-
1
-
-
0030189082
-
Expose hidden failures to prevent cascading outages
-
A.G. Phadke, J.S. Thorp, Expose hidden failures to prevent cascading outages. Comput. Appl. Power IEEE 9(3), 20–23 (1996)
-
(1996)
Comput. Appl. Power IEEE
, vol.9
, Issue.3
, pp. 20-23
-
-
Phadke, A.G.1
Thorp, J.S.2
-
5
-
-
2542625918
-
Support vector machines for transient stability analysis of large-scale power systems
-
L.S. Moulin, A.P. Alves da Silva, M.A. El-Sharkawi, R.J. Marks, Support vector machines for transient stability analysis of large-scale power systems. IEEE Trans. Power Syst. 19(2), 818–824 (2004)
-
(2004)
IEEE Trans. Power Syst.
, vol.19
, Issue.2
, pp. 818-824
-
-
Moulin, L.S.1
Alves da Silva, A.P.2
El-Sharkawi, M.A.3
Marks, R.J.4
-
6
-
-
37249018157
-
Application of support vector machines for fault diagnosis in power transmission system
-
B. Ravikumar, D. Thukaram, H.P. Khincha, Application of support vector machines for fault diagnosis in power transmission system. IET Gener. Transm. Distrib. 2(1), 119–130 (2008)
-
(2008)
IET Gener. Transm. Distrib.
, vol.2
, Issue.1
, pp. 119-130
-
-
Ravikumar, B.1
Thukaram, D.2
Khincha, H.P.3
-
7
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
V. Cherkassky, Y. Ma, Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17, 113–126 (2004)
-
(2004)
Neural Netw.
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
-
8
-
-
33748076461
-
A GA-based feature selection and parameters optimization for support vector machines
-
C.-L. Huang, C.-J. Wang, A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31, 231–240 (2006)
-
(2006)
Expert Syst. Appl.
, vol.31
, pp. 231-240
-
-
Huang, C.-L.1
Wang, C.-J.2
-
9
-
-
24344458137
-
Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
-
H. Peng, F. Long, C. Ding, Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
11
-
-
0000852513
-
Multi-objective function optimization using non-dominated sorting genetic algorithm
-
N. Srinivas, K. Deb, Multi-objective function optimization using non-dominated sorting genetic algorithm. Evol. Comput. 2(3), 221–248 (1994)
-
(1994)
Evol. Comput.
, vol.2
, Issue.3
, pp. 221-248
-
-
Srinivas, N.1
Deb, K.2
-
13
-
-
77950914090
-
-
J. Weston, C. Watkins,Technical Report CSD-TR-98–04,. Accessed 19 Jan 2008
-
J. Weston, C. Watkins, Multi-class support vector machines, Technical Report CSD-TR-98–04, http://citeseerist.psu.edu/article/Weston98multiclass.html. Accessed 19 Jan 2008
-
(2008)
Multi-class support vector machines
-
-
-
14
-
-
84899013173
-
Support vector regression machines
-
H. Drucker, C.J. Burges Kaufman, A. Smola, V. Vapnik, Support vector regression machines. Neural Inf. Process. Syst. 9, 155–161 (1997)
-
(1997)
Neural Inf. Process. Syst.
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges Kaufman, C.J.2
Smola, A.3
Vapnik, V.4
-
15
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
V. Vapnik, O. Chapelle, Bounds on error expectation for support vector machines. Neural Comput. 12(9), 2013–2036 (2000)
-
(2000)
Neural Comput.
, vol.12
, Issue.9
, pp. 2013-2036
-
-
Vapnik, V.1
Chapelle, O.2
-
16
-
-
0000738511
-
-
12, MIT Press, Cambridge
-
O. Chapelle, V. Vapnik, Model Selection for Support Vector Machines, Advances in Neural Information Processing Systems, vol. 12 (MIT Press, Cambridge, 2000)
-
(2000)
Model Selection for Support Vector Machines, Advances in Neural Information Processing Systems
-
-
Chapelle, O.1
Vapnik, V.2
|