메뉴 건너뛰기




Volumn 3, Issue 1, 2003, Pages 1-48

Kernel independent component analysis

Author keywords

Blind source separation; Canonical correlations; Gram matrices; Incomplete Cholesky decomposition; Independent component analysis; Integral equations; Kernel methods; Mutual information; Semiparametric models; Stiefel manifold

Indexed keywords

ALGORITHMS; BLIND SOURCE SEPARATION; FUNCTIONS; INDEPENDENT COMPONENT ANALYSIS; INTEGRAL EQUATIONS;

EID: 0011812771     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: 10.1162/153244303768966085     Document Type: Article
Times cited : (1507)

References (53)
  • 2
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251-276, 1998.
    • (1998) Neural Computation , vol.10 , Issue.2 , pp. 251-276
    • Amari, S.1
  • 3
    • 0000717513 scopus 로고    scopus 로고
    • A new learning algorithm for blind signal separation
    • D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Cambridge, MA: MIT Press
    • S. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for blind signal separation. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems, 8. Cambridge, MA: MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8
    • Amari, S.1    Cichocki, A.2    Yang, H.H.3
  • 4
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • H. Attias. Independent factor analysis. Neural Computation, 11(4):803-851, 1999.
    • (1999) Neural Computation , vol.11 , Issue.4 , pp. 803-851
    • Attias, H.1
  • 7
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6):1129-1159, 1995.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 11
  • 13
    • 0000341667 scopus 로고
    • Remarks on functional canonical variates, alternating least squares methods, and ACE
    • A. Buja. Remarks on functional canonical variates, alternating least squares methods, and ACE. Annals of Statistics, 18(3):1032-1069, 1990.
    • (1990) Annals of Statistics , vol.18 , Issue.3 , pp. 1032-1069
    • Buja, A.1
  • 15
    • 0032612381 scopus 로고    scopus 로고
    • High-order contrasts for independent component analysis
    • J.-F. Cardoso. High-order contrasts for independent component analysis. Neural Computation, 11(1):157-192, 1999.
    • (1999) Neural Computation , vol.11 , Issue.1 , pp. 157-192
    • Cardoso, J.-F.1
  • 16
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • P. Comon. Independent component analysis, a new concept? Signal Processing, 36(3):287-314, 1994.
    • (1994) Signal Processing , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 22
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2:243-264, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 24
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures. Neural Computation, 7(2):219-269, 1995.
    • (1995) Neural Computation , vol.7 , Issue.2 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 26
    • 84898966891 scopus 로고    scopus 로고
    • Kernel feature spaces and nonlinear blind source separation
    • T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Cambridge, MA: MIT Press
    • S. Harmeling, A. Ziehe, M. Kawanabe, and K.-R. Müller. Kernel feature spaces and nonlinear blind source separation. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, 14. Cambridge, MA: MIT Press, 2002.
    • (2002) Advances in Neural Information Processing Systems , vol.14
    • Harmeling, S.1    Ziehe, A.2    Kawanabe, M.3    Müller, K.-R.4
  • 28
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • H. Hotelling. Relations between two sets of variates. Biometrika, 28:321-377, 1936.
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 29
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3):626-634, 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvärinen, A.1
  • 31
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed point algorithm for independent component analysis
    • A. Hyvärinen and E. Oja. A fast fixed point algorithm for independent component analysis. Neural Computation, 9(7):1483-1492, 1997.
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 32
    • 0026191274 scopus 로고
    • Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture
    • C. Jutten and J. Herault. Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 24(1):1-10, 1991.
    • (1991) Signal Processing , vol.24 , Issue.1 , pp. 1-10
    • Jutten, C.1    Herault, J.2
  • 33
    • 0000020007 scopus 로고
    • Canonical analysis of several sets of variables
    • J. R. Kettenring. Canonical analysis of several sets of variables. Biometrika, 58(3):433-451, 1971.
    • (1971) Biometrika , vol.58 , Issue.3 , pp. 433-451
    • Kettenring, J.R.1
  • 34
    • 77954824787 scopus 로고
    • On the Shannon theory of information transmission in the case of continuous signals
    • A. N. Kolmogorov. On the Shannon theory of information transmission in the case of continuous signals. IRE Transactions on Information Theory, 2(4):102-108, 1956.
    • (1956) IRE Transactions on Information Theory , vol.2 , Issue.4 , pp. 102-108
    • Kolmogorov, A.N.1
  • 36
    • 0033556834 scopus 로고    scopus 로고
    • Independent component analysis using an extended Infomax algorithm for mixed sub-gaussian and super-gaussian sources
    • T.-W. Lee, M. Girolami, and T. J. Sejnowski. Independent component analysis using an extended Infomax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation, 11(2):417-441, 1999.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 417-441
    • Lee, T.-W.1    Girolami, M.2    Sejnowski, T.J.3
  • 40
    • 0031191456 scopus 로고    scopus 로고
    • Blind separation of mixtures of independent sources through a quasi-maximum likelihood approach
    • D. T. Pham and P. Garat. Blind separation of mixtures of independent sources through a quasi-maximum likelihood approach. IEEE Transactions on Signal Processing, 45(7):1712-1725, 1997.
    • (1997) IEEE Transactions on Signal Processing , vol.45 , Issue.7 , pp. 1712-1725
    • Pham, D.T.1    Garat, P.2
  • 43
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(3):1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , Issue.3 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 45
    • 0004073954 scopus 로고
    • Providence, RI: American Mathematical Society
    • G. Szegö. Orthogonal Polynomials. Providence, RI: American Mathematical Society, 1975.
    • (1975) Orthogonal Polynomials
    • Szegö, G.1
  • 47
    • 0035330650 scopus 로고    scopus 로고
    • Efficient source adaptivity in independent component analysis
    • N. Vlassis and Y. Motomura. Efficient source adaptivity in independent component analysis. IEEE Transactions on Neural Networks, 12(3):559-566, 2001.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.3 , pp. 559-566
    • Vlassis, N.1    Motomura, Y.2
  • 48
    • 0035292754 scopus 로고    scopus 로고
    • A constrained EM algorithm for independent component analysis
    • M. Welling and M. Weber. A constrained EM algorithm for independent component analysis. Neural Computation, 13(3):677-689, 2001.
    • (2001) Neural Computation , vol.13 , Issue.3 , pp. 677-689
    • Welling, M.1    Weber, M.2
  • 49
    • 84968466142 scopus 로고
    • Asymptotic behavior of the eigenvalues of certain integral equations
    • H. Widom. Asymptotic behavior of the eigenvalues of certain integral equations. Transactions of the American Mathematical Society, 109:278-295, 1963.
    • (1963) Transactions of the American Mathematical Society , vol.109 , pp. 278-295
    • Widom, H.1
  • 50
    • 0001292373 scopus 로고
    • Asymptotic behavior of the eigenvalues of certain integral equations II
    • H. Widom. Asymptotic behavior of the eigenvalues of certain integral equations II. Archive for Rational Mechanics and Analysis, 17:215-229, 1964.
    • (1964) Archive for Rational Mechanics and Analysis , vol.17 , pp. 215-229
    • Widom, H.1
  • 52
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Cambridge, MA: MIT Press
    • C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems, 13. Cambridge, MA: MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems , vol.13
    • Williams, C.K.I.1    Seeger, M.2
  • 53
    • 0033432390 scopus 로고    scopus 로고
    • Modified Cholesky factorizations in interior-point algorithms for linear programming
    • S. Wright. Modified Cholesky factorizations in interior-point algorithms for linear programming. SIAM Journal on Optimization, 9(4):1159-1191, 1999.
    • (1999) SIAM Journal on Optimization , vol.9 , Issue.4 , pp. 1159-1191
    • Wright, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.