메뉴 건너뛰기




Volumn 43, Issue 5, 2013, Pages 576-586

Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders

Author keywords

Discrete wavelet transform (DWT); Electromyography (EMG); K Nearest neigbour (k NN); Motor unit action potentials (MUAPs); Parameter selection; Particle swarm optimization (PSO); Radial basis function networks (RBFN); Support vector machine (SVM)

Indexed keywords

ELECTROMYOGRAPHY (EMG); K-NEAREST NEIGBOUR (K-NN); MOTOR UNIT ACTION POTENTIALS; PARAMETER SELECTION; RADIAL BASIS FUNCTION NETWORKS (RBFN);

EID: 84875921509     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2013.01.020     Document Type: Article
Times cited : (447)

References (60)
  • 2
    • 84861850248 scopus 로고    scopus 로고
    • Classification of EMG signals using combined features and soft computing techniques
    • Subasi A. Classification of EMG signals using combined features and soft computing techniques. Appl. Soft Comput. 2012, 12:2188-2198.
    • (2012) Appl. Soft Comput. , vol.12 , pp. 2188-2198
    • Subasi, A.1
  • 3
    • 0028079951 scopus 로고
    • NNERVE: neural network extraction of repetitive vectors for electromyography. II. Performance analysis
    • Hassoun M., Wang C., Spitzer A. NNERVE: neural network extraction of repetitive vectors for electromyography. II. Performance analysis. IEEE Trans. Biomed. Eng. 1994, 41(11):1053-1061.
    • (1994) IEEE Trans. Biomed. Eng. , vol.41 , Issue.11 , pp. 1053-1061
    • Hassoun, M.1    Wang, C.2    Spitzer, A.3
  • 7
    • 0032744849 scopus 로고    scopus 로고
    • Autoregressive and cepstral analyses of motor unit action potentials
    • Pattichis C.S., Elia A.G. Autoregressive and cepstral analyses of motor unit action potentials. Med. Eng. Phys. 1999, 21:405-419.
    • (1999) Med. Eng. Phys. , vol.21 , pp. 405-419
    • Pattichis, C.S.1    Elia, A.G.2
  • 8
    • 0032711174 scopus 로고    scopus 로고
    • Time-scale analysis of motor unit action potentials
    • Pattichis C.S., Pattichis M.S. Time-scale analysis of motor unit action potentials. IEEE Trans. Biomed. Eng. 1999, 46(11):1320-1329.
    • (1999) IEEE Trans. Biomed. Eng. , vol.46 , Issue.11 , pp. 1320-1329
    • Pattichis, C.S.1    Pattichis, M.S.2
  • 9
    • 33747156423 scopus 로고    scopus 로고
    • Classification of EMG signals using wavelet neural network
    • Subasi A., Yilmaz M., Ozcalik H.R. Classification of EMG signals using wavelet neural network. J. Neurosci. Methods 2006, 156:360-367.
    • (2006) J. Neurosci. Methods , vol.156 , pp. 360-367
    • Subasi, A.1    Yilmaz, M.2    Ozcalik, H.R.3
  • 10
    • 77956056202 scopus 로고    scopus 로고
    • Muscle fatigue detection in EMG using time-frequency methods, ICA and neural networks
    • Subasi A., Kiymik M.K. Muscle fatigue detection in EMG using time-frequency methods, ICA and neural networks. J. Med. Syst. 2010, 34(4):777-785.
    • (2010) J. Med. Syst. , vol.34 , Issue.4 , pp. 777-785
    • Subasi, A.1    Kiymik, M.K.2
  • 12
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with gaussian kernel
    • Keerthi S.S., Lin C.J. Asymptotic behaviors of support vector machines with gaussian kernel. Neural Comput. 2003, 15:1667-1689.
    • (2003) Neural Comput. , vol.15 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.J.2
  • 13
    • 48749109333 scopus 로고    scopus 로고
    • Particle swarm optimization for parameter determination and feature selection of support vector machines
    • Lin S.W., Ying K.C., Chen S.C., Lee Z.J. Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 2008, 35:1817-1824.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 1817-1824
    • Lin, S.W.1    Ying, K.C.2    Chen, S.C.3    Lee, Z.J.4
  • 15
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based attribute selection and parameter optimization for support vector machine
    • Huang C.L., Wang C.J. A GA-based attribute selection and parameter optimization for support vector machine. Expert Syst. Appl. 2006, 31(2):231-240.
    • (2006) Expert Syst. Appl. , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.L.1    Wang, C.J.2
  • 16
    • 50149108380 scopus 로고    scopus 로고
    • A distributed PSO-SVM hybrid system with feature selection and parameter optimization
    • Huang C.L., Dun J.F. A distributed PSO-SVM hybrid system with feature selection and parameter optimization. Appl. Soft Comput. 2008, 8:1381-1391.
    • (2008) Appl. Soft Comput. , vol.8 , pp. 1381-1391
    • Huang, C.L.1    Dun, J.F.2
  • 19
    • 51749123574 scopus 로고    scopus 로고
    • Classification of electrocardiogram signals with support vector machines and particle swarm optimization
    • Melgani F., Bazi Y. Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans. Info. Technol. Biomed. 2008, 12(5):667-677.
    • (2008) IEEE Trans. Info. Technol. Biomed. , vol.12 , Issue.5 , pp. 667-677
    • Melgani, F.1    Bazi, Y.2
  • 20
    • 56549111881 scopus 로고    scopus 로고
    • A novel LS-SVMs hyper-parameter selection based on particle swarm optimization
    • Guo X.C., Yang J.H., Wu C.G., Wang C.Y., Liang Y.C. A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 2008, 71:3211-3215.
    • (2008) Neurocomputing , vol.71 , pp. 3211-3215
    • Guo, X.C.1    Yang, J.H.2    Wu, C.G.3    Wang, C.Y.4    Liang, Y.C.5
  • 21
    • 33847127850 scopus 로고    scopus 로고
    • A combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classification
    • Shen Q., Shi W.M., Kong W., Ye B.X. A combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classification. Talanta 2007, 71:1679-1683.
    • (2007) Talanta , vol.71 , pp. 1679-1683
    • Shen, Q.1    Shi, W.M.2    Kong, W.3    Ye, B.X.4
  • 22
    • 0000105814 scopus 로고
    • Introduction to the special issue on wavelet transforms and multiresolution signal analysis
    • Daubechies I., Mallat S., Willsky A.S. Introduction to the special issue on wavelet transforms and multiresolution signal analysis. IEEE Trans. Info. Theory 1992, 38:529-532.
    • (1992) IEEE Trans. Info. Theory , vol.38 , pp. 529-532
    • Daubechies, I.1    Mallat, S.2    Willsky, A.S.3
  • 23
    • 0026922952 scopus 로고
    • Wavelets and filter banks: theory and design
    • Vetterli M., Herley C. Wavelets and filter banks: theory and design. IEEE Trans. Signal Process. 1992, 40:2207-2232.
    • (1992) IEEE Trans. Signal Process. , vol.40 , pp. 2207-2232
    • Vetterli, M.1    Herley, C.2
  • 27
    • 0013649396 scopus 로고    scopus 로고
    • Wavelet (time-scale) analysis in biomedical signal processing
    • CRC Press LLC, Boca Raton, D. Bronzino (Ed.)
    • Thakor N.V., Gramatikov B., Sherman D. Wavelet (time-scale) analysis in biomedical signal processing. The Biomedical Engineering Handbook 2000, CRC Press LLC, Boca Raton. Second edition. D. Bronzino (Ed.).
    • (2000) The Biomedical Engineering Handbook
    • Thakor, N.V.1    Gramatikov, B.2    Sherman, D.3
  • 28
    • 0031139676 scopus 로고    scopus 로고
    • Wavelet applications in medicine
    • Akay M. Wavelet applications in medicine. IEEE Spectr. 1997, 34:50-56.
    • (1997) IEEE Spectr. , vol.34 , pp. 50-56
    • Akay, M.1
  • 29
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 2007, 32:1084-1093.
    • (2007) Expert Syst. Appl. , vol.32 , pp. 1084-1093
    • Subasi, A.1
  • 30
    • 84864128286 scopus 로고    scopus 로고
    • Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector machines
    • Subasi A. Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector machines. Comput. Biol. Med. 2012, 42:806-815.
    • (2012) Comput. Biol. Med. , vol.42 , pp. 806-815
    • Subasi, A.1
  • 34
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T., Girosi F. Networks for approximation and learning. Proc. IEEE 1990, 78:1481-1497.
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 37
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2:121-167.
    • (1998) Data Min. Knowl. Discov. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 38
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: support vector machines for pharmaceutical data analysis
    • Burbidge R., Trotter M., Buxton B., Holden S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput. Chem. 1998, 26:5-14.
    • (1998) Comput. Chem. , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 40
    • 1842555296 scopus 로고    scopus 로고
    • Nuttle HLW. A neural network model with bounded-weights for pattern classification
    • Liao Y., Fang S.C. Nuttle HLW. A neural network model with bounded-weights for pattern classification. Comput. Oper. Res. 2004, 31:1411-1426.
    • (2004) Comput. Oper. Res. , vol.31 , pp. 1411-1426
    • Liao, Y.1    Fang, S.C.2
  • 43
    • 18544377322 scopus 로고    scopus 로고
    • Classification of electronic nose data with support vector machines
    • Pardo M., Sberveglieri G. Classification of electronic nose data with support vector machines. Sensors Actuators B Chem. 2005, 107:730-737.
    • (2005) Sensors Actuators B Chem. , vol.107 , pp. 730-737
    • Pardo, M.1    Sberveglieri, G.2
  • 44
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • Bazi Y., Melgani F. Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sens. 2006, 44:3374-3385.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 47
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm - explosion stability and convergence in a multi-dimensional complex space
    • Clerc M., Kennedy J. The particle swarm - explosion stability and convergence in a multi-dimensional complex space. IEEE Trans. Evol. Comput. 2002, 6:58-73.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 48
    • 84874242040 scopus 로고    scopus 로고
    • Particle swarm optimization applied to parameters learning of probabilistic neural networks for classification of economic activities
    • In-Tech, Vienna, Austria, A. Lazinica (Ed.)
    • Ciarelli P.M., Krohling R.A., Oliveira E. Particle swarm optimization applied to parameters learning of probabilistic neural networks for classification of economic activities. Particle Swarm Optimization 2009, 313-328. In-Tech, Vienna, Austria. A. Lazinica (Ed.).
    • (2009) Particle Swarm Optimization , pp. 313-328
    • Ciarelli, P.M.1    Krohling, R.A.2    Oliveira, E.3
  • 51
    • 33746924828 scopus 로고    scopus 로고
    • Combining wavelet analysis and bayesian networks for the classification of auditory brainstem response
    • Zhang R., McAllister G., Scotney B., McClean S., Houston G. Combining wavelet analysis and bayesian networks for the classification of auditory brainstem response. IEEE Trans. Info. Tech. Biomed. 2006, 10(3):458-467.
    • (2006) IEEE Trans. Info. Tech. Biomed. , vol.10 , Issue.3 , pp. 458-467
    • Zhang, R.1    McAllister, G.2    Scotney, B.3    McClean, S.4    Houston, G.5
  • 52
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley J.A., McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143:29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 53
    • 0141518516 scopus 로고    scopus 로고
    • Receiver operating characteristic curves and their use in radiology
    • Obuchowski N.A. Receiver operating characteristic curves and their use in radiology. Radiology 2003, 229:3-8.
    • (2003) Radiology , vol.229 , pp. 3-8
    • Obuchowski, N.A.1
  • 54
    • 0018390029 scopus 로고
    • ROC analysis applied to the evaluation of medical imaging techniques
    • Swets J.A. ROC analysis applied to the evaluation of medical imaging techniques. Invest. Radiol. 1979, 14(2):9-121.
    • (1979) Invest. Radiol. , vol.14 , Issue.2 , pp. 9-121
    • Swets, J.A.1
  • 57
    • 0027457620 scopus 로고
    • Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine
    • Zweig M.H., Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, 39:561-577.
    • (1993) Clin. Chem. , vol.39 , pp. 561-577
    • Zweig, M.H.1    Campbell, G.2
  • 59
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser.B (Methodological) 1974, 36:111-147.
    • (1974) J. R. Stat. Soc. Ser.B (Methodological) , vol.36 , pp. 111-147
    • Stone, M.1
  • 60
    • 56549085451 scopus 로고    scopus 로고
    • Evolutionary tuning of SVM parameter values in multiclass problems
    • Lorena A.C., de Carvalho A.C.P.L.F. Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing 2008, 71:3326-3334.
    • (2008) Neurocomputing , vol.71 , pp. 3326-3334
    • Lorena, A.C.1    de Carvalho, A.C.P.L.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.