müller K.R., et al. An introduction to kernel based method. IEEE Trans. Neural Networks March 2001, 12(2):181-201.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.2 , pp. 181-201
    • Müller, K.R.1
  • 5
    • 54749131961 scopus 로고    scopus 로고
    • Video Event recognition using kernel methods with Multi-Level temporal alignment
    • Xu D., Chang S. Video Event recognition using kernel methods with Multi-Level temporal alignment. IEEE Trans. Pattern Anal. Mach. Intell. November 2008, 30(11):1985-1997.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.11 , pp. 1985-1997
    • Xu, D.1    Chang, S.2
  • 6
    • 35148900068 scopus 로고    scopus 로고
    • Rank-one projections with adaptive margin for face recognition
    • Xu D., Lin S., Yan S., Tang X. Rank-one projections with adaptive margin for face recognition. IEEE Trans. Syst. Man Cybern. Part B October 2007, 37(5):1226-1236.
    • (2007) IEEE Trans. Syst. Man Cybern. Part B , vol.37 , Issue.5 , pp. 1226-1236
    • Xu, D.1    Lin, S.2    Yan, S.3    Tang, X.4
  • 7
    • 36348982900 scopus 로고    scopus 로고
    • Marginal fisher analysis and its variants for human gait recognition and content based image retrieval
    • Xu D., Yan S., Tao D., Lin S., Zhang H. Marginal fisher analysis and its variants for human gait recognition and content based image retrieval. IEEE Trans. Image Process. November 2007, 16(11):2811-2821.
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.11 , pp. 2811-2821
    • Xu, D.1    Yan, S.2    Tao, D.3    Lin, S.4    Zhang, H.5
  • 9
    • 33750124478 scopus 로고    scopus 로고
    • Efficient parameter selection for support vector machines in classification and regression via model-based global optimization
    • Frohlich H., Zell A. Efficient parameter selection for support vector machines in classification and regression via model-based global optimization. In Proc. Int. Joint Conf. Neural Networks 2005, 1431-1436.
    • (2005) In Proc. Int. Joint Conf. Neural Networks , pp. 1431-1436
    • Frohlich, H.1    Zell, A.2
  • 10
    • 77952553089 scopus 로고    scopus 로고
    • A practical guide to support vector classification, Available at.
    • C. W. Hsu, C. C. Chang, C. J. Lin, A practical guide to support vector classification, Available at. http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
    • Hsu, C.W.1    Chang C., C.2    Lin, C.J.3
  • 11
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O., Vapnik V., Bousquet O., Mukherjee S. Choosing multiple parameters for support vector machines. Mach. Learn. January. 2002, 46(1):131-159.
    • (2002) Mach. Learn. , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 12
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
    • Keerthi S.S. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Trans. Neural Networks September. 2002, 13(5):1225-1229.
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.5 , pp. 1225-1229
    • Keerthi, S.S.1
  • 13
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bounds for support vector machines with the RBF kernel
    • Chung K.M., Kao W.C., Sun C.L., Wang L.L., Lin C.J. Radius margin bounds for support vector machines with the RBF kernel. Neural Comput. November. 2003, 15(11):2643-2681.
    • (2003) Neural Comput. , vol.15 , Issue.11 , pp. 2643-2681
    • Chung, K.M.1    Kao, W.C.2    Sun, C.L.3    Wang, L.L.4    Lin, C.J.5
  • 14
    • 84864039082 scopus 로고    scopus 로고
    • An efficient method for gradient-based adaptation of hyperparameters in svm models
    • Keerthi S.S., Sindhwani V., Chapelle O. An efficient method for gradient-based adaptation of hyperparameters in svm models. NIPS 2007, 19:673-680.
    • (2007) NIPS , vol.19 , pp. 673-680
    • Keerthi, S.S.1    Sindhwani, V.2    Chapelle, O.3
  • 15
    • 56549085451 scopus 로고    scopus 로고
    • Evolutionary tuning of SVM parameter values in multiclass problems
    • Lorena A.C., de Carvalho A.C.P.L.F. Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing 2008, 71:3326-3334.
    • (2008) Neurocomputing , vol.71 , pp. 3326-3334
    • Lorena, A.C.1    de Carvalho, A.C.P.L.F.2
  • 17
    • 51749123574 scopus 로고    scopus 로고
    • Classification of electrocardiogram signals with support vector machines and particle swarm optimization
    • Melgani F., Bazi Y. Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans. Inf. Tech. Biomed. 2008, 12(5):667.
    • (2008) IEEE Trans. Inf. Tech. Biomed. , vol.12 , Issue.5 , pp. 667
    • Melgani, F.1    Bazi, Y.2
  • 18
    • 50149095980 scopus 로고    scopus 로고
    • Parameter determination of support vector machine and feature selection using simulated annealing approach
    • Lin S., Lee Z., Chen C., Tseng T. Parameter determination of support vector machine and feature selection using simulated annealing approach. Appl. Soft Comput. Sep. 2008, 8(4):1505-1512.
    • (2008) Appl. Soft Comput. , vol.8 , Issue.4 , pp. 1505-1512
    • Lin, S.1    Lee, Z.2    Chen, C.3    Tseng, T.4
  • 19
    • 33744730797 scopus 로고    scopus 로고
    • Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
    • Liang J.J., Qin A.K. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. June. 2006, 10(3):281-295.
    • (2006) IEEE Trans. Evol. Comput. , vol.10 , Issue.3 , pp. 281-295
    • Liang, J.J.1    Qin, A.K.2
  • 20
    • 2542639357 scopus 로고    scopus 로고
    • An efficient method for computing Leave-One-Out error in support vector machines with Gaussian kernels
    • Lee M.S.M., Keerthi S.S., Ong C.J., DeCoste D. An efficient method for computing Leave-One-Out error in support vector machines with Gaussian kernels. IEEE Trans. Neural Networks May 2004, 15:750-757.
    • (2004) IEEE Trans. Neural Networks , vol.15 , pp. 750-757
    • Lee, M.S.M.1    Keerthi, S.S.2    Ong, C.J.3    DeCoste, D.4
  • 21
    • 0038928834 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machine
    • MIT Press, Cambridge, A. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (Eds.)
    • Vapnik V., Chapelle O. Bounds on error expectation for support vector machine. Advances in Large Margin Classifiers 1999, MIT Press, Cambridge. A. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (Eds.).
    • (1999) Advances in Large Margin Classifiers
    • Vapnik, V.1    Chapelle, O.2
  • 22
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • Duan K., Keerthi S.S., Poo A.N. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 2003, 51:41-59.
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 23
    • 0029517385 scopus 로고
    • A new optimizer using particle swarm theory, In:
    • Proceedings of the sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, October 04-06
    • R.C. Eberhart, J. Kenned, A new optimizer using particle swarm theory, In: Proceedings of the sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, October 04-06, 1995, pp. 39-43.
    • (1995) , pp. 39-43
    • Eberhart, R.C.1    Kenned, J.2
  • 26
    • 3142781923 scopus 로고    scopus 로고
    • The fully informed particle swarm: simpler maybe better
    • Mendes R., Kennedy J., Neves J. The fully informed particle swarm: simpler maybe better. IEEE Trans. Evol. Comput. June 2004, 8(3):204-210.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 204-210
    • Mendes, R.1    Kennedy, J.2    Neves, J.3
  • 27
    • 33645158620 scopus 로고    scopus 로고
    • Multimodal function optimization based on particle swarm optimization
    • Seo J., Im C., Heo C., Kim J., Jung H., Lee C. Multimodal function optimization based on particle swarm optimization. IEEE Trans. Magn. April 2006, 42(4):1095-1098.
    • (2006) IEEE Trans. Magn. , vol.42 , Issue.4 , pp. 1095-1098
    • Seo, J.1    Im, C.2    Heo, C.3    Kim, J.4    Jung, H.5    Lee, C.6
  • 28
    • 77952547419 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines, 2001. Software available at.
    • C. C. Chang, C. J. Lin, LIBSVM: a library for support vector machines, 2001. Software available at. http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • Changc, C.C.1    Lin, C.J.2
  • 29
    • 77952545259 scopus 로고    scopus 로고
    • http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.
  • 30
    • 0142039767 scopus 로고    scopus 로고
    • On the optimal parameter choice for Υ-support vector machines
    • Steinwart I. On the optimal parameter choice for Υ-support vector machines. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25(10):1274-1284.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.10 , pp. 1274-1284
    • Steinwart, I.1
  • 32
    • 77952545491 scopus 로고    scopus 로고
    • http://www.ntu.edu.sg/home/epnsugan.
  • 33
    • 77952551949 scopus 로고    scopus 로고
    • http://alumnus.caltech.edu/~ingber/#ASA.
  • 34
    • 77952552082 scopus 로고    scopus 로고
    • http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.