메뉴 건너뛰기




Volumn 101, Issue , 2013, Pages 18-23

Streamflow forecasting by SVM with quantum behaved particle swarm optimization

Author keywords

Forecasting; QPSO; Streamflow; SVM; Time series

Indexed keywords

ANDHRA PRADESH; CORRELATION COEFFICIENT; FORECASTING MODELS; HIGH DEGREE OF ACCURACY; NON-LINEAR REGRESSION; NONLINEAR DATA; NORMALIZED MEAN SQUARE ERROR; OPTIMAL VALUES; QPSO; QUANTUM-BEHAVED PARTICLE SWARM OPTIMIZATION; STREAMFLOW FORECASTING; SUPPORT VECTOR; SVM; SVM MODEL;

EID: 84868623982     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.07.017     Document Type: Article
Times cited : (141)

References (26)
  • 1
    • 33845999586 scopus 로고    scopus 로고
    • Fingerprint matching based on weighting method and the svm
    • Jia J., Cai L., Lu P., Liu X. Fingerprint matching based on weighting method and the svm. Neurocomputing 2007, 70(4-6):849-858.
    • (2007) Neurocomputing , vol.70 , Issue.4-6 , pp. 849-858
    • Jia, J.1    Cai, L.2    Lu, P.3    Liu, X.4
  • 2
    • 34548187767 scopus 로고    scopus 로고
    • Exploiting multi-scale support vector regression for image compression
    • Li B., Zheng D., Sun L., Yang S. Exploiting multi-scale support vector regression for image compression. Neurocomputing 2007, 70(16-18):3068-3074.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3068-3074
    • Li, B.1    Zheng, D.2    Sun, L.3    Yang, S.4
  • 3
    • 79956119798 scopus 로고    scopus 로고
    • Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm
    • Hong W.C. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 2011, 74:2096-2107.
    • (2011) Neurocomputing , vol.74 , pp. 2096-2107
    • Hong, W.C.1
  • 4
    • 77952669532 scopus 로고    scopus 로고
    • Kernel subclass convex hull sample selection method for svm on face recognition
    • Zhou X., Jiang W., Tian Y., Shi Y. Kernel subclass convex hull sample selection method for svm on face recognition. Neurocomputing 2010, 73(10-12):2234-2246.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 2234-2246
    • Zhou, X.1    Jiang, W.2    Tian, Y.3    Shi, Y.4
  • 5
    • 75749132739 scopus 로고    scopus 로고
    • Model predictive flight control using adaptive support vector regression
    • Shin J., Jin Kim H., Park S., Kim Y. Model predictive flight control using adaptive support vector regression. Neurocomputing 2010, 73(4-6):1031-1037.
    • (2010) Neurocomputing , vol.73 , Issue.4-6 , pp. 1031-1037
    • Shin, J.1    Jin Kim, H.2    Park, S.3    Kim, Y.4
  • 6
    • 72449153929 scopus 로고    scopus 로고
    • PVT correlations of Indian crude using support vector regression
    • Dutta S., Gupta J. PVT correlations of Indian crude using support vector regression. Energy Fuels 2009, 23(11):5483-5490.
    • (2009) Energy Fuels , vol.23 , Issue.11 , pp. 5483-5490
    • Dutta, S.1    Gupta, J.2
  • 7
    • 85006941509 scopus 로고    scopus 로고
    • Rainfall and runoff forecasting with SSA-SVM approach
    • Sivapragasam C., Liong S., Pasha M. Rainfall and runoff forecasting with SSA-SVM approach. J. Hydroinformatics 2001, 3(3):141-152.
    • (2001) J. Hydroinformatics , vol.3 , Issue.3 , pp. 141-152
    • Sivapragasam, C.1    Liong, S.2    Pasha, M.3
  • 8
    • 10944222348 scopus 로고    scopus 로고
    • Use of soft information to describe the relative uncertainty of calibration data in hydrologic models
    • Khadam I., Kaluarachchi J. Use of soft information to describe the relative uncertainty of calibration data in hydrologic models. Water Resour. Res. 2004, 40(11):W11505.
    • (2004) Water Resour. Res. , vol.40 , Issue.11
    • Khadam, I.1    Kaluarachchi, J.2
  • 9
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: the support vector machines approach
    • Asefa T., Kemblowski M., McKee M., Khalil A. Multi-time scale stream flow predictions: the support vector machines approach. J. Hydrol. 2006, 318(1-4):7-16.
    • (2006) J. Hydrol. , vol.318 , Issue.1-4 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 11
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang W., Chau K., Cheng C., Qiu L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374(3-4):294-306.
    • (2009) J. Hydrol. , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.1    Chau, K.2    Cheng, C.3    Qiu, L.4
  • 12
    • 47949121319 scopus 로고    scopus 로고
    • River stage prediction based on a distributed support vector regression
    • Wu C., Chau K., Li Y. River stage prediction based on a distributed support vector regression. J. Hydrol. 2008, 358(1-2):96-111.
    • (2008) J. Hydrol. , vol.358 , Issue.1-2 , pp. 96-111
    • Wu, C.1    Chau, K.2    Li, Y.3
  • 13
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
    • Wu C., Chau K., Li Y. Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour. Res. 2009, 45:W08432.
    • (2009) Water Resour. Res. , vol.45
    • Wu, C.1    Chau, K.2    Li, Y.3
  • 14
    • 78049358493 scopus 로고    scopus 로고
    • A hybrid model coupled with singular spectrum analysis for daily rainfall prediction
    • Chau K., Wu C. A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. J. Hydroinformatics 2010, 12(4):458-473.
    • (2010) J. Hydroinformatics , vol.12 , Issue.4 , pp. 458-473
    • Chau, K.1    Wu, C.2
  • 15
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin J., Cheng C., Chau K. Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 2006, 51(4):599-612.
    • (2006) Hydrol. Sci. J. , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.1    Cheng, C.2    Chau, K.3
  • 16
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 2004, 17(1):113-126.
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 19
    • 0029535737 scopus 로고
    • Particle swarm optimization, in: IEEE International Conference on Neural Networks, 1995, Proceedings, IEEE
    • J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE International Conference on Neural Networks, 1995, Proceedings, vol. 4, IEEE, 1995, pp. 1942-1948.
    • (1995) , vol.4 , pp. 1942-1948
    • Kennedy, J.1    Eberhart, R.2
  • 21
    • 84901421400 scopus 로고    scopus 로고
    • The swarm and the queen: towards a deterministic and adaptive particle swarm optimization
    • CEC 99, IEEE
    • M. Clerc, The swarm and the queen: towards a deterministic and adaptive particle swarm optimization, in: Proceedings of the 1999 Congress on Evolutionary Computation, 1999, CEC 99, vol. 3, IEEE, 1999.
    • (1999) in: Proceedings of the 1999 Congress on Evolutionary Computation, 1999 , vol.3
    • Clerc, M.1
  • 22
    • 84899409932 scopus 로고    scopus 로고
    • Empirical study of particle swarm optimizer with an increasing inertia weight
    • CEC'03, IEEE
    • Y. Zheng, L. Ma, L. Zhang, J. Qian, Empirical study of particle swarm optimizer with an increasing inertia weight, in: The 2003 Congress on Evolutionary Computation, 2003, CEC'03, vol. 1, IEEE, pp. 221-226.
    • (2003) in: The 2003 Congress on Evolutionary Computation , vol.1 , pp. 221-226
    • Zheng, Y.1    Ma, L.2    Zhang, L.3    Qian, J.4
  • 24
    • 1642578192 scopus 로고    scopus 로고
    • Modelling of river discharges and rainfall using radial basis function networks based on support vector regression
    • Choy K., Chan C. Modelling of river discharges and rainfall using radial basis function networks based on support vector regression. Int. J. Syst. Sci. 2003, 34(1):763-773.
    • (2003) Int. J. Syst. Sci. , vol.34 , Issue.1 , pp. 763-773
    • Choy, K.1    Chan, C.2
  • 25
    • 84919454581 scopus 로고    scopus 로고
    • EC-SVM approach for real-time hydrologic forecasting
    • Yu X., Liong S., Babovic V. EC-SVM approach for real-time hydrologic forecasting. J. Hydroinformatics 2004, 6(3):209-223.
    • (2004) J. Hydroinformatics , vol.6 , Issue.3 , pp. 209-223
    • Yu, X.1    Liong, S.2    Babovic, V.3
  • 26
    • 84868628656 scopus 로고    scopus 로고
    • A practical guide to support vector classification.
    • C. Hsu, C. Chang, C. Lin, et al., A practical guide to support vector classification, 2003.
    • (2003)
    • Hsu, C.1    Chang, C.2    Lin, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.