메뉴 건너뛰기




Volumn 116, Issue 7, 2006, Pages 1756-1760

Insulin resistance and pancreatic β cell failure

Author keywords

[No Author keywords available]

Indexed keywords

ATHEROSCLEROSIS; CELL DAMAGE; DIABETIC NEPHROPATHY; DIABETIC NEUROPATHY; DIABETIC RETINOPATHY; DISEASE ASSOCIATION; HUMAN; INSULIN RESISTANCE; MORTALITY; NON INSULIN DEPENDENT DIABETES MELLITUS; NONHUMAN; OBESITY; PANCREAS ISLET BETA CELL; PATHOGENESIS; PRIORITY JOURNAL; REVIEW;

EID: 33745851096     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI29189     Document Type: Review
Times cited : (314)

References (47)
  • 1
    • 0141988862 scopus 로고    scopus 로고
    • Importance of weight management in type 2 diabetes: Review with meta-analysis of clinical studies
    • Anderson, J.W., Kendall, C.W., and Jenkins, D.J. 2003. Importance of weight management in type 2 diabetes: review with meta-analysis of clinical studies. J. Am. Coll. Nutr. 22:331-339.
    • (2003) J. Am. Coll. Nutr. , vol.22 , pp. 331-339
    • Anderson, J.W.1    Kendall, C.W.2    Jenkins, D.J.3
  • 2
    • 0032143284 scopus 로고    scopus 로고
    • Phosphoinositide 3-kinase: The key switch mechanism in insulin signaling
    • Shepherd, P.R., Withers, D.J., and Siddle, K. 1998. Phosphoinositide 3-kinase: the key switch mechanism in insulin signaling. Biochem. J. 333:471-490.
    • (1998) Biochem. J. , vol.333 , pp. 471-490
    • Shepherd, P.R.1    Withers, D.J.2    Siddle, K.3
  • 3
    • 0033636523 scopus 로고    scopus 로고
    • Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction
    • Michael, M.D., et al. 2000. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell. 6:87-94.
    • (2000) Mol. Cell. , vol.6 , pp. 87-94
    • Michael, M.D.1
  • 4
    • 0036853886 scopus 로고    scopus 로고
    • Hyperinsulinemia, glucose intolerance, and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver
    • doi:10.1172/JCI200215880
    • Miyake, K., et al. 2002. Hyperinsulinemia, glucose intolerance, and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver. J. Clin. Invest. 110:1483-1491. doi:10.1172/JCI200215880.
    • (2002) J. Clin. Invest. , vol.110 , pp. 1483-1491
    • Miyake, K.1
  • 5
    • 0032214652 scopus 로고    scopus 로고
    • A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance
    • Bruning, J.C., et al. 1998. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell. 2:559-569.
    • (1998) Mol. Cell. , vol.2 , pp. 559-569
    • Bruning, J.C.1
  • 6
    • 0035425234 scopus 로고    scopus 로고
    • Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes
    • Fernandez, A.M., et al. 2006. Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev. 15:1926-1934.
    • (2006) Genes Dev. , vol.15 , pp. 1926-1934
    • Fernandez, A.M.1
  • 7
    • 0036068133 scopus 로고    scopus 로고
    • Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance
    • Bluher, M., et al. 2002. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev. Cell. 3:25-38.
    • (2002) Dev. Cell. , vol.3 , pp. 25-38
    • Bluher, M.1
  • 8
    • 0034703229 scopus 로고    scopus 로고
    • Role of brain insulin receptor in control of body weight and reproduction
    • Bruning, J.C., et al. 2000. Role of brain insulin receptor in control of body weight and reproduction. Science. 289:2122-2125.
    • (2000) Science , vol.289 , pp. 2122-2125
    • Bruning, J.C.1
  • 9
    • 4043106461 scopus 로고    scopus 로고
    • Transgenic rescue of insulin receptor-deficient mice
    • doi:10.1172/JCI200421645
    • Okamoto, H., et al. 2004. Transgenic rescue of insulin receptor-deficient mice. J. Clin. Invest. 114:214-223. doi:10.1172/JCI200421645.
    • (2004) J. Clin. Invest. , vol.114 , pp. 214-223
    • Okamoto, H.1
  • 10
    • 0036913187 scopus 로고    scopus 로고
    • Hypothalamic insulin signaling is required for inhibition of glucose production
    • Obici, S., Zhang, B.B., Karkanias, G., and Rossetti, L. 2002. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat. Med. 8:1376-1382.
    • (2002) Nat. Med. , vol.8 , pp. 1376-1382
    • Obici, S.1    Zhang, B.B.2    Karkanias, G.3    Rossetti, L.4
  • 11
    • 11144357516 scopus 로고    scopus 로고
    • Role of STAT-3 in regulation of hepatic gluconeogenic genes and of carbohydrate metabolism in vivo
    • Inoue, H., et al. 2004. Role of STAT-3 in regulation of hepatic gluconeogenic genes and of carbohydrate metabolism in vivo. Nat. Med. 10:168-174.
    • (2004) Nat. Med. , vol.10 , pp. 168-174
    • Inoue, H.1
  • 12
    • 33645579324 scopus 로고    scopus 로고
    • Role of hepatic STAT3 in brain insulin action on hepatic glucose production
    • Inoue, H., et al. 2006. Role of hepatic STAT3 in brain insulin action on hepatic glucose production. Cell Metab. 3:267-275.
    • (2006) Cell Metab. , vol.3 , pp. 267-275
    • Inoue, H.1
  • 13
    • 24944438230 scopus 로고    scopus 로고
    • Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus
    • Souza, C.T., et al. 2006. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 146:4192-4199.
    • (2006) Endocrinology , vol.146 , pp. 4192-4199
    • Souza, C.T.1
  • 14
    • 33745838578 scopus 로고    scopus 로고
    • Central insulin action in energy and glucose homeostasis
    • doi:10.1172/JCI29063
    • Plum, L., Belgardt, B.F., and Brüning, J.C. 2006. Central insulin action in energy and glucose homeostasis. J. Clin. Invest. 116:1761-1766. doi:10.1172/JCI29063.
    • (2006) J. Clin. Invest. , vol.116 , pp. 1761-1766
    • Plum, L.1    Belgardt, B.F.2    Brüning, J.C.3
  • 15
    • 0032567937 scopus 로고    scopus 로고
    • Disruption of IRS-2 causes type 2 diabetes in mice
    • Withers, D.J., et al. 1998. Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 391:900-904.
    • (1998) Nature , vol.391 , pp. 900-904
    • Withers, D.J.1
  • 16
    • 0033524937 scopus 로고    scopus 로고
    • Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes
    • Kulkarni, R.N., et al. 1999. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell. 96:329-339.
    • (1999) Cell , vol.96 , pp. 329-339
    • Kulkarni, R.N.1
  • 17
    • 0035825643 scopus 로고    scopus 로고
    • Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver
    • Abel, E.D., et al. 2001. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 409:729-733.
    • (2001) Nature , vol.409 , pp. 729-733
    • Abel, E.D.1
  • 18
    • 0036478902 scopus 로고    scopus 로고
    • Angptl3 regulates lipid metabolism in mice
    • Koishi, R., et al. 2002. Angptl3 regulates lipid metabolism in mice. Nat. Genet. 30:151-157.
    • (2002) Nat. Genet. , vol.30 , pp. 151-157
    • Koishi, R.1
  • 19
    • 20244380182 scopus 로고    scopus 로고
    • Angiopoietin-related growth factor antagonizes obesity and insulin resistance
    • Oike, Y., et al. 2005. Angiopoietin-related growth factor antagonizes obesity and insulin resistance. Nat. Med. 11:400-408.
    • (2005) Nat. Med. , vol.11 , pp. 400-408
    • Oike, Y.1
  • 20
    • 0037165983 scopus 로고    scopus 로고
    • Induction of cachexia in mice by systemically administered myostatin
    • Zimmers, T., et al. 2002. Induction of cachexia in mice by systemically administered myostatin. Science. 296:1486-1488.
    • (2002) Science , vol.296 , pp. 1486-1488
    • Zimmers, T.1
  • 21
    • 33745848775 scopus 로고    scopus 로고
    • Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony
    • doi:10.1172/JCI29027
    • Herman, M.A., and Kahn, B.B. 2006. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J. Clin. Invest. 116:1767-1775. doi:10.1172/JCI29027.
    • (2006) J. Clin. Invest. , vol.116 , pp. 1767-1775
    • Herman, M.A.1    Kahn, B.B.2
  • 22
    • 33745815985 scopus 로고    scopus 로고
    • AMP-activated protein kinase signaling in metabolic regulation
    • doi:10.1172/JCI29044
    • Long, Y.C., and Zierath, J.R. 2006. AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Invest. 116:1776-1783. doi:10.1172/JCI29044.
    • (2006) J. Clin. Invest. , vol.116 , pp. 1776-1783
    • Long, Y.C.1    Zierath, J.R.2
  • 23
    • 33745834319 scopus 로고    scopus 로고
    • Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome
    • doi:10.1172/JCI29126
    • Kadowaki, T., et al. 2006 Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116:1784-1792. doi:10.1172/JCI29126.
    • (2006) J. Clin. Invest. , vol.116 , pp. 1784-1792
    • Kadowaki, T.1
  • 24
    • 0348230958 scopus 로고    scopus 로고
    • Obesity is associated with macrophage accumulation in adipose tissue
    • doi:10.1172/JCI200319246
    • Weisberg, S.P., et al. 2003. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112:1796-1808. doi:10.1172/JCI200319246.
    • (2003) J. Clin. Invest. , vol.112 , pp. 1796-1808
    • Weisberg, S.P.1
  • 25
    • 9144223683 scopus 로고    scopus 로고
    • Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance
    • doi:10.1172/JCI200319451
    • Xu, H., et al. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112:1821-1830. doi:10.1172/JCI200319451.
    • (2003) J. Clin. Invest. , vol.112 , pp. 1821-1830
    • Xu, H.1
  • 26
    • 33745216724 scopus 로고    scopus 로고
    • MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity
    • doi:10.1172/JCI26498
    • Kanda, H., et al. 2006. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116:1494-1505. doi:10.1172/JCI26498.
    • (2006) J. Clin. Invest. , vol.116 , pp. 1494-1505
    • Kanda, H.1
  • 27
    • 31044456529 scopus 로고    scopus 로고
    • CCR2 modulates inflammatory and metabolic effects of high-fat feeding
    • doi:10.1172/JCI24335
    • Weisberg, S.P., et al. 2006. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116:115-124. doi:10.1172/JCI24335.
    • (2006) J. Clin. Invest. , vol.116 , pp. 115-124
    • Weisberg, S.P.1
  • 28
    • 33745861300 scopus 로고    scopus 로고
    • Inflammation and insulin resistance
    • doi:10.1172/JCI29069
    • Shoelson, S.E., Lee, J., and Goldfine, A.B. 2006. Inflammation and insulin resistance. J. Clin. Invest. 116:1793-1801. doi:10.1172/JCI29069.
    • (2006) J. Clin. Invest. , vol.116 , pp. 1793-1801
    • Shoelson, S.E.1    Lee, J.2    Goldfine, A.B.3
  • 29
    • 11144355563 scopus 로고    scopus 로고
    • Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle
    • doi:10.1172/JCI200418917
    • Kim, J.K., et al. 2004. Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. J. Clin. Invest. 113:756-763. doi:10.1172/JCI200418917.
    • (2004) J. Clin. Invest. , vol.113 , pp. 756-763
    • Kim, J.K.1
  • 30
    • 18244363982 scopus 로고    scopus 로고
    • Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes
    • Maeda, K., et al. 2005. Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab. 1:107-119.
    • (2005) Cell Metab. , vol.1 , pp. 107-119
    • Maeda, K.1
  • 31
    • 0037434991 scopus 로고    scopus 로고
    • Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40
    • Itoh, Y., et al. 2003. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 422:173-176.
    • (2003) Nature , vol.422 , pp. 173-176
    • Itoh, Y.1
  • 32
    • 20944433543 scopus 로고    scopus 로고
    • The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse
    • Steneberg, P., Rubins, N., Bartoov-Shifman, R., Walker, M.D., and Edlund, H. 2005. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab. 1:245-258.
    • (2005) Cell Metab. , vol.1 , pp. 245-258
    • Steneberg, P.1    Rubins, N.2    Bartoov-Shifman, R.3    Walker, M.D.4    Edlund, H.5
  • 33
    • 85030434746 scopus 로고    scopus 로고
    • Increased oxidative stress in obesity and its impact on metabolic syndrome
    • doi:10.1172/JCI200421625
    • Furukawa, S., et al. 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114:1752-1761. doi:10.1172/JCI200421625.
    • (2004) J. Clin. Invest. , vol.114 , pp. 1752-1761
    • Furukawa, S.1
  • 34
    • 5644231992 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes
    • Ozcan, U., et al. 2004. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 306:457-461.
    • (2004) Science , vol.306 , pp. 457-461
    • Ozcan, U.1
  • 35
    • 0036578921 scopus 로고    scopus 로고
    • Beta-cell-specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter beta-cell mass
    • Kulkarni, R.N., et al. 2002. Beta-cell-specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter beta-cell mass. Nat. Genet. 31:111-115.
    • (2002) Nat. Genet. , vol.31 , pp. 111-115
    • Kulkarni, R.N.1
  • 36
    • 0036791398 scopus 로고    scopus 로고
    • Defective insulin secretion in pancreatic β cells lacking type 1 IGF receptor
    • doi:10.1172/JCI200215276
    • Xuan, S., et al. 2002. Defective insulin secretion in pancreatic β cells lacking type 1 IGF receptor. J. Clin. Invest. 110:1011-1019. doi:10.1172/JCI200215276.
    • (2002) J. Clin. Invest. , vol.110 , pp. 1011-1019
    • Xuan, S.1
  • 37
    • 33646351975 scopus 로고    scopus 로고
    • Total insulin and IGF-I resistance in pancreatic β cells causes overt diabetes
    • Ueki, K., et al. 2006. Total insulin and IGF-I resistance in pancreatic β cells causes overt diabetes. Nat. Genet. 38:583-588.
    • (2006) Nat. Genet. , vol.38 , pp. 583-588
    • Ueki, K.1
  • 38
    • 33646351055 scopus 로고    scopus 로고
    • Ablation of PDK1 in pancreatic β cells induces diabetes as a result of loss of β-cell mass
    • Hashimoto, N., et al. 2006. Ablation of PDK1 in pancreatic β cells induces diabetes as a result of loss of β-cell mass. Nat. Genet. 38:589-593.
    • (2006) Nat. Genet. , vol.38 , pp. 589-593
    • Hashimoto, N.1
  • 39
    • 12344305124 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and type 2 diabetes
    • Lowell, B.B., and Shulman, G.I. 2005. Mitochondrial dysfunction and type 2 diabetes. Science. 307:384-387.
    • (2005) Science , vol.307 , pp. 384-387
    • Lowell, B.B.1    Shulman, G.I.2
  • 40
    • 20044380925 scopus 로고    scopus 로고
    • Deletion of Cdkn1b gene ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice
    • Uchida, T., et al. 2005. Deletion of Cdkn1b gene ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat. Med. 11:175-182.
    • (2005) Nat. Med. , vol.11 , pp. 175-182
    • Uchida, T.1
  • 41
    • 33745863033 scopus 로고    scopus 로고
    • Islet β cell failure in type 2 diabetes
    • doi:10.1172/JCI29103
    • Prentki, M., and Nolan, C.J. 2006. Islet β cell failure in type 2 diabetes. J. Clin. Invest. 116:1802-1812. doi:10.1172/JCI29103.
    • (2006) J. Clin. Invest. , vol.116 , pp. 1802-1812
    • Prentki, M.1    Nolan, C.J.2
  • 42
    • 0032560807 scopus 로고    scopus 로고
    • Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction
    • Haffner, S.M., Lehto, S., Ronnemaa, T., Pyorala, K., and Laakso, M. 2003. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 339:229-234.
    • (2003) N. Engl. J. Med. , vol.339 , pp. 229-234
    • Haffner, S.M.1    Lehto, S.2    Ronnemaa, T.3    Pyorala, K.4    Laakso, M.5
  • 43
    • 33745828640 scopus 로고    scopus 로고
    • Insulin resistance and atherosclerosis
    • doi:10.1172/JCI29024
    • Semenkovich, C.F. 2006. Insulin resistance and atherosclerosis. J. Clin. Invest. 116:1813-1822. doi:10.1172/JCI29024.
    • (2006) J. Clin. Invest. , vol.116 , pp. 1813-1822
    • Semenkovich, C.F.1
  • 44
    • 33645563765 scopus 로고    scopus 로고
    • Myeloid lineage cell-restricted insulin resistance protects apolipoproteinE-deficient mice against atherosclerosis
    • Baumgartl, J., et al. 2006. Myeloid lineage cell-restricted insulin resistance protects apolipoproteinE-deficient mice against atherosclerosis. Cell Metab. 3:247-256.
    • (2006) Cell Metab. , vol.3 , pp. 247-256
    • Baumgartl, J.1
  • 45
    • 33645567816 scopus 로고    scopus 로고
    • Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions
    • Han, S., et al. 2006. Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metab. 3:257-266.
    • (2006) Cell Metab. , vol.3 , pp. 257-266
    • Han, S.1
  • 46
    • 29144453326 scopus 로고    scopus 로고
    • Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes
    • DCCT/EDIC Study Research Group. 2005. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353:2643-2653.
    • (2005) N. Engl. J. Med. , vol.353 , pp. 2643-2653
  • 47
    • 85047690129 scopus 로고    scopus 로고
    • Why does diabetes increase atherosclerosis? I don't know!
    • doi:10.1172/JCI200421645
    • Goldberg, I.J. 2004. Why does diabetes increase atherosclerosis? I don't know! J. Clin. Invest. 114:613-615. doi:10.1172/JCI200421645.
    • (2004) J. Clin. Invest. , vol.114 , pp. 613-615
    • Goldberg, I.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.