메뉴 건너뛰기




Volumn 83, Issue , 2012, Pages 1-11

An ensemble kernel classifier with immune clonal selection algorithm for automatic discriminant of primary open-angle glaucoma

Author keywords

Ensemble kernel classifier; Immune clonal selection algorithm; Kernel principal component analysis; Primary open angle glaucoma; Support vector machine

Indexed keywords

IMMUNE CLONAL SELECTION ALGORITHM; KERNEL CLASSIFIERS; KERNEL PRINCIPAL COMPONENT ANALYSIS; PRIMARY OPEN-ANGLE GLAUCOMA; SUPPORT VECTOR;

EID: 84862814363     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.09.030     Document Type: Article
Times cited : (14)

References (38)
  • 1
    • 79956146324 scopus 로고    scopus 로고
    • An iterative method for deciding SVM and single layer neural network structures
    • Hamdani Tarek M., Alimi Adel M., et al. An iterative method for deciding SVM and single layer neural network structures. Neural Process. Lett. 2011, 33:171-186.
    • (2011) Neural Process. Lett. , vol.33 , pp. 171-186
    • Hamdani, T.M.1    Alimi, A.M.2
  • 2
    • 52649157012 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • in: Proceedings of NIPS
    • K. Weinberger, J. Blitzer, L. Saul, Distance metric learning for large margin nearest neighbor classification, in: Proceedings of NIPS, 2006.
    • (2006)
    • Weinberger, K.1    Blitzer, J.2    Saul, L.3
  • 3
    • 77957018181 scopus 로고    scopus 로고
    • A hybrid SVM based decision tree
    • Kumar M., Gopal M. A hybrid SVM based decision tree. Pattern Recognition 2010, 43:3977-3987.
    • (2010) Pattern Recognition , vol.43 , pp. 3977-3987
    • Kumar, M.1    Gopal, M.2
  • 4
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Christopher J.C.Burges A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discovery 1998, 2(2):121-167.
    • (1998) Data Min. Knowl. Discovery , vol.2 , Issue.2 , pp. 121-167
    • Christopher, J.1
  • 5
    • 51349154782 scopus 로고    scopus 로고
    • Finite-dimensional projection for classification and statistical learning
    • Blanchard G., Zwald L. Finite-dimensional projection for classification and statistical learning. IEEE Trans. Inf. Theory 2008, 54:4169-4182.
    • (2008) IEEE Trans. Inf. Theory , vol.54 , pp. 4169-4182
    • Blanchard, G.1    Zwald, L.2
  • 7
    • 38649138750 scopus 로고    scopus 로고
    • Forecasting financial condition of Chinese listed companies based on support vector machine
    • Ding Y.-S., Song X.-P., Zen Y.M. Forecasting financial condition of Chinese listed companies based on support vector machine. Expert Syst. Appl. 2008, 34:3081-3089.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 3081-3089
    • Ding, Y.-S.1    Song, X.-P.2    Zen, Y.M.3
  • 8
    • 34548697717 scopus 로고    scopus 로고
    • Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network
    • Ding Y.-S., Zhang T.-L., Chou K.C. Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network. Protein Pept. Lett. 2007, 14:811-815.
    • (2007) Protein Pept. Lett. , vol.14 , pp. 811-815
    • Ding, Y.-S.1    Zhang, T.-L.2    Chou, K.C.3
  • 9
    • 34250856245 scopus 로고    scopus 로고
    • Feature extraction via KPCA for classification of gait patterns
    • Wu J.-N., Wang J., Liu L. Feature extraction via KPCA for classification of gait patterns. Hum. Movement Sci. 2007, 26:393-411.
    • (2007) Hum. Movement Sci. , vol.26 , pp. 393-411
    • Wu, J.-N.1    Wang, J.2    Liu, L.3
  • 10
    • 33748488879 scopus 로고    scopus 로고
    • Robust identification of non-linear dynamic systems using support vector machine
    • Zhang H.-R., Wang X.-D. Robust identification of non-linear dynamic systems using support vector machine. Sci., Meas. Technol. 2006, 153:125-129.
    • (2006) Sci., Meas. Technol. , vol.153 , pp. 125-129
    • Zhang, H.-R.1    Wang, X.-D.2
  • 11
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf B., Smola A., Muller K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10:1299-1319.
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 12
    • 75749153570 scopus 로고    scopus 로고
    • A general kernelization framework for learning algorithms based on kernel PCA
    • Zhang C.-S., Nie F.-P., Xiang S.-M. A general kernelization framework for learning algorithms based on kernel PCA. Neurocomputing 2009, 73:959-967.
    • (2009) Neurocomputing , vol.73 , pp. 959-967
    • Zhang, C.-S.1    Nie, F.-P.2    Xiang, S.-M.3
  • 13
    • 38849204864 scopus 로고    scopus 로고
    • Optimizing the data-dependent kernel under a unified kernel optimization framework
    • Chen B., Liu H.-W., Bao Z. Optimizing the data-dependent kernel under a unified kernel optimization framework. Pattern Recognition 2008, 41:2107-2119.
    • (2008) Pattern Recognition , vol.41 , pp. 2107-2119
    • Chen, B.1    Liu, H.-W.2    Bao, Z.3
  • 14
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
    • Zhang Y.-W. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chem. Eng. Sci. 2009, 64:801-811.
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 801-811
    • Zhang, Y.-W.1
  • 15
    • 58349084263 scopus 로고    scopus 로고
    • A novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression
    • Wu C.-H., Tzeng G.-H., Lin R.-H. A novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst. Appl. 2009, 36:4725-4735.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 4725-4735
    • Wu, C.-H.1    Tzeng, G.-H.2    Lin, R.-H.3
  • 16
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • Duan K., Keerthi S.S., Poo A.N. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 2003, 51:41-59.
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 17
    • 58349121846 scopus 로고    scopus 로고
    • Immune co-evolutionary algorithm based partition balancing optimization for tobacco distribution system
    • Hu Z.-H., Ding Y.-S., Shao Q. Immune co-evolutionary algorithm based partition balancing optimization for tobacco distribution system. Expert Syst. Appl. 2009, 36:5248-5255.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 5248-5255
    • Hu, Z.-H.1    Ding, Y.-S.2    Shao, Q.3
  • 18
    • 77957929022 scopus 로고    scopus 로고
    • A multi-objective artificial immune algorithm for parameter optimization in support vector machine
    • Ilhan A., Mehmet K., Erhan A. A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Appl. Soft Comput. 2011, 11:120-129.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 120-129
    • Ilhan, A.1    Mehmet, K.2    Erhan, A.3
  • 20
    • 0036739033 scopus 로고    scopus 로고
    • Relationship between support vector set and kernel functions in SVM
    • Zhang L., Zhang B. Relationship between support vector set and kernel functions in SVM. J. Comput. Sci. Technol. 2002, 17:549-555.
    • (2002) J. Comput. Sci. Technol. , vol.17 , pp. 549-555
    • Zhang, L.1    Zhang, B.2
  • 22
    • 77952550960 scopus 로고    scopus 로고
    • A new kernelization framework for Mahalanobis distance learning algorithms
    • Ratthachat C., Teesid K., Pasakorn T., et al. A new kernelization framework for Mahalanobis distance learning algorithms. Neurocomputing 2010, 73:1570-1579.
    • (2010) Neurocomputing , vol.73 , pp. 1570-1579
    • Ratthachat, C.1    Teesid, K.2    Pasakorn, T.3
  • 23
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • Huang Ch.-L., Wang Ch.-J. A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 2006, 31:231-240.
    • (2006) Expert Syst. Appl. , vol.31 , pp. 231-240
    • Huang, C.-L.1    Wang, C.-J.2
  • 24
    • 79151484699 scopus 로고    scopus 로고
    • Feature selection and parameter optimization for support vector machines: a new approach based on genetic algorithm with feature chromosomes
    • Zhao M.-Y., Fu Ch., Ji L.-P., Tang K. Feature selection and parameter optimization for support vector machines: a new approach based on genetic algorithm with feature chromosomes. Expert Syst. Appl. 2011, 38(5):5197-5204.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.5 , pp. 5197-5204
    • Zhao, M.-Y.1    Fu, C.2    Ji, L.-P.3    Tang, K.4
  • 25
    • 0028203106 scopus 로고
    • Convergence analysis of canonical genetic algorithms
    • RudolPh G. Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Networks 1994, 5(l):96-101.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.L , pp. 96-101
    • RudolPh, G.1
  • 26
    • 34848880140 scopus 로고    scopus 로고
    • Adaptive immune-genetic algorithm for global optimization to multivariable function
    • Yong Sh., Li Y.-Y., et al. Adaptive immune-genetic algorithm for global optimization to multivariable function. J. Syst. Eng. Electron. 2007, 18(3):655-660.
    • (2007) J. Syst. Eng. Electron. , vol.18 , Issue.3 , pp. 655-660
    • Yong, S.1    Li, Y.-Y.2
  • 27
    • 33845995828 scopus 로고    scopus 로고
    • Immune memory clonal selection algorithms for designing stack filters
    • Dong W.-Sh., Shi G.-M., Zhang L. Immune memory clonal selection algorithms for designing stack filters. Neurocomputing 2007, 70(4-6):777-784.
    • (2007) Neurocomputing , vol.70 , Issue.4-6 , pp. 777-784
    • Dong, W.-S.1    Shi, G.-M.2    Zhang, L.3
  • 29
    • 63149163756 scopus 로고    scopus 로고
    • For which glaucoma suspects is it appropriate to initiate treatment?
    • Cheng E.-M., Giaconi J.A., Coleman A.L., et al. For which glaucoma suspects is it appropriate to initiate treatment?. Ophthalmology 2009, 116:710-716.
    • (2009) Ophthalmology , vol.116 , pp. 710-716
    • Cheng, E.-M.1    Giaconi, J.A.2    Coleman, A.L.3
  • 30
    • 72049085515 scopus 로고    scopus 로고
    • Pulsar perimetry in the diagnosis of early glaucoma
    • Zeppieri M., Brusini P., Parisi L., et al. Pulsar perimetry in the diagnosis of early glaucoma. Am. J. Ophthalmol. 2009, 149:102-112.
    • (2009) Am. J. Ophthalmol. , vol.149 , pp. 102-112
    • Zeppieri, M.1    Brusini, P.2    Parisi, L.3
  • 32
    • 77955516396 scopus 로고    scopus 로고
    • Finding optimal model parameters by deterministic and annealed focused grid search
    • Álvaro B.J., Jorge L.L., José R.D. Finding optimal model parameters by deterministic and annealed focused grid search. Neurocomputing 2009, 72:2824-2832.
    • (2009) Neurocomputing , vol.72 , pp. 2824-2832
    • Álvaro, B.J.1    Jorge, L.L.2    José, R.D.3
  • 33
    • 84862805140 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • A. Asuncion, D.J. Newman, UCI Machine Learning Repository. , 2007. http://archive.ics.uci.edu/ml/datasets.html.
    • (2007)
    • Asuncion, A.1    Newman, D.J.2
  • 34
    • 84862790578 scopus 로고    scopus 로고
    • Delve Data for Evaluating Learning in Valid Experiments.
    • C.E. Rasmussen, R.M. Neal, G. Hinton et al., Delve Data for Evaluating Learning in Valid Experiments. , 1995-1996. http://www.cs.toronto.edu/~delve/.
    • Rasmussen, C.E.1    Neal, R.M.2    Hinton, G.3
  • 35
    • 78651327603 scopus 로고    scopus 로고
    • ∞ synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon
    • ∞ synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon. IEEE Trans. Neural Networks 2011, 22(1):145-157.
    • (2011) IEEE Trans. Neural Networks , vol.22 , Issue.1 , pp. 145-157
    • Shen, B.1    Wang, Z.-D.2    Liu, X.-H.3
  • 36
    • 73949136715 scopus 로고    scopus 로고
    • Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays
    • Wang Z.-D., Wang Y., Liu Y.-R. Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays. IEEE Trans. Neural Networks 2010, 21(1):11-25.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.1 , pp. 11-25
    • Wang, Z.-D.1    Wang, Y.2    Liu, Y.-R.3
  • 37
    • 67949117118 scopus 로고    scopus 로고
    • Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays
    • Liu Y.-R., Wang Z.-D., Liang J.-L., et al. Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays. IEEE Trans. Neural Networks 2009, 20(7):1102-1116.
    • (2009) IEEE Trans. Neural Networks , vol.20 , Issue.7 , pp. 1102-1116
    • Liu, Y.-R.1    Wang, Z.-D.2    Liang, J.-L.3
  • 38
    • 67349167079 scopus 로고    scopus 로고
    • State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: the discrete-time case
    • Liang J.-L., Wang Z.-D., Liu X.-H. State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: the discrete-time case. IEEE Trans. Neural Networks 2009, 20(5):781-793.
    • (2009) IEEE Trans. Neural Networks , vol.20 , Issue.5 , pp. 781-793
    • Liang, J.-L.1    Wang, Z.-D.2    Liu, X.-H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.