메뉴 건너뛰기




Volumn 9, Issue 1, 2014, Pages 1-11

Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field-effect transistors

Author keywords

Analytic ballistic model; Device performance metrics; Graphene nanoribbons FETs; Uniaxial strain

Indexed keywords

ANALYTICAL MODELS; BALLISTICS; CAPACITANCE; CUTOFF FREQUENCY; DRAIN CURRENT; ENERGY GAP; FIELD EFFECT TRANSISTORS; GRAPHENE; GRAPHENE TRANSISTORS; NANORIBBONS;

EID: 84897822662     PISSN: 19317573     EISSN: 1556276X     Source Type: Journal    
DOI: 10.1186/1556-276X-9-65     Document Type: Article
Times cited : (26)

References (42)
  • 4
    • 34547334459 scopus 로고    scopus 로고
    • Energy band gap engineering of graphene nanoribbons
    • Han MY, Ozyilmaz B, Zhang Y, Kim P: Energy band gap engineering of graphene nanoribbons. Phys Rev Lett 2007,98:206805.
    • (2007) Phys Rev Lett , vol.98 , pp. 206805
    • Han, M.Y.1    Ozyilmaz, B.2    Zhang, Y.3    Kim, P.4
  • 5
    • 44149119344 scopus 로고    scopus 로고
    • GuoJ, Dai H: Room temperature all semiconducting sub-10 nm graphene nanoribbon field effect transistors
    • Wang X, Ouyang Y, Li X, Wang H, GuoJ, Dai H: Room temperature all semiconducting sub-10 nm graphene nanoribbon field effect transistors. Phys Rev Lett 2008,100:206803.
    • (2008) Phys Rev Lett , vol.100 , pp. 206803
    • Wang, X.1    Ouyang, Y.2    Li, X.3    Wang, H.4
  • 6
    • 33751348065 scopus 로고    scopus 로고
    • Energy gaps in graphene nanoribbons
    • Son YW, Cohen M, Louie S: Energy gaps in graphene nanoribbons. Phys Rev Lett 2006, 97:216803.
    • (2006) Phys Rev Lett , vol.97 , pp. 216803
    • Son, Y.W.1    Cohen, M.2    Louie, S.3
  • 7
    • 19944433396 scopus 로고    scopus 로고
    • Strained Si, SiGe, and Ge channels for high mobility metal oxide semiconductor field effect transistors
    • Lee ML, Fitzgerald EA, Bulsara MT, Currie MT, Lochtefeld A: Strained Si, SiGe, and Ge channels for high mobility metal oxide semiconductor field effect transistors. J Appl Phys 2005, 97:011101.
    • (2005) J Appl Phys , vol.97 , pp. 011101
    • Lee, M.L.1    Fitzgerald, E.A.2    Bulsara, M.T.3    Currie, M.T.4    Lochtefeld, A.5
  • 8
    • 68649099010 scopus 로고    scopus 로고
    • Strain engineering of graphene's electronic structure
    • Pereira VM, Castro Neto AH: Strain engineering of graphene's electronic structure. Phys Rev Lett 2009, 103:046801.
    • (2009) Phys Rev Lett , vol.103 , pp. 046801
    • Pereira, V.M.1    Castro, N.A.H.2
  • 9
    • 77954936453 scopus 로고    scopus 로고
    • Effects of strain on electronic properties of graphene
    • Choi SM, Jhi SH, Son YM: Effects of strain on electronic properties of graphene. Phys Rev B 2010, 81:081407.
    • (2010) Phys Rev B , vol.81 , pp. 081407
    • Choi, S.M.1    Jhi, S.H.2    Son, Y.M.3
  • 10
    • 77951188595 scopus 로고    scopus 로고
    • Quantum conductance modulation in graphene by strain engineering
    • Hossain MZ: Quantum conductance modulation in graphene by strain engineering. Appl Phys Lett 2010, 96:143118.
    • (2010) Appl Phys Lett , vol.96 , pp. 143118
    • Hossain, M.Z.1
  • 11
    • 50249135441 scopus 로고    scopus 로고
    • Strain effect on energy gaps of armchair graphene nanoribbons
    • Sun L, Li Q, Ren H, Shi QW, Yang J, Hou JG: Strain effect on energy gaps of armchair graphene nanoribbons. J Chem Phys 2008, 129:074704.
    • (2008) J Chem Phys , vol.129 , pp. 074704
    • Sun, L.1    Li, Q.2    Ren, H.3    Shi, Q.W.4    Yang, J.5    Hou, J.G.6
  • 12
    • 58049208431 scopus 로고    scopus 로고
    • Uniaxial strain on graphene:Raman spectroscopy study and band-gap opening
    • Ni ZH, Yu T, Lu YH, Wang YY, Feng YP, Shen ZX: Uniaxial strain on graphene:raman spectroscopy study and band-gap opening. ACS Nano 2008, 2(11):2301-2305.
    • (2008) ACS Nano , vol.2 , Issue.11 , pp. 2301-2305
    • Ni, Z.H.1    Yu, T.2    Lu, Y.H.3    Wang, Y.Y.4    Feng, Y.P.5    Shen, Z.X.6
  • 14
    • 66249099531 scopus 로고    scopus 로고
    • Spectroscopy of graphene under uniaxial stress: Phonon softening and determination of the crystallographic orientation
    • Huang M, Yan H, Chen C, Song D, Heinz TF, Hone J: Spectroscopy of graphene under uniaxial stress: phonon softening and determination of the crystallographic orientation. Proc Nat Acad Sci 2009, 106:7304.
    • (2009) Proc Nat Acad Sci , vol.106 , pp. 7304
    • Huang, M.1    Yan, H.2    Chen, C.3    Song, D.4    Heinz, T.F.5    Hone, J.6
  • 15
    • 73549103610 scopus 로고    scopus 로고
    • Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering
    • Guinea F, Katsnelson MI, Geim AK: Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat Phys 2010, 6:30-33.
    • (2010) Nat Phys , vol.6 , pp. 30-33
    • Guinea, F.1    Katsnelson, M.I.2    Geim, A.K.3
  • 16
    • 77953651476 scopus 로고    scopus 로고
    • Band gap of strained graphene nanoribbons
    • Lu Y, Guo J: Band gap of strained graphene nanoribbons. Nano Res 2010, 3:189-199.
    • (2010) Nano Res , vol.3 , pp. 189-199
    • Lu, Y.1    Guo, J.2
  • 17
    • 77955585046 scopus 로고    scopus 로고
    • Strain effects in graphene and graphene nanoribbons: The underlying mechanism
    • Li Y, Jiang X, Liu Z, Liu Zh: Strain effects in graphene and graphene nanoribbons: the underlying mechanism. Nano Res 2010, 3:545-556.
    • (2010) Nano Res , vol.3 , pp. 545-556
    • Li, Y.1    Jiang, X.2    Liu, Z.3    Liu, Z.4
  • 18
    • 78650948034 scopus 로고    scopus 로고
    • Uniaxial strain in graphene and armchair graphene nanoribbons: An ab initio study
    • Rosenkranz N, Mohr M, Thomsen Ch: Uniaxial strain in graphene and armchair graphene nanoribbons: an ab initio study. Ann Phys (Berlin) 2011, 523:137-144.
    • (2011) Ann Phys (Berlin) , vol.523 , pp. 137-144
    • Rosenkranz, N.1    Mohr, M.2    Thomsen, C.3
  • 19
    • 84861340540 scopus 로고    scopus 로고
    • First-principle study of energy band structure of armchair graphene nanoribbons
    • Ma F, Guo Z, Xu K, Chu PK: First-principle study of energy band structure of armchair graphene nanoribbons. Solid State Commun 2012, 152:1089-1093.
    • (2012) Solid State Commun , vol.152 , pp. 1089-1093
    • Ma, F.1    Guo, Z.2    Xu, K.3    Chu, P.K.4
  • 20
    • 78751537276 scopus 로고    scopus 로고
    • Strain modulated band gap of edge passivated armchair graphene nanoribbons
    • Peng XH, Velasquez S: Strain modulated band gap of edge passivated armchair graphene nanoribbons. Appl Phys Lett 2011, 98:023112.
    • (2011) Appl Phys Lett , vol.98 , pp. 023112
    • Peng, X.H.1    Velasquez, S.2
  • 21
    • 67949100403 scopus 로고    scopus 로고
    • Uniaxial strain effects on the performance of a ballistic top gate graphene nanoribbon on insulator transistor
    • Alam K: Uniaxial strain effects on the performance of a ballistic top gate graphene nanoribbon on insulator transistor. IEEE Trans Nanotechnol 2009, 8:528-534.
    • (2009) IEEE Trans Nanotechnol , vol.8 , pp. 528-534
    • Alam, K.1
  • 22
    • 77955732512 scopus 로고    scopus 로고
    • Current-Voltage characteristics of armchair graphene nanoribbons under uniaxial strain
    • Topsakal M, Bagci VMK, Ciraci S: Current-Voltage characteristics of armchair graphene nanoribbons under uniaxial strain. Phys Rev B 2010, 81:205437.
    • (2010) Phys Rev B , vol.81 , pp. 205437
    • Topsakal, M.1    Bagci, V.M.K.2    Ciraci, S.3
  • 23
    • 84867576870 scopus 로고    scopus 로고
    • Moravvej-Farshi MK:Electronic properties of a dual gated GNR-FET under uniaxial tensile strain
    • Moslemi MR, Sheikhi MH, Saghafi K: Moravvej-Farshi MK:Electronic properties of a dual gated GNR-FET under uniaxial tensile strain. Microel Reliability 2012, 52:2579-2584.
    • (2012) Microel Reliability , vol.52 , pp. 2579-2584
    • Moslemi, M.R.1    Sheikhi, M.H.2    Saghafi, K.3
  • 24
    • 84873704989 scopus 로고    scopus 로고
    • I-V curves of graphene nanoribbons under uniaxial compressive and tensile strain
    • Wu G, Wang Z, Jing Y, Wang C: I-V curves of graphene nanoribbons under uniaxial compressive and tensile strain. Chem Phys Lett 2013, 559:82-87.
    • (2013) Chem Phys Lett , vol.559 , pp. 82-87
    • Wu, G.1    Wang, Z.2    Jing, Y.3    Wang, C.4
  • 25
    • 66249104716 scopus 로고    scopus 로고
    • Computational model of edge effects in graphene nanoribbon transistors
    • Zhao P, Choudhury M, Mohanram K, Guo J: Computational model of edge effects in graphene nanoribbon transistors. Nano Res 2008, 1:395-402.
    • (2008) Nano Res , vol.1 , pp. 395-402
    • Zhao, P.1    Choudhury, M.2    Mohanram, K.3    Guo, J.4
  • 26
    • 84884813791 scopus 로고    scopus 로고
    • Gate capacitance modeling and width-dependent performance of graphene nanoribbon transistors
    • Kliros GS: Gate capacitance modeling and width-dependent performance of graphene nanoribbon transistors. Microelectron Eng 2013, 112:220-226.
    • (2013) Microelectron Eng , vol.112 , pp. 220-226
    • Kliros, G.S.1
  • 27
    • 79959897428 scopus 로고    scopus 로고
    • Numerical study of quantum transport in the double gate graphene nanoribbon field effect transistors
    • Mohammadpour H, Asgari A: Numerical study of quantum transport in the double gate graphene nanoribbon field effect transistors. Physica E 2011, 43:1708-1711.
    • (2011) Physica E , vol.43 , pp. 1708-1711
    • Mohammadpour, H.1    Asgari, A.2
  • 28
    • 41749110900 scopus 로고    scopus 로고
    • Outperforming the conventional scaling rules in the quantum capacitance limit
    • Knoch J, Riess W, Appenzeller J: Outperforming the conventional scaling rules in the quantum capacitance limit. IEEE Elect Dev Lett 2008, 29:372-375.
    • (2008) IEEE Elect Dev Lett , vol.29 , pp. 372-375
    • Knoch, J.1    Riess, W.2    Appenzeller, J.3
  • 29
    • 41449108135 scopus 로고    scopus 로고
    • Tight-binding energy dispersions of armchair-edge graphene nanostrips
    • Gunlycke D, White CT: Tight-binding energy dispersions of armchair-edge graphene nanostrips. Phys Rev B 2008, 77:115116.
    • (2008) Phys Rev B , vol.77 , pp. 115116
    • Gunlycke, D.1    White, C.T.2
  • 32
    • 84874894202 scopus 로고    scopus 로고
    • Inverse relationship between carrier mobility and bandgap in graphene
    • Wang J, Zhao R, Yang M, Liu Z: Inverse relationship between carrier mobility and bandgap in graphene. J Chem Phys 2013, 138:084701.
    • (2013) J Chem Phys , vol.138 , pp. 084701
    • Wang, J.1    Zhao, R.2    Yang, M.3    Liu, Z.4
  • 34
    • 13644274218 scopus 로고    scopus 로고
    • Characteristics of a carbon nanotube field-effect transistor analyzed as a ballistic nanowire field-effect transistor
    • Natori K, Kimura Y, Shimizu T: Characteristics of a carbon nanotube field-effect transistor analyzed as a ballistic nanowire field-effect transistor. J Appl Phys 2005, 97:034306.
    • (2005) J Appl Phys , vol.97 , pp. 034306
    • Natori, K.1    Kimura, Y.2    Shimizu, T.3
  • 35
    • 34547588638 scopus 로고    scopus 로고
    • Ouyang Y:Gate electrostatics and quantum capacitance of GNRs
    • Guo J, Yoon Y: Ouyang Y:Gate electrostatics and quantum capacitance of GNRs. Nano Lett 2007, 7:1935-1940.
    • (2007) Nano Lett , vol.7 , pp. 1935-1940
    • Guo, J.1    Yoon, Y.2
  • 36
    • 56549117612 scopus 로고    scopus 로고
    • Compact modeling of ballistic nanowire MOSFETs
    • Natori K: Compact modeling of ballistic nanowire MOSFETs. IEEE Trans Elect Dev 2008, 55:2877-2885.
    • (2008) IEEE Trans Elect Dev , vol.55 , pp. 2877-2885
    • Natori, K.1
  • 37
    • 84866536114 scopus 로고    scopus 로고
    • Influence of density inhomogeneity on the quantum capacitance of graphene nanoribbon field effect transistors
    • Kliros GS: Influence of density inhomogeneity on the quantum capacitance of graphene nanoribbon field effect transistors. Superlattice Microst 2012, 52:1093-1102.
    • (2012) Superlattice Microst , vol.52 , pp. 1093-1102
    • Kliros, G.S.1
  • 38
    • 3142671577 scopus 로고    scopus 로고
    • AC performance of nanoelectronics: Towards a ballistic THz nanotube transistor
    • Burke P: AC performance of nanoelectronics: towards a ballistic THz nanotube transistor. Solid State Electron 2004, 48:1981-1986.
    • (2004) Solid State Electron , vol.48 , pp. 1981-1986
    • Burke, P.1
  • 39
    • 79957456506 scopus 로고    scopus 로고
    • Assessment of high-frequency performance limits of graphene field-effect transistors
    • Chauhan J, Guo J: Assessment of high-frequency performance limits of graphene field-effect transistors. Nano Res 2011, 4:571-579.
    • (2011) Nano Res , vol.4 , pp. 571-579
    • Chauhan, J.1    Guo, J.2
  • 41
    • 79960549818 scopus 로고    scopus 로고
    • Time flow in graphene and its implications on the cutoff frequency of ballistic graphene devices
    • Dragoman D, Dragoman M: Time flow in graphene and its implications on the cutoff frequency of ballistic graphene devices. J Appl Phys 2011, 110:014302.
    • (2011) J Appl Phys , vol.110 , pp. 014302
    • Dragoman, D.1    Dragoman, M.2
  • 42
    • 83755195999 scopus 로고    scopus 로고
    • Maximum asymmetry in strain induced mechanical instability of graphene: Compression versus tension
    • Zhang Y, Liu F: Maximum asymmetry in strain induced mechanical instability of graphene: compression versus tension. Appl Phys Lett 2011, 99:241908.
    • (2011) Appl Phys Lett , vol.99 , pp. 241908
    • Zhang, Y.1    Liu, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.