메뉴 건너뛰기




Volumn 52, Issue 6, 2012, Pages 1093-1102

Influence of density inhomogeneity on the quantum capacitance of graphene nanoribbon field effect transistors

Author keywords

Electron hole puddles; Gate capacitance; Graphene FETs; Graphene nanoribbons; Quantum capacitance

Indexed keywords

CAPACITANCE VOLTAGE CHARACTERISTIC; ELECTRON HOLE; GATE CAPACITANCE; GRAPHENE NANO-RIBBON; GRAPHENE NANORIBBONS; INFLUENCE OF DENSITY; INHOMOGENEITIES; INSULATOR THICKNESS; MULTI-PEAKS; NUMERICAL RESULTS; POTENTIAL FLUCTUATIONS; QUANTUM CAPACITANCE; SEMI-ANALYTICAL MODEL;

EID: 84866536114     PISSN: 07496036     EISSN: 10963677     Source Type: Journal    
DOI: 10.1016/j.spmi.2012.07.001     Document Type: Article
Times cited : (16)

References (48)
  • 3
    • 75849148618 scopus 로고    scopus 로고
    • Current status of graphene transistors
    • M.C. Lemme Current status of graphene transistors Solid State Phenom. 156-158 2010 499 509
    • (2010) Solid State Phenom. , vol.156-158 , pp. 499-509
    • Lemme, M.C.1
  • 4
    • 77955231284 scopus 로고    scopus 로고
    • Graphene transistors
    • F. Schwierz Graphene transistors Nat. Nanotechnol. 5 2010 487 496
    • (2010) Nat. Nanotechnol. , vol.5 , pp. 487-496
    • Schwierz, F.1
  • 7
    • 33751348065 scopus 로고    scopus 로고
    • Energy gaps in graphene nanoribbons
    • Y.W. Son, M. Cohen, and S. Louie Energy gaps in graphene nanoribbons Phys. Rev. Lett. 97 2006 216803
    • (2006) Phys. Rev. Lett. , vol.97 , pp. 216803
    • Son, Y.W.1    Cohen, M.2    Louie, S.3
  • 8
    • 44149119344 scopus 로고    scopus 로고
    • Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors
    • X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors Phys. Rev. Lett 100 2008 206803
    • (2008) Phys. Rev. Lett , vol.100 , pp. 206803
    • Wang, X.1    Ouyang, Y.2    Li, X.3    Wang, H.4    Guo, J.5    Dai, H.6
  • 9
    • 41449108135 scopus 로고    scopus 로고
    • Tight-binding energy dispersions of armchair-edge graphene nanostrips
    • D. Gunlycke, and C.T. White Tight-binding energy dispersions of armchair-edge graphene nanostrips Phys. Rev. B 77 2008 115116
    • (2008) Phys. Rev. B , vol.77 , pp. 115116
    • Gunlycke, D.1    White, C.T.2
  • 10
    • 78650907446 scopus 로고    scopus 로고
    • Computational study of edge configuration and quantum confinement effects on graphene nanoribbon transport
    • R. Sako, H. Hosokawa, and H. Tsuchiya Computational study of edge configuration and quantum confinement effects on graphene nanoribbon transport IEEE Trans. Electron Devices 32 2011 6 8
    • (2011) IEEE Trans. Electron Devices , vol.32 , pp. 6-8
    • Sako, R.1    Hosokawa, H.2    Tsuchiya, H.3
  • 11
    • 34147162745 scopus 로고    scopus 로고
    • Performance projections for ballistic graphene nanoribbon field-effect transistors
    • DOI 10.1109/TED.2007.891872
    • G. Liang, N. Neophytou, D. Nikonov, and M. Lundstrom Performance projections for ballistic graphene nanoribbon field-effect transistors IEEE Trans. Electron Devices 54 2007 677 682 (Pubitemid 46563359)
    • (2007) IEEE Transactions on Electron Devices , vol.54 , Issue.4 , pp. 677-682
    • Liang, G.1    Neophytou, N.2    Nikonov, D.E.3    Lundstrom, M.S.4
  • 12
    • 38849172702 scopus 로고    scopus 로고
    • Scaling behaviors of graphene nanoribbon FETs: A three-dimensional quantum simulation study
    • Y. Ouyang, Y. Yoon, and J. Guo Scaling behaviors of graphene nanoribbon FETs: a three-dimensional quantum simulation study IEEE Trans. Electron Devices 54 2007 2223 2230
    • (2007) IEEE Trans. Electron Devices , vol.54 , pp. 2223-2230
    • Ouyang, Y.1    Yoon, Y.2    Guo, J.3
  • 13
    • 84861741834 scopus 로고    scopus 로고
    • A computational study of ballistic graphene nanoribbon field effect transistors
    • M. Noei, M. Moradinasab, and M. Fathipour A computational study of ballistic graphene nanoribbon field effect transistors Physica E 44 2012 1780 1786
    • (2012) Physica e , vol.44 , pp. 1780-1786
    • Noei, M.1    Moradinasab, M.2    Fathipour, M.3
  • 14
    • 77954219131 scopus 로고    scopus 로고
    • Simple and efficient modeling of the E-k relationship and low-field mobility in graphene nano-ribbons
    • M. Bresciani, P. Palestri, and D. Esseni Simple and efficient modeling of the E-k relationship and low-field mobility in graphene nano-ribbons Solid State Electron. 54 2010 1015 1021
    • (2010) Solid State Electron. , vol.54 , pp. 1015-1021
    • Bresciani, M.1    Palestri, P.2    Esseni, D.3
  • 15
    • 84858151095 scopus 로고    scopus 로고
    • Electronic transport of graphene nanoribbons within recursive Green's function
    • A.A. Shokri, and A.H. Mosavat Electronic transport of graphene nanoribbons within recursive Green's function Superlattices Microstruct. 51 2012 523 532
    • (2012) Superlattices Microstruct. , vol.51 , pp. 523-532
    • Shokri, A.A.1    Mosavat, A.H.2
  • 16
    • 67650076975 scopus 로고    scopus 로고
    • Anderson disorder in graphene nanoribbons: A local distribution approach
    • G. Schubert, J. Schleede, and H. Fehske Anderson disorder in graphene nanoribbons: a local distribution approach Phys. Rev. B 79 2009 235116
    • (2009) Phys. Rev. B , vol.79 , pp. 235116
    • Schubert, G.1    Schleede, J.2    Fehske, H.3
  • 17
    • 84859915603 scopus 로고    scopus 로고
    • Numerical study of localization length in disordered graphene nanoribbons
    • A.A. Shokri, and F. Khoeini Numerical study of localization length in disordered graphene nanoribbons Superlattices Microstruct. 51 2012 785 791
    • (2012) Superlattices Microstruct. , vol.51 , pp. 785-791
    • Shokri, A.A.1    Khoeini, F.2
  • 18
    • 77955652690 scopus 로고    scopus 로고
    • A versatile compact model for ballistic 1D transistor: GNRFET and CNTFET comparison
    • S. Fregonese, C. Maneux, and Th. Zimmer A versatile compact model for ballistic 1D transistor: GNRFET and CNTFET comparison Solid State Electron. 54 2010 1332 1338
    • (2010) Solid State Electron. , vol.54 , pp. 1332-1338
    • Fregonese, S.1    Maneux, C.2    Zimmer, Th.3
  • 19
    • 36549091403 scopus 로고    scopus 로고
    • Quantum capacitance devices
    • S. Luryi Quantum capacitance devices Appl. Phys. Lett. 52 1998 501 503
    • (1998) Appl. Phys. Lett. , vol.52 , pp. 501-503
    • Luryi, S.1
  • 20
    • 9744264882 scopus 로고    scopus 로고
    • Quantum capacitance in nanoscale device modeling
    • D.L. John, L.C. Castro, and D.L. Pulfrey Quantum capacitance in nanoscale device modeling J. Appl. Phys. 96 2004 5180
    • (2004) J. Appl. Phys. , vol.96 , pp. 5180
    • John, D.L.1    Castro, L.C.2    Pulfrey, D.L.3
  • 21
    • 34249310203 scopus 로고    scopus 로고
    • Magnetocapacitance of a MODFET under two-dimensional periodic potential modulation
    • DOI 10.1016/j.mejo.2007.02.004, PII S0026269207000419
    • G.S. Kliros, and P.C. Divari Magnetocapacitance of a MODFET under two-dimensional periodic potential modulation Microelectron. J. 38 2007 625 631 (Pubitemid 46818331)
    • (2007) Microelectronics Journal , vol.38 , Issue.4-5 , pp. 625-631
    • Kliros, G.S.1    Divari, P.C.2
  • 22
    • 36349017776 scopus 로고    scopus 로고
    • Beating of the oscillations in the magnetocapacitance of a MODFET with Rasba spin-orbit interaction
    • DOI 10.1016/j.mejo.2007.09.005, PII S0026269207002686
    • G.S. Kliros, and P.C. Divari Beating of the oscillations in the magnetocapacitance of a MODFET with Rasba spin-orbit interaction Microelectron. J. 38 2007 1161 1168 (Pubitemid 350160740)
    • (2007) Microelectronics Journal , vol.38 , Issue.12 , pp. 1161-1168
    • Kliros, G.S.1    Divari, P.C.2
  • 23
    • 70249098016 scopus 로고    scopus 로고
    • Rashba spin-orbit effect on the magnetocapacitance of a 2DEG in a diluted magnetic semiconductor
    • G.S. Kliros Rashba spin-orbit effect on the magnetocapacitance of a 2DEG in a diluted magnetic semiconductor Physica E 41 2009 1789 1794
    • (2009) Physica e , vol.41 , pp. 1789-1794
    • Kliros, G.S.1
  • 24
    • 33847171401 scopus 로고    scopus 로고
    • Variable capacitance mechanisms in carbon nanotubes
    • D. Dragoman, and M. Dragoman Variable capacitance mechanisms in carbon nanotubes J. Appl. Phys. 101 2007 036111
    • (2007) J. Appl. Phys. , vol.101 , pp. 036111
    • Dragoman, D.1    Dragoman, M.2
  • 25
    • 80155140149 scopus 로고    scopus 로고
    • High quality factor graphene varactors for wireless sensing applications
    • S.J. Koester High quality factor graphene varactors for wireless sensing applications Appl. Phys. Lett. 99 2011 163105
    • (2011) Appl. Phys. Lett. , vol.99 , pp. 163105
    • Koester, S.J.1
  • 26
    • 68949175478 scopus 로고    scopus 로고
    • Measurement of the quantum capacitance of graphene
    • J. Xia, F. Chen, J.H. Li, and N.J. Tao Measurement of the quantum capacitance of graphene Nat. Nanotechnol. 4 2009 505 509
    • (2009) Nat. Nanotechnol. , vol.4 , pp. 505-509
    • Xia, J.1    Chen, F.2    Li, J.H.3    Tao, N.J.4
  • 27
    • 79952961488 scopus 로고    scopus 로고
    • Quantum capacitance limited vertical scaling of graphene field-effect transistor
    • H. Xu, Z. Zhang, Z. Wang, S. Wang, X. Liang, and L.M. Peng Quantum capacitance limited vertical scaling of graphene field-effect transistor ACS Nano 5 2011 2340 2347
    • (2011) ACS Nano , vol.5 , pp. 2340-2347
    • Xu, H.1    Zhang, Z.2    Wang, Z.3    Wang, S.4    Liang, X.5    Peng, L.M.6
  • 30
    • 84867672672 scopus 로고    scopus 로고
    • A phenomenological model for the quantum capacitance of monolayer and bilayer graphene devices
    • G.S. Kliros A phenomenological model for the quantum capacitance of monolayer and bilayer graphene devices Rom. J. Inf. Sci. Technol. 13 3 2010 332 341
    • (2010) Rom. J. Inf. Sci. Technol. , vol.13 , Issue.3 , pp. 332-341
    • Kliros, G.S.1
  • 31
    • 79953765858 scopus 로고    scopus 로고
    • Measurements and microscopic model of quantum capacitance in graphene
    • H. Xu, Z. Zhang, and L.-M. Peng Measurements and microscopic model of quantum capacitance in graphene Appl. Phys. Lett. 98 2011 133122
    • (2011) Appl. Phys. Lett. , vol.98 , pp. 133122
    • Xu, H.1    Zhang, Z.2    Peng, L.-M.3
  • 32
    • 41749110900 scopus 로고    scopus 로고
    • Outperforming the conventional scaling rules in the quantum capacitance limit
    • J. Knoch, W. Riess, and J. Appenzeller Outperforming the conventional scaling rules in the quantum capacitance limit IEEE Electron Device Lett. 29 2008 372 375
    • (2008) IEEE Electron Device Lett. , vol.29 , pp. 372-375
    • Knoch, J.1    Riess, W.2    Appenzeller, J.3
  • 34
    • 34548446361 scopus 로고    scopus 로고
    • Carrier statistics and quantum capacitance in graphene sheets and ribbons
    • T. Fang, A. Konar, H. Xing, and D. Jena Carrier statistics and quantum capacitance in graphene sheets and ribbons Appl. Phys. Lett. 91 2007 092109
    • (2007) Appl. Phys. Lett. , vol.91 , pp. 092109
    • Fang, T.1    Konar, A.2    Xing, H.3    Jena, D.4
  • 36
    • 34547588638 scopus 로고    scopus 로고
    • Gate electrostatics and quantum capacitance of graphene nanoribbons
    • DOI 10.1021/nl0706190
    • J. Guo, Y. Yoon, and Y. Ouyang Gate electrostatics and quantum capacitance of GNRs Nano Lett. 7 2007 1935 1940 (Pubitemid 47197570)
    • (2007) Nano Letters , vol.7 , Issue.7 , pp. 1935-1940
    • Guo, J.1    Yoon, Y.2    Ouyang, Y.3
  • 37
    • 48249126271 scopus 로고    scopus 로고
    • Density inhomogeneity driven percolation metal-insulator-transition and dimensional crossover in GNRs
    • S. Adam, S. Cho, M.S. Fuhrer, and S. Das Sarma Density inhomogeneity driven percolation metal-insulator-transition and dimensional crossover in GNRs Phys. Rev. Lett. 101 2008 046404
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 046404
    • Adam, S.1    Cho, S.2    Fuhrer, M.S.3    Das Sarma, S.4
  • 40
    • 84856829077 scopus 로고    scopus 로고
    • Metal-to-insulator transition and electron-hole puddle formation in disordered graphene nanoribbons
    • G. Schubert, and H. Fehske Metal-to-insulator transition and electron-hole puddle formation in disordered graphene nanoribbons Phys. Rev. Lett. 108 2012 066402
    • (2012) Phys. Rev. Lett. , vol.108 , pp. 066402
    • Schubert, G.1    Fehske, H.2
  • 42
    • 67649371233 scopus 로고    scopus 로고
    • Finite size effects on the gate leakage current in graphene nanoribbon field-effect transistors
    • L.F. Mao Finite size effects on the gate leakage current in graphene nanoribbon field-effect transistors Nanotechnology 20 2009 275203
    • (2009) Nanotechnology , vol.20 , pp. 275203
    • Mao, L.F.1
  • 43
    • 79953796251 scopus 로고    scopus 로고
    • A theoretical analysis of field emission from graphene nanoribbons
    • L.F. Mao A theoretical analysis of field emission from graphene nanoribbons Carbon 49 2011 2709 2714
    • (2011) Carbon , vol.49 , pp. 2709-2714
    • Mao, L.F.1
  • 44
    • 77957607654 scopus 로고    scopus 로고
    • Insulating behavior in metallic bilayer graphene: Interplay between density inhomogeneity and temperature
    • E.H. Hwang, and S. Das Sarma Insulating behavior in metallic bilayer graphene: interplay between density inhomogeneity and temperature Phys. Rev. B 82 2010 081409
    • (2010) Phys. Rev. B , vol.82 , pp. 081409
    • Hwang, E.H.1    Das Sarma, S.2
  • 45
    • 79951695472 scopus 로고    scopus 로고
    • Modeling of carrier density and quantum capacitance in graphene nanoribbon FETs
    • Cairo, Agypt
    • G.S. Kliros, Modeling of carrier density and quantum capacitance in graphene nanoribbon FETs, in: Proc. of 21th IEEE Int. Conf. on Microelectronics (ICM), Cairo, Agypt, 2010, pp. 236-239.
    • (2010) Proc. of 21th IEEE Int. Conf. on Microelectronics (ICM) , pp. 236-239
    • Kliros, G.S.1
  • 47
    • 80053586973 scopus 로고    scopus 로고
    • Disorder-induced temperature-dependent transport in graphene: Puddles, impurities, activation and diffusion
    • Q. Li, E.H. Hwang, and S. Das Sarma Disorder-induced temperature- dependent transport in graphene: puddles, impurities, activation and diffusion Phys. Rev. B 84 2011 115442
    • (2011) Phys. Rev. B , vol.84 , pp. 115442
    • Li, Q.1    Hwang, E.H.2    Das Sarma, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.