메뉴 건너뛰기




Volumn 30, Issue 3, 2014, Pages 85-94

The role of microhomology in genomic structural variation

Author keywords

Double strand breaks; Genomic disorders; Microhomology; Microhomology mediated break induced replication; Microhomology mediated end joining; Structural variation

Indexed keywords

CANCER CELL; DNA END JOINING REPAIR; DNA SEQUENCE; GENE REARRANGEMENT; GENE REPLICATION; GENETIC VARIABILITY; HUMAN; MICROHOMOLOGY; MOLECULAR PATHOLOGY; NONHUMAN; PRIORITY JOURNAL; REVIEW; SEQUENCE HOMOLOGY; ANIMAL; GENETICS; GERM CELL; METABOLISM; MOLECULAR GENETICS; MUTATION; NUCLEOTIDE SEQUENCE;

EID: 84896715928     PISSN: 01689525     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tig.2014.01.001     Document Type: Review
Times cited : (142)

References (88)
  • 1
    • 84975804424 scopus 로고    scopus 로고
    • Mapping copy number variation by population-scale genome sequencing
    • Mills R.E., et al. Mapping copy number variation by population-scale genome sequencing. Nature 2011, 470:59-65.
    • (2011) Nature , vol.470 , pp. 59-65
    • Mills, R.E.1
  • 2
    • 84975742565 scopus 로고    scopus 로고
    • A map of human genome variation from population-scale sequencing
    • Abecasis G.R., et al. A map of human genome variation from population-scale sequencing. Nature 2010, 467:1061-1073.
    • (2010) Nature , vol.467 , pp. 1061-1073
    • Abecasis, G.R.1
  • 3
    • 84655163917 scopus 로고    scopus 로고
    • Characterizing complex structural variation in germline and somatic genomes
    • Quinlan A.R., Hall I.M. Characterizing complex structural variation in germline and somatic genomes. Trends Genet. 2012, 28:43-53.
    • (2012) Trends Genet. , vol.28 , pp. 43-53
    • Quinlan, A.R.1    Hall, I.M.2
  • 4
    • 31144469134 scopus 로고    scopus 로고
    • Structural variation in the human genome
    • Feuk L., et al. Structural variation in the human genome. Nat. Rev. Genet. 2006, 7:85-97.
    • (2006) Nat. Rev. Genet. , vol.7 , pp. 85-97
    • Feuk, L.1
  • 5
    • 84861532037 scopus 로고    scopus 로고
    • Exploring the role of copy number variants in human adaptation
    • Iskow R.C., et al. Exploring the role of copy number variants in human adaptation. Trends Genet. 2012, 28:245-257.
    • (2012) Trends Genet. , vol.28 , pp. 245-257
    • Iskow, R.C.1
  • 6
    • 84876374695 scopus 로고    scopus 로고
    • Molecular analysis of a deletion hotspot in the NRXN1 region reveals the involvement of short inverted repeats in deletion CNVs
    • Chen X., et al. Molecular analysis of a deletion hotspot in the NRXN1 region reveals the involvement of short inverted repeats in deletion CNVs. Am. J. Hum. Genet. 2013, 92:375-386.
    • (2013) Am. J. Hum. Genet. , vol.92 , pp. 375-386
    • Chen, X.1
  • 7
    • 84874069538 scopus 로고    scopus 로고
    • Identifying recent adaptations in large-scale genomic data
    • Grossman S.R., et al. Identifying recent adaptations in large-scale genomic data. Cell 2013, 152:703-713.
    • (2013) Cell , vol.152 , pp. 703-713
    • Grossman, S.R.1
  • 8
    • 34748895999 scopus 로고    scopus 로고
    • Diet and the evolution of human amylase gene copy number variation
    • Perry G.H., et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 2007, 39:1256-1260.
    • (2007) Nat. Genet. , vol.39 , pp. 1256-1260
    • Perry, G.H.1
  • 9
    • 64749094310 scopus 로고    scopus 로고
    • The cancer genome
    • Stratton M.R., et al. The cancer genome. Nature 2009, 458:719-724.
    • (2009) Nature , vol.458 , pp. 719-724
    • Stratton, M.R.1
  • 10
    • 42649123314 scopus 로고    scopus 로고
    • Mechanism and regulation of class switch recombination
    • Stavnezer J., et al. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 2008, 26:261-292.
    • (2008) Annu. Rev. Immunol. , vol.26 , pp. 261-292
    • Stavnezer, J.1
  • 11
    • 77951700086 scopus 로고    scopus 로고
    • Mutation spectrum revealed by breakpoint sequencing of human germline CNVs
    • Conrad D.F., et al. Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. Nat. Genet. 2010, 42:385-391.
    • (2010) Nat. Genet. , vol.42 , pp. 385-391
    • Conrad, D.F.1
  • 12
    • 84873390533 scopus 로고    scopus 로고
    • Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability
    • Drier Y., et al. Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome Res. 2013, 23:228-235.
    • (2013) Genome Res. , vol.23 , pp. 228-235
    • Drier, Y.1
  • 13
    • 84877722178 scopus 로고    scopus 로고
    • Diverse mechanisms of somatic structural variations in human cancer genomes
    • Yang L., et al. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 2013, 153:919-929.
    • (2013) Cell , vol.153 , pp. 919-929
    • Yang, L.1
  • 14
    • 80053385552 scopus 로고    scopus 로고
    • Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion
    • Bass A.J., et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat. Genet. 2011, 43:964-968.
    • (2011) Nat. Genet. , vol.43 , pp. 964-968
    • Bass, A.J.1
  • 15
    • 72949119310 scopus 로고    scopus 로고
    • Complex landscapes of somatic rearrangement in human breast cancer genomes
    • Stephens P.J., et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 2009, 462:1005-1010.
    • (2009) Nature , vol.462 , pp. 1005-1010
    • Stephens, P.J.1
  • 16
    • 79953328752 scopus 로고    scopus 로고
    • RAF gene fusion breakpoints in pediatric brain tumors are characterized by significant enrichment of sequence microhomology
    • Lawson A.R., et al. RAF gene fusion breakpoints in pediatric brain tumors are characterized by significant enrichment of sequence microhomology. Genome Res. 2011, 21:505-514.
    • (2011) Genome Res. , vol.21 , pp. 505-514
    • Lawson, A.R.1
  • 17
    • 84855862414 scopus 로고    scopus 로고
    • A novel hybrid CFH/CFHR3 gene generated by a microhomology-mediated deletion in familial atypical hemolytic uremic syndrome
    • Francis N.J., et al. A novel hybrid CFH/CFHR3 gene generated by a microhomology-mediated deletion in familial atypical hemolytic uremic syndrome. Blood 2012, 119:591-601.
    • (2012) Blood , vol.119 , pp. 591-601
    • Francis, N.J.1
  • 18
    • 84877743354 scopus 로고    scopus 로고
    • Nucleotide resolution analysis of TMPRSS2 and ERG rearrangements in prostate cancer
    • Weier C., et al. Nucleotide resolution analysis of TMPRSS2 and ERG rearrangements in prostate cancer. J. Pathol. 2013, 230:174-183.
    • (2013) J. Pathol. , vol.230 , pp. 174-183
    • Weier, C.1
  • 19
    • 77953229115 scopus 로고    scopus 로고
    • The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
    • Lieber M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 2010, 79:181-211.
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 181-211
    • Lieber, M.R.1
  • 20
    • 84866906311 scopus 로고    scopus 로고
    • De novo CNV formation in mouse embryonic stem cells occurs in the absence of Xrcc4-dependent nonhomologous end joining
    • Arlt M.F., et al. De novo CNV formation in mouse embryonic stem cells occurs in the absence of Xrcc4-dependent nonhomologous end joining. PLoS Genet. 2012, 8:e1002981.
    • (2012) PLoS Genet. , vol.8
    • Arlt, M.F.1
  • 21
    • 46249131123 scopus 로고    scopus 로고
    • Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair
    • Bennardo N., et al. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet. 2008, 4:e1000110.
    • (2008) PLoS Genet. , vol.4
    • Bennardo, N.1
  • 22
    • 54849404458 scopus 로고    scopus 로고
    • MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings
    • McVey M., Lee S.E. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. 2008, 24:529-538.
    • (2008) Trends Genet. , vol.24 , pp. 529-538
    • McVey, M.1    Lee, S.E.2
  • 23
    • 59249105978 scopus 로고    scopus 로고
    • A microhomology-mediated break-induced replication model for the origin of human copy number variation
    • Hastings P.J., et al. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 2009, 5:e1000327.
    • (2009) PLoS Genet. , vol.5
    • Hastings, P.J.1
  • 24
    • 37349109667 scopus 로고    scopus 로고
    • A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders
    • Lee J.A., et al. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 2007, 131:1235-1247.
    • (2007) Cell , vol.131 , pp. 1235-1247
    • Lee, J.A.1
  • 25
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington L.S., Gautier J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 2011, 45:247-271.
    • (2011) Annu. Rev. Genet. , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 26
    • 78649445307 scopus 로고    scopus 로고
    • Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks
    • Williams G.J., et al. Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair (Amst) 2010, 9:1299-1306.
    • (2010) DNA Repair (Amst) , vol.9 , pp. 1299-1306
    • Williams, G.J.1
  • 27
    • 78650988959 scopus 로고    scopus 로고
    • CtIP promotes microhomology-mediated alternative end joining during class-switch recombination
    • Lee-Theilen M., et al. CtIP promotes microhomology-mediated alternative end joining during class-switch recombination. Nat. Struct. Mol. Biol. 2011, 18:75-79.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 75-79
    • Lee-Theilen, M.1
  • 28
    • 36549060102 scopus 로고    scopus 로고
    • Human CtIP promotes DNA end resection
    • Sartori A.A., et al. Human CtIP promotes DNA end resection. Nature 2007, 450:509-514.
    • (2007) Nature , vol.450 , pp. 509-514
    • Sartori, A.A.1
  • 29
    • 49449084673 scopus 로고    scopus 로고
    • ERCC1-XPF endonuclease facilitates DNA double-strand break repair
    • Ahmad A., et al. ERCC1-XPF endonuclease facilitates DNA double-strand break repair. Mol. Cell. Biol. 2008, 28:5082-5092.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 5082-5092
    • Ahmad, A.1
  • 30
    • 84863202793 scopus 로고    scopus 로고
    • Microhomology-mediated DNA strand annealing and elongation by human DNA polymerases lambda and beta on normal and repetitive DNA sequences
    • Crespan E., et al. Microhomology-mediated DNA strand annealing and elongation by human DNA polymerases lambda and beta on normal and repetitive DNA sequences. Nucleic Acids Res. 2012, 40:5577-5590.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 5577-5590
    • Crespan, E.1
  • 31
    • 80053212145 scopus 로고    scopus 로고
    • Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway
    • Della-Maria J., et al. Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway. J. Biol. Chem. 2011, 286:33845-33853.
    • (2011) J. Biol. Chem. , vol.286 , pp. 33845-33853
    • Della-Maria, J.1
  • 32
    • 45549094090 scopus 로고    scopus 로고
    • Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks
    • Liang L., et al. Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks. Nucleic Acids Res. 2008, 36:3297-3310.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 3297-3310
    • Liang, L.1
  • 33
    • 84856747932 scopus 로고    scopus 로고
    • Mre11 regulates CtIP-dependent double-strand break repair by interaction with CDK2
    • Buis J., et al. Mre11 regulates CtIP-dependent double-strand break repair by interaction with CDK2. Nat. Struct. Mol. Biol. 2012, 19:246-252.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 246-252
    • Buis, J.1
  • 34
    • 78651406669 scopus 로고    scopus 로고
    • H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes
    • Helmink B.A., et al. H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes. Nature 2011, 469:245-249.
    • (2011) Nature , vol.469 , pp. 245-249
    • Helmink, B.A.1
  • 35
    • 29244434544 scopus 로고    scopus 로고
    • MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks
    • Stucki M., et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 2005, 123:1213-1226.
    • (2005) Cell , vol.123 , pp. 1213-1226
    • Stucki, M.1
  • 36
    • 84877321963 scopus 로고    scopus 로고
    • Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells
    • Truong L.N., et al. Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:7720-7725.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 7720-7725
    • Truong, L.N.1
  • 37
    • 78149425175 scopus 로고    scopus 로고
    • Regulation of homologous recombination in eukaryotes
    • Heyer W.D., et al. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 2010, 44:113-139.
    • (2010) Annu. Rev. Genet. , vol.44 , pp. 113-139
    • Heyer, W.D.1
  • 38
    • 67349246802 scopus 로고    scopus 로고
    • CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle
    • Yun M.H., Hiom K. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 2009, 459:460-463.
    • (2009) Nature , vol.459 , pp. 460-463
    • Yun, M.H.1    Hiom, K.2
  • 39
    • 0030760609 scopus 로고    scopus 로고
    • 'Break copy' duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae
    • Morrow D.M., et al. 'Break copy' duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 1997, 147:371-382.
    • (1997) Genetics , vol.147 , pp. 371-382
    • Morrow, D.M.1
  • 41
    • 34547927220 scopus 로고    scopus 로고
    • Break-induced replication and telomerase-independent telomere maintenance require Pol32
    • Lydeard J.R., et al. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 2007, 448:820-823.
    • (2007) Nature , vol.448 , pp. 820-823
    • Lydeard, J.R.1
  • 42
    • 67651098662 scopus 로고    scopus 로고
    • Mechanisms of change in gene copy number
    • Hastings P.J., et al. Mechanisms of change in gene copy number. Nat. Rev. Genet. 2009, 10:551-564.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 551-564
    • Hastings, P.J.1
  • 43
    • 50649100744 scopus 로고    scopus 로고
    • Mechanism of eukaryotic homologous recombination
    • San Filippo J., et al. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 2008, 77:229-257.
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 229-257
    • San Filippo, J.1
  • 44
    • 34047112221 scopus 로고    scopus 로고
    • Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia
    • Bindra R.S., Glazer P.M. Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia. Oncogene 2007, 26:2048-2057.
    • (2007) Oncogene , vol.26 , pp. 2048-2057
    • Bindra, R.S.1    Glazer, P.M.2
  • 45
    • 47249114406 scopus 로고    scopus 로고
    • Rad51 protein controls Rad52-mediated DNA annealing
    • Wu Y., et al. Rad51 protein controls Rad52-mediated DNA annealing. J. Biol. Chem. 2008, 283:14883-14892.
    • (2008) J. Biol. Chem. , vol.283 , pp. 14883-14892
    • Wu, Y.1
  • 46
    • 84867172514 scopus 로고    scopus 로고
    • Phenotypic heterogeneity of genomic disorders and rare copy-number variants
    • Girirajan S., et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N. Engl. J. Med. 2012, 367:1321-1331.
    • (2012) N. Engl. J. Med. , vol.367 , pp. 1321-1331
    • Girirajan, S.1
  • 47
    • 62549134411 scopus 로고    scopus 로고
    • Mechanisms for human genomic rearrangements
    • Gu W., et al. Mechanisms for human genomic rearrangements. PathoGenetics 2008, 1:4.
    • (2008) PathoGenetics , vol.1 , pp. 4
    • Gu, W.1
  • 48
    • 79251493015 scopus 로고    scopus 로고
    • A human genome structural variation sequencing resource reveals insights into mutational mechanisms
    • Kidd J.M., et al. A human genome structural variation sequencing resource reveals insights into mutational mechanisms. Cell 2010, 143:837-847.
    • (2010) Cell , vol.143 , pp. 837-847
    • Kidd, J.M.1
  • 49
    • 19044366773 scopus 로고    scopus 로고
    • Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females
    • Inoue K., et al. Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females. Am. J. Hum. Genet. 2002, 71:838-853.
    • (2002) Am. J. Hum. Genet. , vol.71 , pp. 838-853
    • Inoue, K.1
  • 50
    • 11244287233 scopus 로고    scopus 로고
    • Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms
    • Shaw C.J., Lupski J.R. Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms. Hum. Genet. 2005, 116:1-7.
    • (2005) Hum. Genet. , vol.116 , pp. 1-7
    • Shaw, C.J.1    Lupski, J.R.2
  • 51
    • 2942750226 scopus 로고    scopus 로고
    • Evidence for non-homologous end joining and non-allelic homologous recombination in atypical NF1 microdeletions
    • Venturin M., et al. Evidence for non-homologous end joining and non-allelic homologous recombination in atypical NF1 microdeletions. Hum. Genet. 2004, 115:69-80.
    • (2004) Hum. Genet. , vol.115 , pp. 69-80
    • Venturin, M.1
  • 52
    • 61549098717 scopus 로고    scopus 로고
    • Replication stress induces genome-wide copy number changes in human cells that resemble polymorphic and pathogenic variants
    • Arlt M.F., et al. Replication stress induces genome-wide copy number changes in human cells that resemble polymorphic and pathogenic variants. Am. J. Hum. Genet. 2009, 84:339-350.
    • (2009) Am. J. Hum. Genet. , vol.84 , pp. 339-350
    • Arlt, M.F.1
  • 53
    • 70350776635 scopus 로고    scopus 로고
    • Rare pathogenic microdeletions and tandem duplications are microhomology-mediated and stimulated by local genomic architecture
    • Vissers L.E., et al. Rare pathogenic microdeletions and tandem duplications are microhomology-mediated and stimulated by local genomic architecture. Hum. Mol. Genet. 2009, 18:3579-3593.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 3579-3593
    • Vissers, L.E.1
  • 54
    • 84862491928 scopus 로고    scopus 로고
    • Replication stress and mechanisms of CNV formation
    • Arlt M.F., et al. Replication stress and mechanisms of CNV formation. Curr. Opin. Genet. Dev. 2012, 22:204-210.
    • (2012) Curr. Opin. Genet. Dev. , vol.22 , pp. 204-210
    • Arlt, M.F.1
  • 55
    • 84875980851 scopus 로고    scopus 로고
    • Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain
    • Verdin H., et al. Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain. PLoS Genet. 2013, 9:e1003358.
    • (2013) PLoS Genet. , vol.9
    • Verdin, H.1
  • 56
    • 84862777955 scopus 로고    scopus 로고
    • Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration
    • 390-397, S391
    • Chiang C., et al. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat. Genet. 2012, 44. 390-397, S391.
    • (2012) Nat. Genet. , vol.44
    • Chiang, C.1
  • 57
    • 78650010630 scopus 로고    scopus 로고
    • Characterization of duplication breakpoints in the factor VIII gene
    • Zimmermann M.A., et al. Characterization of duplication breakpoints in the factor VIII gene. J. Thromb. Haemost. 2010, 8:2696-2704.
    • (2010) J. Thromb. Haemost. , vol.8 , pp. 2696-2704
    • Zimmermann, M.A.1
  • 58
    • 84857885510 scopus 로고    scopus 로고
    • NIPBL rearrangements in Cornelia de Lange syndrome: evidence for replicative mechanism and genotype-phenotype correlation
    • Pehlivan D., et al. NIPBL rearrangements in Cornelia de Lange syndrome: evidence for replicative mechanism and genotype-phenotype correlation. Genet. Med. 2012, 14:313-322.
    • (2012) Genet. Med. , vol.14 , pp. 313-322
    • Pehlivan, D.1
  • 59
    • 80055003130 scopus 로고    scopus 로고
    • Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome
    • Carvalho C.M., et al. Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat. Genet. 2011, 43:1074-1081.
    • (2011) Nat. Genet. , vol.43 , pp. 1074-1081
    • Carvalho, C.M.1
  • 60
    • 78650959663 scopus 로고    scopus 로고
    • Massive genomic rearrangement acquired in a single catastrophic event during cancer development
    • Stephens P.J., et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011, 144:27-40.
    • (2011) Cell , vol.144 , pp. 27-40
    • Stephens, P.J.1
  • 61
    • 79955416773 scopus 로고    scopus 로고
    • Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline
    • Kloosterman W.P., et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum. Mol. Genet. 2011, 20:1916-1924.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 1916-1924
    • Kloosterman, W.P.1
  • 62
    • 80052916562 scopus 로고    scopus 로고
    • Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements
    • Liu P., et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 2011, 146:889-903.
    • (2011) Cell , vol.146 , pp. 889-903
    • Liu, P.1
  • 63
    • 34547114770 scopus 로고    scopus 로고
    • Endonuclease-independent insertion provides an alternative pathway for L1 retrotransposition in the human genome
    • Sen S.K., et al. Endonuclease-independent insertion provides an alternative pathway for L1 retrotransposition in the human genome. Nucleic Acids Res. 2007, 35:3741-3751.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 3741-3751
    • Sen, S.K.1
  • 64
    • 22344444224 scopus 로고    scopus 로고
    • Analysis of 5' junctions of human LINE-1 and Alu retrotransposons suggests an alternative model for 5'-end attachment requiring microhomology-mediated end-joining
    • Zingler N., et al. Analysis of 5' junctions of human LINE-1 and Alu retrotransposons suggests an alternative model for 5'-end attachment requiring microhomology-mediated end-joining. Genome Res. 2005, 15:780-789.
    • (2005) Genome Res. , vol.15 , pp. 780-789
    • Zingler, N.1
  • 65
    • 34748863465 scopus 로고    scopus 로고
    • IgH class switching and translocations use a robust non-classical end-joining pathway
    • Yan C.T., et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 2007, 449:478-482.
    • (2007) Nature , vol.449 , pp. 478-482
    • Yan, C.T.1
  • 66
    • 3242887420 scopus 로고    scopus 로고
    • The role of the non-homologous end-joining pathway in lymphocyte development
    • Rooney S., et al. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol. Rev. 2004, 200:115-131.
    • (2004) Immunol. Rev. , vol.200 , pp. 115-131
    • Rooney, S.1
  • 67
    • 1842865725 scopus 로고    scopus 로고
    • Staggered AID-dependent DNA double strand breaks are the predominant DNA lesions targeted to S mu in Ig class switch recombination
    • Rush J.S., et al. Staggered AID-dependent DNA double strand breaks are the predominant DNA lesions targeted to S mu in Ig class switch recombination. Int. Immunol. 2004, 16:549-557.
    • (2004) Int. Immunol. , vol.16 , pp. 549-557
    • Rush, J.S.1
  • 68
    • 33846606769 scopus 로고    scopus 로고
    • Antibody class switching mediated by yeast endonuclease-generated DNA breaks
    • Zarrin A.A., et al. Antibody class switching mediated by yeast endonuclease-generated DNA breaks. Science 2007, 315:377-381.
    • (2007) Science , vol.315 , pp. 377-381
    • Zarrin, A.A.1
  • 69
    • 77649267656 scopus 로고    scopus 로고
    • Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70
    • Boboila C., et al. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:3034-3039.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 3034-3039
    • Boboila, C.1
  • 70
    • 58149308524 scopus 로고    scopus 로고
    • Altered kinetics of nonhomologous end joining and class switch recombination in ligase IV-deficient B cells
    • Han L., Yu K. Altered kinetics of nonhomologous end joining and class switch recombination in ligase IV-deficient B cells. J. Exp. Med. 2008, 205:2745-2753.
    • (2008) J. Exp. Med. , vol.205 , pp. 2745-2753
    • Han, L.1    Yu, K.2
  • 71
    • 34848843525 scopus 로고    scopus 로고
    • Rag mutations reveal robust alternative end joining
    • Corneo B., et al. Rag mutations reveal robust alternative end joining. Nature 2007, 449:483-486.
    • (2007) Nature , vol.449 , pp. 483-486
    • Corneo, B.1
  • 72
    • 34547115451 scopus 로고    scopus 로고
    • Antigen receptor diversification and chromosome translocations
    • Jankovic M., et al. Antigen receptor diversification and chromosome translocations. Nat. Immunol. 2007, 8:801-808.
    • (2007) Nat. Immunol. , vol.8 , pp. 801-808
    • Jankovic, M.1
  • 73
    • 0029655319 scopus 로고    scopus 로고
    • Mechanistic constraints on diversity in human V(D)J recombination
    • Gauss G.H., Lieber M.R. Mechanistic constraints on diversity in human V(D)J recombination. Mol. Cell. Biol. 1996, 16:258-269.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 258-269
    • Gauss, G.H.1    Lieber, M.R.2
  • 74
    • 84877113990 scopus 로고    scopus 로고
    • Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms
    • Malhotra A., et al. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. Genome Res. 2013, 23:762-776.
    • (2013) Genome Res. , vol.23 , pp. 762-776
    • Malhotra, A.1
  • 75
    • 62149135914 scopus 로고    scopus 로고
    • Papillary and muscle invasive bladder tumors with distinct genomic stability profiles have different DNA repair fidelity and KU DNA-binding activities
    • Bentley J., et al. Papillary and muscle invasive bladder tumors with distinct genomic stability profiles have different DNA repair fidelity and KU DNA-binding activities. Genes Chromosomes Cancer 2009, 48:310-321.
    • (2009) Genes Chromosomes Cancer , vol.48 , pp. 310-321
    • Bentley, J.1
  • 76
    • 84861541343 scopus 로고    scopus 로고
    • Mutational processes molding the genomes of 21 breast cancers
    • Nik-Zainal S., et al. Mutational processes molding the genomes of 21 breast cancers. Cell 2012, 149:979-993.
    • (2012) Cell , vol.149 , pp. 979-993
    • Nik-Zainal, S.1
  • 77
    • 84860894949 scopus 로고    scopus 로고
    • The power of DNA double-strand break (DSB) repair testing to predict breast cancer susceptibility
    • Keimling M., et al. The power of DNA double-strand break (DSB) repair testing to predict breast cancer susceptibility. FASEB J. 2012, 26:2094-2104.
    • (2012) FASEB J. , vol.26 , pp. 2094-2104
    • Keimling, M.1
  • 78
    • 84863411679 scopus 로고    scopus 로고
    • Time-dependent predominance of nonhomologous DNA end-joining pathways during embryonic development in mice
    • Chiruvella K.K., et al. Time-dependent predominance of nonhomologous DNA end-joining pathways during embryonic development in mice. J. Mol. Biol. 2012, 417:197-211.
    • (2012) J. Mol. Biol. , vol.417 , pp. 197-211
    • Chiruvella, K.K.1
  • 79
    • 35649023709 scopus 로고    scopus 로고
    • The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles
    • Chiolo I., et al. The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles. Mol. Cell. Biol. 2007, 27:7439-7450.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 7439-7450
    • Chiolo, I.1
  • 80
    • 11244280890 scopus 로고    scopus 로고
    • Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining
    • Audebert M., et al. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J. Biol. Chem. 2004, 279:55117-55126.
    • (2004) J. Biol. Chem. , vol.279 , pp. 55117-55126
    • Audebert, M.1
  • 81
    • 66049143898 scopus 로고    scopus 로고
    • Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination
    • Robert I., et al. Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J. Exp. Med. 2009, 206:1047-1056.
    • (2009) J. Exp. Med. , vol.206 , pp. 1047-1056
    • Robert, I.1
  • 82
    • 33845657443 scopus 로고    scopus 로고
    • PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways
    • Wang M., et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 2006, 34:6170-6182.
    • (2006) Nucleic Acids Res. , vol.34 , pp. 6170-6182
    • Wang, M.1
  • 83
    • 51649128895 scopus 로고    scopus 로고
    • Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks
    • Sallmyr A., et al. Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks. Blood 2008, 112:1413-1423.
    • (2008) Blood , vol.112 , pp. 1413-1423
    • Sallmyr, A.1
  • 84
    • 77956819782 scopus 로고    scopus 로고
    • ATM regulates Mre11-dependent DNA end-degradation and microhomology-mediated end joining
    • Rahal E.A., et al. ATM regulates Mre11-dependent DNA end-degradation and microhomology-mediated end joining. Cell Cycle 2010, 9:2866-2877.
    • (2010) Cell Cycle , vol.9 , pp. 2866-2877
    • Rahal, E.A.1
  • 85
    • 24744453740 scopus 로고    scopus 로고
    • Modulation of DNA end joining by nuclear proteins
    • Liang L., et al. Modulation of DNA end joining by nuclear proteins. J. Biol. Chem. 2005, 280:31442-31449.
    • (2005) J. Biol. Chem. , vol.280 , pp. 31442-31449
    • Liang, L.1
  • 86
    • 77951057068 scopus 로고    scopus 로고
    • 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination
    • Bothmer A., et al. 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. J. Exp. Med. 2010, 207:855-865.
    • (2010) J. Exp. Med. , vol.207 , pp. 855-865
    • Bothmer, A.1
  • 87
    • 43149118369 scopus 로고    scopus 로고
    • Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair
    • Chen L., et al. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J. Biol. Chem. 2008, 283:7713-7720.
    • (2008) J. Biol. Chem. , vol.283 , pp. 7713-7720
    • Chen, L.1
  • 88
    • 84874761014 scopus 로고    scopus 로고
    • The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair
    • Wang H., et al. The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair. PLoS Genet. 2013, 9:e1003277.
    • (2013) PLoS Genet. , vol.9
    • Wang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.