메뉴 건너뛰기




Volumn 2, Issue 3, 2012, Pages 193-208

An overview of the use of neural networks for data mining tasks

Author keywords

[No Author keywords available]

Indexed keywords

BIOMIMETICS; CLUSTER ANALYSIS; COMPUTER AIDED DIAGNOSIS; LARGE DATASET; NEURAL NETWORKS; PATTERN RECOGNITION;

EID: 84873148398     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.1052     Document Type: Article
Times cited : (26)

References (91)
  • 2
    • 0026253654 scopus 로고
    • The evolution of synthetic aperture radar systems and their progression to the eos sar
    • Way J, Smith EA. The evolution of synthetic aperture radar systems and their progression to the eos sar. IEEE Trans Geosc Remote Sens 1991, 29:962-985
    • (1991) IEEE Trans Geosc Remote Sens , vol.29 , pp. 962-985
    • Way, J.1    Smith, E.A.2
  • 3
    • 84873140129 scopus 로고    scopus 로고
    • Human Genome Project Information (Accessed December 20, 2011)
    • Human Genome Project Information. Available at: www.ornl.gov/sci/techresources/Human Genome/ home.shtml (Accessed December 20, 2011)
  • 8
    • 84873133504 scopus 로고    scopus 로고
    • An Introduction to Data Mining. (accessed December 20, 2011)
    • An Introduction to Data Mining. Available at: http://www.thearling.com/text/dmwhite/dmwhite.htm (accessed December 20, 2011)
  • 10
    • 34547535862 scopus 로고    scopus 로고
    • Application of neural networks in financial datamining
    • Zhang D, Jiang Q, Li X. Application of neural networks in financial datamining. Int J Compu Intel 2004, 392-395
    • (2004) Int J Compu Intel , pp. 392-395
    • Zhang, D.1    Jiang, Q.2    Li, X.3
  • 12
    • 84873123279 scopus 로고    scopus 로고
    • Design of product placement layout in retail shop using market basket analysis
    • Surjandari I, Seruni AC. Design of product placement layout in retail shop using market basket analysis. MAKARA Technol Series 2005, 9:43-47
    • (2005) MAKARA Technol Series , vol.9 , pp. 43-47
    • Surjandari, I.1    Seruni, A.C.2
  • 13
    • 34047126555 scopus 로고    scopus 로고
    • Credit scoring with a data mining approach based on support vector machines
    • Huang C, Chen M, Wang C. Credit scoring with a data mining approach based on support vector machines. Expert Syst Appl 2007, 33:847-856
    • (2007) Expert Syst Appl , vol.33 , pp. 847-856
    • Huang, C.1    Chen, M.2    Wang, C.3
  • 14
  • 17
    • 78649887040 scopus 로고    scopus 로고
    • Research of data mining based on neural networks
    • Ni X. Research of data mining based on neural networks. World Acad Sci, Eng Technol 2008, 39:381- 384
    • (2008) World Acad Sci, Eng Technol , vol.39 , pp. 381-384
    • Ni, X.1
  • 19
    • 34248656519 scopus 로고    scopus 로고
    • Neural Network Learning with global heuristic optimisation
    • Jordanov I, Georgieva A. Neural Network Learning with global heuristic optimisation. IEEE Trans Neural Netw 2007, 18:937-942
    • (2007) IEEE Trans Neural Netw , vol.18 , pp. 937-942
    • Jordanov, I.1    Georgieva, A.2
  • 23
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern 1982, 43:59- 69
    • (1982) Biol Cybern , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 27
    • 0024103809 scopus 로고
    • PRISM: an algorithm for inducing modular rules
    • Cendrowska J. PRISM: an algorithm for inducing modular rules. Int J Man-Machine Studies 1987, 27:349- 370
    • (1987) Int J Man-Machine Studies , vol.27 , pp. 349-370
    • Cendrowska, J.1
  • 29
    • 84873111686 scopus 로고    scopus 로고
    • Kernel Machines Software Links. (accessed December 20, 2011)
    • Kernel Machines Software Links. Available at: http://www.kernel-machines.org/software (accessed December 20, 2011)
  • 30
    • 61549096128 scopus 로고    scopus 로고
    • Prediction of protein secondary structure content by using the concept of Chou's pseudo amino acid composition and support vector machine
    • Chen C, Chen L, Zou X, Cai P. Prediction of protein secondary structure content by using the concept of Chou's pseudo amino acid composition and support vector machine. Protein Peptide Lett 2009, 16:27-31
    • (2009) Protein Peptide Lett , vol.16 , pp. 27-31
    • Chen, C.1    Chen, L.2    Zou, X.3    Cai, P.4
  • 31
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • Widodo A, Yang BS. Support vector machine in machine condition monitoring and fault diagnosis. Mech Syst Signal Process 2007, 21:2560-2574
    • (2007) Mech Syst Signal Process , vol.21 , pp. 2560-2574
    • Widodo, A.1    Yang, B.S.2
  • 32
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw 1989, 2:359-366
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 35
    • 58449112758 scopus 로고    scopus 로고
    • Rule extraction from neural networks via ant colony algorithm for data mining applications
    • Maniezzo V, Battiti R, Watson J-P, eds.,Italy: Springer
    • Özbaki{dotless}r L, Baykasoǧlu A, Kulluk S. Rule extraction from neural networks via ant colony algorithm for data mining applications. In: Maniezzo V, Battiti R, Watson J-P, eds. Learning and intelligent Optimization. Trento, Italy: Springer; 2008, 177-191
    • (2008) Learning and intelligent Optimization. Trento , pp. 177-191
    • Özbakir, L.1    Baykasoǧlu, A.2    Kulluk, S.3
  • 36
    • 56349096960 scopus 로고    scopus 로고
    • Rule extraction from trained adaptive neural networks using artificial immune systems
    • Kahramanli H, Allahverdi N. Rule extraction from trained adaptive neural networks using artificial immune systems. Expert Syst Appl 2007, 36:1513-1522
    • (2007) Expert Syst Appl , vol.36 , pp. 1513-1522
    • Kahramanli, H.1    Allahverdi, N.2
  • 38
    • 65549136186 scopus 로고    scopus 로고
    • An introduction to artificial neural networks in bioinformatics- application to complex microarray and mass spectrometry datasets in cancer studies
    • Lancashire LJ, Lemetre C, Ball GR. An introduction to artificial neural networks in bioinformatics- application to complex microarray and mass spectrometry datasets in cancer studies. Briefings Bioinformatics 2009, 10:315-329
    • (2009) Briefings Bioinformatics , vol.10 , pp. 315-329
    • Lancashire, L.J.1    Lemetre, C.2    Ball, G.R.3
  • 39
    • 53849126165 scopus 로고    scopus 로고
    • Neural networks and statistical techniques: a review of applications
    • Paliwal M, Kumar UA. Neural networks and statistical techniques: a review of applications. Expert Syst Appl 2009, 36:2-17
    • (2009) Expert Syst Appl , vol.36 , pp. 2-17
    • Paliwal, M.1    Kumar, U.A.2
  • 40
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu R, Wunsch D. Survey of clustering algorithms. IEEE Trans Neural Netw 2005, 16:645-678
    • (2005) IEEE Trans Neural Netw , vol.16 , pp. 645-678
    • Xu, R.1    Wunsch, D.2
  • 44
    • 79953663014 scopus 로고    scopus 로고
    • The roots of bioinformatics in theoretical biology
    • doi:10.1371/journal.pcbi.1002021
    • Hogeweg P. The roots of bioinformatics in theoretical biology. PLoS Comput Biol 2011, 7:e1002021. doi:10.1371/journal.pcbi.1002021
    • (2011) PLoS Comput Biol , vol.7
    • Hogeweg, P.1
  • 46
    • 0034659898 scopus 로고    scopus 로고
    • Genomics, gene expression and DNA arrays
    • Lockhart DJ,Winzeler EA. Genomics, gene expression and DNA arrays. Nature 2000, 405:827-836
    • (2000) Nature , vol.405 , pp. 827-836
    • Lockhart, D.J.1    Winzeler, E.A.2
  • 47
    • 84873156636 scopus 로고    scopus 로고
    • DNA Sequencing. (accessed December 20, 2011)
    • DNA Sequencing. Available at: http://www.dnasequencing.com/ (accessed December 20, 2011)
  • 48
    • 53649106195 scopus 로고    scopus 로고
    • Next-generation DNA sequencing
    • Shendure J, Ji H. Next-generation DNA sequencing. Nat Biol 2008, 26:1135-1145
    • (2008) Nat Biol , vol.26 , pp. 1135-1145
    • Shendure, J.J.H.1
  • 50
    • 0037248697 scopus 로고    scopus 로고
    • Protecting HIV drug resistance with neural networks
    • Dřaghici S, Potter RB. Protecting HIV drug resistance with neural networks. Bioinformatics 2003, 19:98- 107
    • (2003) Bioinformatics , vol.19 , pp. 98-107
    • Dřaghici, S.1    Potter, R.B.2
  • 51
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • Herrero J, Valencia A, Dopazo J. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 2001, 17:126- 136
    • (2001) Bioinformatics , vol.17 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.3
  • 52
    • 49949090353 scopus 로고    scopus 로고
    • Penalized feature selection and classification in bioinformatics
    • Ma S, Huang J. Penalized feature selection and classification in bioinformatics. Briefings Bioinformatics 2008, 9:392-403
    • (2008) Briefings Bioinformatics , vol.9 , pp. 392-403
    • Ma, S.1    Huang, J.2
  • 53
    • 0141925273 scopus 로고    scopus 로고
    • Application of the novel molecular alignment method using the hopfield neural network to 3d-qsar
    • Arakawa M, Hasegawa K, Funatsu K. Application of the novel molecular alignment method using the hopfield neural network to 3d-qsar. J Chem Inform Comp Sci 2003, 43:1396-1402
    • (2003) J Chem Inform Comp Sci , vol.43 , pp. 1396-1402
    • Arakawa, M.1    Hasegawa, K.2    Funatsu, K.3
  • 54
    • 0033537993 scopus 로고    scopus 로고
    • Genthreader: an efficient and reliable protein fold recognition method for genomic sequences
    • JonesDT. Genthreader: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol 1999, 287:797-815
    • (1999) J Mol Biol , vol.287 , pp. 797-815
    • Jones, D.T.1
  • 55
    • 0033563512 scopus 로고    scopus 로고
    • The biology of eukaryotic promoter prediction: a review
    • Pedersen AG, Baldi P, Chauvin Y, Brunak S. The biology of eukaryotic promoter prediction: a review. Comput Chem 1999, 23:191-207
    • (1999) Comput Chem , vol.23 , pp. 191-207
    • Pedersen, A.G.1    Baldi, P.2    Chauvin, Y.3    Brunak, S.4
  • 57
    • 0344081940 scopus 로고    scopus 로고
    • Artificial neural networks for prediction of mycobacterial promoter sequences
    • Kalate RN, Tambe SS, Kulkarni BD. Artificial neural networks for prediction of mycobacterial promoter sequences. Comput Biol Chem 2003, 27:555-564
    • (2003) Comput Biol Chem , vol.27 , pp. 555-564
    • Kalate, R.N.1    Tambe, S.S.2    Kulkarni, B.D.3
  • 58
    • 46249123636 scopus 로고    scopus 로고
    • ProSOM: core promoter prediction based on unsupervised clustering of DNA physical profiles
    • Abeel T, Saeys Y, Rouzé P, Van de Peer Y. ProSOM: core promoter prediction based on unsupervised clustering of DNA physical profiles. Bioinformatics 2008, 24:24-31
    • (2008) Bioinformatics , vol.24 , pp. 24-31
    • Abeel, T.1    Saeys, Y.2    Rouzé, P.3    Van de Peer, Y.4
  • 59
    • 0035375137 scopus 로고    scopus 로고
    • Computational genetics: computational analysis of microarray data
    • Quackenbush J. Computational genetics: computational analysis of microarray data. Nat Rev Genet 2001, 2:418-427
    • (2001) Nat Rev Genet , vol.2 , pp. 418-427
    • Quackenbush, J.1
  • 60
    • 0142192759 scopus 로고    scopus 로고
    • Neural network analysis of lymphoma microarray data: prognosis and diagnosis nearperfect
    • O'Neill M, Song L. Neural network analysis of lymphoma microarray data: prognosis and diagnosis nearperfect. BMC Bioinformatics 2003, 4. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12697066
    • (2003) BMC Bioinformatics , pp. 4
    • O'Neill, M.1    Song, L.2
  • 61
    • 0036868316 scopus 로고    scopus 로고
    • Fuzzy neural network applied to gene expression profiling for predicting the prognosis of diffuse large b-cell lymphoma
    • Ando T, Suguro M, Hanai T, Kobayashi T, Honda H, Seto M. Fuzzy neural network applied to gene expression profiling for predicting the prognosis of diffuse large b-cell lymphoma. Cancer Sci 2002, 93:1207- 1212
    • (2002) Cancer Sci , vol.93 , pp. 1207-1212
    • Ando, T.1    Suguro, M.2    Hanai, T.3    Kobayashi, T.4    Honda, H.5    Seto, M.6
  • 63
    • 0042627711 scopus 로고    scopus 로고
    • Clustering gene expression data using adaptive double self-organizing map
    • Ressom H, Wang D, Natarajan P. Clustering gene expression data using adaptive double self-organizing map. Physiol Genom 2003, 14:35-46
    • (2003) Physiol Genom , vol.14 , pp. 35-46
    • Ressom, H.1    Wang, D.2    Natarajan, P.3
  • 64
    • 0642368712 scopus 로고    scopus 로고
    • Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases
    • Ritchie MD, White BC, Parker JS, Hahn LW, Moore JH. Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases. BMC Bioinformatics 2003, 4. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12846935
    • (2003) BMC Bioinformatics , pp. 4
    • Ritchie, M.D.1    White, B.C.2    Parker, J.S.3    Hahn, L.W.4    Moore, J.H.5
  • 66
    • 0029984070 scopus 로고    scopus 로고
    • Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
    • Riis SK, Krogh A. Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments. J Comput Biol 1996, 3:163-183
    • (1996) J Comput Biol , vol.3 , pp. 163-183
    • Riis, S.K.1    Krogh, A.2
  • 67
    • 8844252295 scopus 로고    scopus 로고
    • A neural network method for prediction of beta-turn types in proteins using evolutionary information
    • Kaur H, Raghava GP. A neural network method for prediction of beta-turn types in proteins using evolutionary information. Bioinformatics 2004, 20:2751- 2758
    • (2004) Bioinformatics , vol.20 , pp. 2751-2758
    • Kaur, H.1    Raghava, G.P.2
  • 68
    • 77952290758 scopus 로고    scopus 로고
    • Predicting human immunodeficiency virus protease cleavage sites in nonlinear projection space
    • Li X, Hu H, Shu L. Predicting human immunodeficiency virus protease cleavage sites in nonlinear projection space. Mol Cell Biochem 2010, 339:127-33
    • (2010) Mol Cell Biochem , vol.339 , pp. 127-133
    • Li, X.1    Hu, H.2    Shu, L.3
  • 70
    • 0028277023 scopus 로고
    • Stock performance modeling using neural networks: a comparative study with regression models
    • Refenes AN, Zapranis A, Francis G. Stock performance modeling using neural networks: a comparative study with regression models. Neural Netw 1994, 7:375- 388
    • (1994) Neural Netw , vol.7 , pp. 375-388
    • Refenes, A.N.1    Zapranis, A.2    Francis, G.3
  • 71
    • 36148991101 scopus 로고    scopus 로고
    • Forecasting nextday price of electricity in the spanish energy market using artificial neural networks
    • Pino R, Parreno J, Gomez A, Priore P. Forecasting nextday price of electricity in the spanish energy market using artificial neural networks. Eng Appl Artif Intell 2008, 21:53-62
    • (2008) Eng Appl Artif Intell , vol.21 , pp. 53-62
    • Pino, R.1    Parreno, J.2    Gomez, A.3    Priore, P.4
  • 72
    • 58749094998 scopus 로고    scopus 로고
    • Surveying stock market forecasting techniques-Part II: soft computing methods
    • Atsalakis GS, Valavanis KP. Surveying stock market forecasting techniques-Part II: soft computing methods. Expert Syst Appl 2009, 36:5932-5941
    • (2009) Expert Syst Appl , vol.36 , pp. 5932-5941
    • Atsalakis, G.S.1    Valavanis, K.P.2
  • 73
    • 0034286605 scopus 로고    scopus 로고
    • An outline of a trust model for electronic commerce
    • Tan YH, Thoen W. An outline of a trust model for electronic commerce. Appl Artif Intell 2000, 14:849- 862
    • (2000) Appl Artif Intell , vol.14 , pp. 849-862
    • Tan, Y.H.1    Thoen, W.2
  • 74
    • 48749095565 scopus 로고    scopus 로고
    • Credit card fraud detection using self-organizing maps
    • Zaslavsky B, Strizhak A. Credit card fraud detection using self-organizing maps. Inf Secur 2006, 18:48-63
    • (2006) Inf Secur , vol.18 , pp. 48-63
    • Zaslavsky, B.1    Strizhak, A.2
  • 75
    • 48749094245 scopus 로고    scopus 로고
    • Real-time credit card fraud detection using computational intelligence
    • Quah JTS, Sriganesh M. Real-time credit card fraud detection using computational intelligence. Expert Syst Appl 2008, 35:1721-1732
    • (2008) Expert Syst Appl , vol.35 , pp. 1721-1732
    • Quah, J.T.S.1    Sriganesh, M.2
  • 77
    • 53849087428 scopus 로고    scopus 로고
    • An analysis of credit scoring for agricultural loans in Thailand
    • Limsombunchai V, Gan C, LeeM. An analysis of credit scoring for agricultural loans in Thailand. Am J Appl Sci 2005, 2:1198-1205
    • (2005) Am J Appl Sci , vol.2 , pp. 1198-1205
    • Limsombunchai, V.1    Gan, C.2    Lee, M.3
  • 78
    • 33846454686 scopus 로고    scopus 로고
    • Predicting corporate financial distress based on integration of support vector machine and logistic regression
    • Hua Z, Wang Y, Xu X, Zhang B, Liang L. Predicting corporate financial distress based on integration of support vector machine and logistic regression. Expert Syst Appl 2007, 33:434-440
    • (2007) Expert Syst Appl , vol.33 , pp. 434-440
    • Hua, Z.1    Wang, Y.2    Xu, X.3    Zhang, B.4    Liang, L.5
  • 79
    • 56349100536 scopus 로고    scopus 로고
    • Using neural networks and data mining techniques for the financial distress prediction model
    • Chen WS, Du YK. Using neural networks and data mining techniques for the financial distress prediction model. Expert Syst Appl 2009, 36:4075-4086
    • (2009) Expert Syst Appl , vol.36 , pp. 4075-4086
    • Chen, W.S.1    Du, Y.K.2
  • 80
    • 38649113538 scopus 로고    scopus 로고
    • Using neural network ensembles for bankruptcy prediction and credit scoring
    • Tsai CF, Wu JW. Using neural network ensembles for bankruptcy prediction and credit scoring. Expert Syst Appl 2008, 34:2639-2649
    • (2008) Expert Syst Appl , vol.34 , pp. 2639-2649
    • Tsai, C.F.1    Wu, J.W.2
  • 81
    • 79957882161 scopus 로고    scopus 로고
    • Insolvency prediction for assessing corporate financial health
    • doi:10.1093/jigpal/jzr009
    • Simić D, Kovǎcević I, Simić S. Insolvency prediction for assessing corporate financial health. Logic J IGPL 2011. doi:10.1093/jigpal/jzr009
    • (2011) Logic J IGPL
    • Simić, D.1    Kovǎcević, I.2    Simić, S.3
  • 82
    • 53849126165 scopus 로고    scopus 로고
    • Review: neural networks and statistical techniques: a review of applications
    • Paliwal M, Kumar UA. Review: neural networks and statistical techniques: a review of applications. Expert Syst Appl 2009, 36:2-17
    • (2009) Expert Syst Appl , vol.36 , pp. 2-17
    • Paliwal, M.1    Kumar, U.A.2
  • 83
    • 36249028224 scopus 로고    scopus 로고
    • The exploration of consumers' behavior in choosing hospital by the application of neural network
    • Lee WI, Shih BY, Chung YS. The exploration of consumers' behavior in choosing hospital by the application of neural network. Expert Syst Appl 2008, 34:806-816
    • (2008) Expert Syst Appl , vol.34 , pp. 806-816
    • Lee, W.I.1    Shih, B.Y.2    Chung, Y.S.3
  • 84
    • 34248547170 scopus 로고    scopus 로고
    • Market segmentation based on hierarchical self-organizingmap formarkets of multimedia on demand
    • Hung C, Tsai CF. Market segmentation based on hierarchical self-organizingmap formarkets of multimedia on demand. Expert Syst Appl 2008, 34:780-787
    • (2008) Expert Syst Appl , vol.34 , pp. 780-787
    • Hung, C.1    Tsai, C.F.2
  • 85
    • 29144462507 scopus 로고    scopus 로고
    • Predicting and explaining patronage behavior toward web and traditional stores using neural networks: a comparative analysis with logistic regression
    • Chiang WK, Zhang D, Zhou L. Predicting and explaining patronage behavior toward web and traditional stores using neural networks: a comparative analysis with logistic regression. Decis Support Syst 2006, 41:514-531
    • (2006) Decis Support Syst , vol.41 , pp. 514-531
    • Chiang, W.K.1    Zhang, D.2    Zhou, L.3
  • 86
    • 76649131245 scopus 로고    scopus 로고
    • Greek long-term energy consumption prediction using artificial neural networks
    • Ekonomou L. Greek long-term energy consumption prediction using artificial neural networks. Energy 2010, 35:512-517
    • (2010) Energy , vol.35 , pp. 512-517
    • Ekonomou, L.1
  • 87
    • 60249090242 scopus 로고    scopus 로고
    • Prediction of building energy consumption by using artificial neural networks
    • Ekici BB, Aksoy UT. Prediction of building energy consumption by using artificial neural networks. Adv Eng Software 2009, 40:356-362
    • (2009) Adv Eng Software , vol.40 , pp. 356-362
    • Ekici, B.B.1    Aksoy, U.T.2
  • 88
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Li G, Shi J. On comparing three artificial neural networks for wind speed forecasting. Appl Energy 2010, 87:2313-2320
    • (2010) Appl Energy , vol.87 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 89
    • 64649096205 scopus 로고    scopus 로고
    • An integrated artificial neural networks approach for predicting global radiation
    • Azadeh A, Maghsoudi A, Sohrabkhani S. An integrated artificial neural networks approach for predicting global radiation. Energy Conversion Manage 2009, 50:1497-1505
    • (2009) Energy Conversion Manage , vol.50 , pp. 1497-1505
    • Azadeh, A.1    Maghsoudi, A.2    Sohrabkhani, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.