메뉴 건너뛰기




Volumn 15, Issue 1, 2014, Pages 11-20

Autophagy as a crosstalk mediator of metabolic organs in regulation of energy metabolism

Author keywords

Autophagy; FGF21; IL 1 ; Insulin resistance; Mitokine; Non cell autonomous effect

Indexed keywords

AUTOPHAGOSOME; AUTOPHAGY; DIABETES MELLITUS; ENERGY METABOLISM; HOMEOSTASIS AND REGULATION; HUMAN; INSULIN RESISTANCE; LIPOPHAGOCYTOSIS; METABOLIC STRESS; MOLECULAR INTERACTION; NONHUMAN; OBESITY; PATHOGENESIS; PROTEIN DEGRADATION; REVIEW; SIGNAL TRANSDUCTION;

EID: 84896261230     PISSN: 13899155     EISSN: 15732606     Source Type: Journal    
DOI: 10.1007/s11154-013-9272-6     Document Type: Review
Times cited : (40)

References (95)
  • 1
    • 0014083718 scopus 로고
    • Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes
    • Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol. 1967;33:437-49.
    • (1967) J Cell Biol , vol.33 , pp. 437-449
    • Deter, R.L.1    De Duve, C.2
  • 2
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27-42.
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 3
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • DOI 10.1038/nature06639, PII NATURE06639
    • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451: 1069-75. (Pubitemid 351317450)
    • (2008) Nature , vol.451 , Issue.7182 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3    Klionsky, D.J.4
  • 4
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: Renovation of cells and tissues
    • Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147:728-41.
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 5
    • 79955631150 scopus 로고    scopus 로고
    • Autophagy in the cellular energetic balance
    • Singh R, Cuervo AM. Autophagy in the cellular energetic balance. Cell Metab. 2011;13:495-504.
    • (2011) Cell Metab , vol.13 , pp. 495-504
    • Singh, R.1    Cuervo, A.M.2
  • 6
    • 12344266697 scopus 로고    scopus 로고
    • How obesity causes diabetes: Not a tall tale
    • DOI 10.1126/science.1104342
    • Lazar MA. How obesity causes diabetes: not a tall tale. Science. 2005;307:373-5. (Pubitemid 40139971)
    • (2005) Science , vol.307 , Issue.5708 , pp. 373-375
    • Lazar, M.A.1
  • 7
    • 34250773451 scopus 로고    scopus 로고
    • Mechanisms of obesity-associated insulin resistance: Many choices on the menu
    • DOI 10.1101/gad.1550907
    • Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance:many choices on themenu. Genes Dev. 2007;21:1443-55. (Pubitemid 46955717)
    • (2007) Genes and Development , vol.21 , Issue.12 , pp. 1443-1455
    • Qatanani, M.1    Lazar, M.A.2
  • 8
    • 84857861919 scopus 로고    scopus 로고
    • Mechanisms for insulin resistance: Common threads and missing links
    • Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148:852-71.
    • (2012) Cell , vol.148 , pp. 852-871
    • Samuel, V.T.1    Shulman, G.I.2
  • 9
    • 52749093177 scopus 로고    scopus 로고
    • Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
    • Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 2008;8:325-32.
    • (2008) Cell Metab , vol.8 , pp. 325-332
    • Ebato, C.1    Uchida, T.2    Arakawa, M.3    Komatsu, M.4    Ueno, T.5    Komiya, K.6
  • 10
    • 52749094770 scopus 로고    scopus 로고
    • Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia
    • Jung HS, Chung KW, Won Kim J, Kim J, Komatsu M, Tanaka K, et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 2008;8:318-24.
    • (2008) Cell Metab , vol.8 , pp. 318-324
    • Jung, H.S.1    Chung, K.W.2    Won Kim, J.3    Kim, J.4    Komatsu, M.5    Tanaka, K.6
  • 11
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010;11:467-78.
    • (2010) Cell Metab , vol.11 , pp. 467-478
    • Yang, L.1    Li, P.2    Fu, S.3    Calay, E.S.4    Hotamisligil, G.S.5
  • 12
    • 84856953003 scopus 로고    scopus 로고
    • Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation
    • Coupe B, Ishii Y, Dietrich MO, Komatsu M, Horvath TL, Bouret SG. Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab. 2012;15: 247-55.
    • (2012) Cell Metab , vol.15 , pp. 247-255
    • Coupe, B.1    Ishii, Y.2    Dietrich, M.O.3    Komatsu, M.4    Horvath, T.L.5    Bouret, S.G.6
  • 13
    • 80052712323 scopus 로고    scopus 로고
    • Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway
    • Meng Q, Cai D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway. J Biol Chem. 2011;286:32324-32.
    • (2011) J Biol Chem , vol.286 , pp. 32324-32332
    • Meng, Q.1    Cai, D.2
  • 14
    • 84859416906 scopus 로고    scopus 로고
    • Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response
    • Quan W, Kim HK, Moon EY, Kim SS, Choi CS, Komatsu M, et al. Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology. 2012;153:1817-26.
    • (2012) Endocrinology , vol.153 , pp. 1817-1826
    • Quan, W.1    Kim, H.K.2    Moon, E.Y.3    Kim, S.S.4    Choi, C.S.5    Komatsu, M.6
  • 16
  • 19
    • 73949124173 scopus 로고    scopus 로고
    • Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis
    • Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci U S A. 2009;106:19860-5.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 19860-19865
    • Zhang, Y.1    Goldman, S.2    Baerga, R.3    Zhao, Y.4    Komatsu, M.5    Jin, S.6
  • 21
    • 84872057896 scopus 로고    scopus 로고
    • Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
    • Kim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim YN, et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med. 2013;19:83-92.
    • (2013) Nat Med , vol.19 , pp. 83-92
    • Kim, K.H.1    Jeong, Y.T.2    Oh, H.3    Kim, S.H.4    Cho, J.M.5    Kim, Y.N.6
  • 23
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
    • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20:1981-91.
    • (2009) Mol Biol Cell , vol.20 , pp. 1981-1991
    • Hosokawa, N.1    Hara, T.2    Kaizuka, T.3    Kishi, C.4    Takamura, A.5    Miura, Y.6
  • 24
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20:1992-2003.
    • (2009) Mol Biol Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1    Jun, C.B.2    Ro, S.H.3    Kim, Y.M.4    Otto, N.M.5    Cao, J.6
  • 25
    • 65249155441 scopus 로고    scopus 로고
    • An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation
    • Chang YY, Neufeld TP. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol Biol Cell. 2009;20:2004-14.
    • (2009) Mol Biol Cell , vol.20 , pp. 2004-2014
    • Chang, Y.Y.1    Neufeld, T.P.2
  • 26
    • 77951237303 scopus 로고    scopus 로고
    • The Beclin 1 interactome
    • He C, Levine B. The Beclin 1 interactome. Curr Opin Cell Biol. 2010;22:140-9.
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 140-149
    • He, C.1    Levine, B.2
  • 27
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182:685-701.
    • (2008) J Cell Biol , vol.182 , pp. 685-701
    • Axe, E.L.1    Walker, S.A.2    Manifava, M.3    Chandra, P.4    Roderick, H.L.5    Habermann, A.6
  • 28
    • 77953726483 scopus 로고    scopus 로고
    • Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
    • Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbé S, Clague MJ, et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy. 2010;6:506-22.
    • (2010) Autophagy , vol.6 , pp. 506-522
    • Polson, H.E.1    De Lartigue, J.2    Rigden, D.J.3    Reedijk, M.4    Urbé, S.5    Clague, M.J.6
  • 30
    • 0032545292 scopus 로고    scopus 로고
    • A new protein conjugation system in human: The counterpart of the yeast Apg12p conjugation system essential for autophagy
    • DOI 10.1074/jbc.273.51.33889
    • Mizushima N, Sugita H, Yoshimori T, Ohsumi Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem. 1998;273: 33889-92. (Pubitemid 29008848)
    • (1998) Journal of Biological Chemistry , vol.273 , Issue.51 , pp. 33889-33892
    • Mizushima, N.1    Sugita, H.2    Yoshimori, T.3    Ohsumi, Y.4
  • 31
    • 0037166241 scopus 로고    scopus 로고
    • Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast
    • DOI 10.1074/jbc.M111889200
    • Kuma A, Mizushima N, Ishihara N, Ohsumi Y. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem. 2002;277:18619-25. (Pubitemid 34952416)
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.21 , pp. 18619-18625
    • Kuma, A.1    Mizushima, N.2    Ishihara, N.3    Ohsumi, Y.4
  • 32
    • 43949143804 scopus 로고    scopus 로고
    • The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
    • Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell. 2008;19:2092-100.
    • (2008) Mol Biol Cell , vol.19 , pp. 2092-2100
    • Fujita, N.1    Itoh, T.2    Omori, H.3    Fukuda, M.4    Noda, T.5    Yoshimori, T.6
  • 33
    • 84869210001 scopus 로고    scopus 로고
    • Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation
    • Romanov J, Walczak M, Ibiricu I, Schüchner S, Ogris E, Kraft C, et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J. 2012;31:4304-17.
    • (2012) EMBO J , vol.31 , pp. 4304-4317
    • Romanov, J.1    Walczak, M.2    Ibiricu, I.3    Schüchner, S.4    Ogris, E.5    Kraft, C.6
  • 34
    • 0034329418 scopus 로고    scopus 로고
    • LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
    • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19: 5720-8.
    • (2000) EMBO J , vol.19 , pp. 5720-5728
    • Kabeya, Y.1    Mizushima, N.2    Ueno, T.3    Yamamoto, A.4    Kirisako, T.5    Noda, T.6
  • 35
    • 4344604111 scopus 로고    scopus 로고
    • A receptor-associated protein-phospholipid conjugates
    • DOI 10.1074/jbc.M401461200
    • Tanida I, Sou YS, Ezaki J, Minematsu-Ikeguchi N, Ueno T, Kominami E. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3- and GABAA receptor-associated protein-phospholipid conjugates. J Biol Chem. 2004;279:36268-76. (Pubitemid 39128963)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.35 , pp. 36268-36276
    • Tanida, I.1    Sou, Y.-S.2    Ezaki, J.3    Minematsu-Ikeguchi, N.4    Ueno, T.5    Kominami, E.6
  • 37
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40:280-93.
    • (2010) Mol Cell , vol.40 , pp. 280-293
    • Kroemer, G.1    Marino, G.2    Levine, B.3
  • 39
    • 84859768059 scopus 로고    scopus 로고
    • Lipophagy: Connecting autophagy and lipid metabolism
    • Singh R, Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol. 2012:282041.
    • (2012) Int J Cell Biol , pp. 282041
    • Singh, R.1    Cuervo, A.M.2
  • 40
    • 24744441497 scopus 로고    scopus 로고
    • Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation
    • DOI 10.1074/jbc.M506736200
    • Onodera J, Ohsumi Y. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem. 2005;280:31582-6. (Pubitemid 41291902)
    • (2005) Journal of Biological Chemistry , vol.280 , Issue.36 , pp. 31582-31586
    • Onodera, J.1    Ohsumi, Y.2
  • 41
    • 46849115787 scopus 로고    scopus 로고
    • Autophagy is essential for preimplantation development of mouse embryos
    • DOI 10.1126/science.1154822
    • Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N. Autophagy is essential for preimplantation development of mouse embryos. Science. 2008;321:117-20. (Pubitemid 351956245)
    • (2008) Science , vol.321 , Issue.5885 , pp. 117-120
    • Tsukamoto, S.1    Kuma, A.2    Murakami, M.3    Kishi, C.4    Yamamoto, A.5    Mizushima, N.6
  • 42
    • 84875892111 scopus 로고    scopus 로고
    • Autophagy as a stress-response and quality-control mechanism: Implications for cell injury and human disease
    • Murrow L, Debnath J. Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol. 2013;8:105-37.
    • (2013) Annu Rev Pathol , vol.8 , pp. 105-137
    • Murrow, L.1    Debnath, J.2
  • 43
    • 0015413289 scopus 로고
    • Gluconeogenesis
    • Exton JH. Gluconeogenesis. Metabolism. 1972;21:945-90.
    • (1972) Metabolism , vol.21 , pp. 945-990
    • Exton, J.H.1
  • 44
  • 46
    • 21644475161 scopus 로고    scopus 로고
    • Glycogen autophagy in the liver and heart of newborn rats. The effects of glucagon, adrenalin or rapamycin
    • Kondomerkos DJ, Kalamidas SA, Kotoulas OB, Hann AC. Glycogen autophagy in the liver and heart of newborn rats. The effects of glucagon, adrenalin or rapamycin. Histol Histopathol. 2005;20:689- 96.
    • (2005) Histol Histopathol , vol.20 , pp. 689-696
    • Kondomerkos, D.J.1    Kalamidas, S.A.2    Kotoulas, O.B.3    Hann, A.C.4
  • 47
    • 77956172813 scopus 로고    scopus 로고
    • Physiological role of autophagy as an intracellular recycling system: With an emphasis on nutrient metabolism
    • Kuma A, Mizushima N. Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Semin Cell Dev Biol. 2010;21:683-90.
    • (2010) Semin Cell Dev Biol , vol.21 , pp. 683-690
    • Kuma, A.1    Mizushima, N.2
  • 48
    • 57049094929 scopus 로고    scopus 로고
    • Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease
    • DOI 10.1093/hmg/ddn292
    • Raben N, Hill V, Shea L, Takikita S, Baum R, Mizushima N, et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet. 2008;17:3897-908. (Pubitemid 352762852)
    • (2008) Human Molecular Genetics , vol.17 , Issue.24 , pp. 3897-3908
    • Raben, N.1    Hill, V.2    Shea, L.3    Takikita, S.4    Baum, R.5    Mizushima, N.6    Ralston, E.7    Plotz, P.8
  • 50
    • 77955789211 scopus 로고    scopus 로고
    • Altered lipid content inhibits autophagic vesicular fusion
    • Koga H, Kaushik S, Cuervo AM. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 2010;24:3052-65.
    • (2010) FASEB J , vol.24 , pp. 3052-3065
    • Koga, H.1    Kaushik, S.2    Cuervo, A.M.3
  • 51
    • 80052617116 scopus 로고    scopus 로고
    • Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression
    • Inami Y, Yamashina S, Izumi K, Ueno T, Tanida I, Ikejima K, et al. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochem Biophys Res Commun. 2011;412:618-25.
    • (2011) Biochem Biophys Res Commun , vol.412 , pp. 618-625
    • Inami, Y.1    Yamashina, S.2    Izumi, K.3    Ueno, T.4    Tanida, I.5    Ikejima, K.6
  • 53
    • 84878606239 scopus 로고    scopus 로고
    • TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
    • Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis O, et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol. 2013;15:647- 58.
    • (2013) Nat Cell Biol , vol.15 , pp. 647-658
    • Settembre, C.1    De Cegli, R.2    Mansueto, G.3    Saha, P.K.4    Vetrini, F.5    Visvikis, O.6
  • 54
    • 77954251401 scopus 로고    scopus 로고
    • Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes
    • Ost A, Svensson K, Ruishalme I, Brännmark C, Franck N, Krook H, et al. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med. 2010;16: 235-46.
    • (2010) Mol Med , vol.16 , pp. 235-246
    • Ost, A.1    Svensson, K.2    Ruishalme, I.3    Brännmark, C.4    Franck, N.5    Krook, H.6
  • 56
    • 84870170324 scopus 로고    scopus 로고
    • Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression
    • Jansen HJ, van Essen P, Koenen T, Joosten LA, Netea MG, Tack CJ, et al. Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression. Endocrinology. 2012;153:5866-74.
    • (2012) Endocrinology , vol.153 , pp. 5866-5874
    • Jansen, H.J.1    Van Essen, P.2    Koenen, T.3    Joosten, L.A.4    Netea, M.G.5    Tack, C.J.6
  • 58
    • 84864283300 scopus 로고    scopus 로고
    • Muscles, exercise and obesity: Skeletal muscle as a secretory organ
    • Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8:457-65.
    • (2012) Nat Rev Endocrinol , vol.8 , pp. 457-465
    • Pedersen, B.K.1    Febbraio, M.A.2
  • 59
    • 84865525054 scopus 로고    scopus 로고
    • Brain-gut-adipose-tissue communication pathways at a glance
    • Yi CX, Tschop MH. Brain-gut-adipose-tissue communication pathways at a glance. Dis Model Mech. 2012;5:583-7.
    • (2012) Dis Model Mech , vol.5 , pp. 583-587
    • Yi, C.X.1    Tschop, M.H.2
  • 60
    • 84875549943 scopus 로고    scopus 로고
    • The role of hepatokines in metabolism
    • Stefan N, Haring HU. The role of hepatokines in metabolism. Nat Rev Endocrinol. 2013;9:144-52.
    • (2013) Nat Rev Endocrinol , vol.9 , pp. 144-152
    • Stefan, N.1    Haring, H.U.2
  • 61
    • 84876771596 scopus 로고    scopus 로고
    • The immune system as a sensor of the metabolic state
    • Odegaard JI, Chawla A. The immune system as a sensor of the metabolic state. Immunity. 2013;38:644-54.
    • (2013) Immunity , vol.38 , pp. 644-654
    • Odegaard, J.I.1    Chawla, A.2
  • 62
    • 39749147110 scopus 로고    scopus 로고
    • Mechanisms of disease: Molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes
    • DOI 10.1038/nrm2327, PII NRM2327
    • Muoio DM, Newgard CB. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:193-205. (Pubitemid 351301824)
    • (2008) Nature Reviews Molecular Cell Biology , vol.9 , Issue.3 , pp. 193-205
    • Muoio, D.M.1    Newgard, C.B.2
  • 63
    • 34047179973 scopus 로고    scopus 로고
    • Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy
    • DOI 10.2337/db06-1160
    • Kaniuk NA, Kiraly M, Bates H, Vranic M, Volchuk A, Brumell JH. Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes. 2007;56:930-9. (Pubitemid 46525060)
    • (2007) Diabetes , vol.56 , Issue.4 , pp. 930-939
    • Kaniuk, N.A.1    Kiraly, M.2    Bates, H.3    Vranic, M.4    Volchuk, A.5    Brumell, J.H.6
  • 65
    • 84856764175 scopus 로고    scopus 로고
    • Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice
    • Quan W, Hur KY, Lim Y, Oh SH, Lee JC, Kim KH, et al. Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia. 2012;55:392-403.
    • (2012) Diabetologia , vol.55 , pp. 392-403
    • Quan, W.1    Hur, K.Y.2    Lim, Y.3    Oh, S.H.4    Lee, J.C.5    Kim, K.H.6
  • 66
    • 0842324779 scopus 로고    scopus 로고
    • Obesity Wars: Molecular Progress Confronts an Expanding Epidemic
    • DOI 10.1016/S0092-8674(03)01081-X
    • Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell. 2004;116:337-50. (Pubitemid 38167322)
    • (2004) Cell , vol.116 , Issue.2 , pp. 337-350
    • Flier, J.S.1
  • 67
    • 79955038882 scopus 로고    scopus 로고
    • Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling
    • Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12:408-15.
    • (2011) Nat Immunol , vol.12 , pp. 408-415
    • Wen, H.1    Gris, D.2    Lei, Y.3    Jha, S.4    Zhang, L.5    Huang, M.T.6
  • 68
  • 69
    • 79954535899 scopus 로고    scopus 로고
    • Islet amyloid polypeptide, islet amyloid, and diabetes mellitus
    • Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev. 2011;91:795-826.
    • (2011) Physiol Rev , vol.91 , pp. 795-826
    • Westermark, P.1    Andersson, A.2    Westermark, G.T.3
  • 70
    • 77956958947 scopus 로고    scopus 로고
    • Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes
    • Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol. 2010;11:897-904.
    • (2010) Nat Immunol , vol.11 , pp. 897-904
    • Masters, S.L.1    Dunne, A.2    Subramanian, S.L.3    Hull, R.L.4    Tannahill, G.M.5    Sharp, F.A.6
  • 71
    • 80052650475 scopus 로고    scopus 로고
    • IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction
    • Westwell-Roper C, Dai DL, Soukhatcheva G, Potter KJ, van Rooijen N, Ehses JA, et al. IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. J Immunol. 2011;187:2755-65.
    • (2011) J Immunol , vol.187 , pp. 2755-2765
    • Westwell-Roper, C.1    Dai, D.L.2    Soukhatcheva, G.3    Potter, K.J.4    Van Rooijen, N.5    Ehses, J.A.6
  • 72
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
    • Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456:264-8.
    • (2008) Nature , vol.456 , pp. 264-268
    • Saitoh, T.1    Fujita, N.2    Jang, M.H.3    Uematsu, S.4    Yang, B.G.5    Satoh, T.6
  • 73
    • 79951672803 scopus 로고    scopus 로고
    • Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic beta-cells: Protective role of p62-positive cytoplasmic inclusions
    • Rivera JF, Gurlo T, Daval M, Huang CJ, Matveyenko AV, Butler PC, et al. Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic beta-cells: protective role of p62-positive cytoplasmic inclusions. Cell Death Differ. 2011;18:415-26.
    • (2011) Cell Death Differ , vol.18 , pp. 415-426
    • Rivera, J.F.1    Gurlo, T.2    Daval, M.3    Huang, C.J.4    Matveyenko, A.V.5    Butler, P.C.6
  • 74
    • 37549043217 scopus 로고    scopus 로고
    • Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
    • Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature. 2007;450:1253-7.
    • (2007) Nature , vol.450 , pp. 1253-1257
    • Sanjuan, M.A.1    Dillon, C.P.2    Tait, S.W.3    Moshiach, S.4    Dorsey, F.5    Connell, S.6
  • 75
    • 80054825045 scopus 로고    scopus 로고
    • Microtubule-associated protein 1 light chain 3 alpha (LC3)- associated phagocytosis is required for the efficient clearance of dead cells
    • Martinez J, Almendinger J, Oberst A, Ness R, Dillon CP, Fitzgerald P, et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)- associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci U S A. 2011;108:17396-401.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 17396-17401
    • Martinez, J.1    Almendinger, J.2    Oberst, A.3    Ness, R.4    Dillon, C.P.5    Fitzgerald, P.6
  • 77
    • 33750587755 scopus 로고    scopus 로고
    • Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways
    • DOI 10.2337/db05-1435
    • Wente W, Efanov AM, Brenner M, Kharitonenkov A, Köster A, Sandusky GE, et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes. 2006;55:2470-8. (Pubitemid 44871147)
    • (2006) Diabetes , vol.55 , Issue.9 , pp. 2470-2478
    • Wente, W.1    Efanov, A.M.2    Brenner, M.3    Kharitonenkov, A.4    Koster, A.5    Sandusky, G.E.6    Sewing, S.7    Treinies, I.8    Zitzer, H.9    Gromada, J.10
  • 79
    • 48349146527 scopus 로고    scopus 로고
    • Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans
    • Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008;57:1246-53.
    • (2008) Diabetes , vol.57 , pp. 1246-1253
    • Zhang, X.1    Yeung, D.C.2    Karpisek, M.3    Stejskal, D.4    Zhou, Z.G.5    Liu, F.6
  • 83
    • 61649127208 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice
    • Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes. 2009;58:250-9.
    • (2009) Diabetes , vol.58 , pp. 250-259
    • Xu, J.1    Lloyd, D.J.2    Hale, C.3    Stanislaus, S.4    Chen, M.5    Sivits, G.6
  • 85
    • 84863012022 scopus 로고    scopus 로고
    • FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis
    • Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26:271-81.
    • (2012) Genes Dev , vol.26 , pp. 271-281
    • Fisher, F.M.1    Kleiner, S.2    Douris, N.3    Fox, E.C.4    Mepani, R.J.5    Verdeguer, F.6
  • 87
    • 69249093921 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity
    • Berglund ED, Li CY, Bina HA, Lynes SE, Michael MD, Shanafelt AB, et al. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology. 2009;150:4084-93.
    • (2009) Endocrinology , vol.150 , pp. 4084-4093
    • Berglund, E.D.1    Li, C.Y.2    Bina, H.A.3    Lynes, S.E.4    Michael, M.D.5    Shanafelt, A.B.6
  • 88
    • 79960844094 scopus 로고    scopus 로고
    • The link between fibroblast growth factor 21 and sterol regulatory element binding protein 1c during lipogenesis in hepatocytes
    • Zhang Y, Lei T, Huang JF, Wang SB, Zhou LL, Yang ZQ, et al. The link between fibroblast growth factor 21 and sterol regulatory element binding protein 1c during lipogenesis in hepatocytes. Mol Cell Endocrinol. 2011;342:41-7.
    • (2011) Mol Cell Endocrinol , vol.342 , pp. 41-47
    • Zhang, Y.1    Lei, T.2    Huang, J.F.3    Wang, S.B.4    Zhou, L.L.5    Yang, Z.Q.6
  • 89
    • 79952120254 scopus 로고    scopus 로고
    • Direct effects of FGF21 on glucose uptake in human skeletal muscle: Implications for type 2 diabetes and obesity
    • Mashili FL, Austin RL, Deshmukh AS, Fritz T, Caidahl K, Bergdahl K, et al. Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab Res Rev. 2011;27:286-97.
    • (2011) Diabetes Metab Res Rev , vol.27 , pp. 286-297
    • Mashili, F.L.1    Austin, R.L.2    Deshmukh, A.S.3    Fritz, T.4    Caidahl, K.5    Bergdahl, K.6
  • 90
    • 77954277205 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats
    • Sarruf DA, Thaler JP, Morton GJ, German J, Fischer JD, Ogimoto K, et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes. 2010;59: 1817-24.
    • (2010) Diabetes , vol.59 , pp. 1817-1824
    • Sarruf, D.A.1    Thaler, J.P.2    Morton, G.J.3    German, J.4    Fischer, J.D.5    Ogimoto, K.6
  • 91
    • 34249711964 scopus 로고    scopus 로고
    • Hepatic Fibroblast Growth Factor 21 Is Regulated by PPARalpha and Is a Key Mediator of Hepatic Lipid Metabolism in Ketotic States
    • DOI 10.1016/j.cmet.2007.05.002, PII S1550413107001295
    • Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007;5:426-37. (Pubitemid 46825495)
    • (2007) Cell Metabolism , vol.5 , Issue.6 , pp. 426-437
    • Badman, M.K.1    Pissios, P.2    Kennedy, A.R.3    Koukos, G.4    Flier, J.S.5    Maratos-Flier, E.6
  • 94
    • 80051667626 scopus 로고    scopus 로고
    • FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: A diagnostic study
    • Suomalainen A, Elo JM, Pietiläinen KH, Hakonen AH, Sevastianova K, Korpela M, et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 2011;10:806-18.
    • (2011) Lancet Neurol , vol.10 , pp. 806-818
    • Suomalainen, A.1    Elo, J.M.2    Pietiläinen, K.H.3    Hakonen, A.H.4    Sevastianova, K.5    Korpela, M.6
  • 95
    • 78650944949 scopus 로고    scopus 로고
    • The cell-non-autonomous nature of electron transport chain-mediated longevity
    • Durieux J, Wolff S, Dillin A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell. 2011;144:79-91.
    • (2011) Cell , vol.144 , pp. 79-91
    • Durieux, J.1    Wolff, S.2    Dillin, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.