-
1
-
-
84859827831
-
The proteasome: molecular machinery and pathophysiological roles
-
Tanaka K., Mizushima T., Saeki Y. The proteasome: molecular machinery and pathophysiological roles. Biol. Chem. 2012, 393:217-234.
-
(2012)
Biol. Chem.
, vol.393
, pp. 217-234
-
-
Tanaka, K.1
Mizushima, T.2
Saeki, Y.3
-
3
-
-
34247398719
-
Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons
-
Komatsu M., Ueno T., Waguri S., Uchiyama Y., Kominami E., Tanaka K. Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons. Cell Death Differ. 2007, 14:887-894.
-
(2007)
Cell Death Differ.
, vol.14
, pp. 887-894
-
-
Komatsu, M.1
Ueno, T.2
Waguri, S.3
Uchiyama, Y.4
Kominami, E.5
Tanaka, K.6
-
4
-
-
84859612545
-
Protein quality control in neurodegenerative disease
-
Gestwicki J.E., Garza D. Protein quality control in neurodegenerative disease. Prog. Mol. Biol. Transl. Sci. 2012, 107:327-353.
-
(2012)
Prog. Mol. Biol. Transl. Sci.
, vol.107
, pp. 327-353
-
-
Gestwicki, J.E.1
Garza, D.2
-
5
-
-
84875892111
-
Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease
-
Murrow L., Debnath J. Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu. Rev. Pathol. 2012, 8:105-137.
-
(2012)
Annu. Rev. Pathol.
, vol.8
, pp. 105-137
-
-
Murrow, L.1
Debnath, J.2
-
6
-
-
0026663539
-
The ubiquitin system for protein degradation
-
Hershko A., Ciechanover A. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 1992, 61:761-807.
-
(1992)
Annu. Rev. Biochem.
, vol.61
, pp. 761-807
-
-
Hershko, A.1
Ciechanover, A.2
-
7
-
-
50149086108
-
Diversity of degradation signals in the ubiquitin-proteasome system
-
Ravid T., Hochstrasser M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat. Rev. Mol. Cell Biol. 2008, 9:679-690.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 679-690
-
-
Ravid, T.1
Hochstrasser, M.2
-
8
-
-
84862761186
-
Diverse ubiquitin signaling in NF-kappaB activation
-
Iwai K. Diverse ubiquitin signaling in NF-kappaB activation. Trends Cell Biol. 2012, 22:355-364.
-
(2012)
Trends Cell Biol.
, vol.22
, pp. 355-364
-
-
Iwai, K.1
-
9
-
-
0023666139
-
The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses
-
Finley D., Ozkaynak E., Varshavsky A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 1987, 48:1035-1046.
-
(1987)
Cell
, vol.48
, pp. 1035-1046
-
-
Finley, D.1
Ozkaynak, E.2
Varshavsky, A.3
-
10
-
-
65249093732
-
An inhibitor of a deubiquitinating enzyme regulates ubiquitin homeostasis
-
Kimura Y., Yashiroda H., Kudo T., Koitabashi S., Murata S., Kakizuka A., Tanaka K. An inhibitor of a deubiquitinating enzyme regulates ubiquitin homeostasis. Cell 2009, 137:549-559.
-
(2009)
Cell
, vol.137
, pp. 549-559
-
-
Kimura, Y.1
Yashiroda, H.2
Kudo, T.3
Koitabashi, S.4
Murata, S.5
Kakizuka, A.6
Tanaka, K.7
-
11
-
-
38549136868
-
The mouse polyubiquitin gene Ubb is essential for meiotic progression
-
Ryu K.Y., Sinnar S.A., Reinholdt L.G., Vaccari S., Hall S., Garcia M.A., Zaitseva T.S., Bouley D.M., Boekelheide K., Handel M.A., Conti M., Kopito R.R. The mouse polyubiquitin gene Ubb is essential for meiotic progression. Mol. Cell. Biol. 2008, 28:1136-1146.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 1136-1146
-
-
Ryu, K.Y.1
Sinnar, S.A.2
Reinholdt, L.G.3
Vaccari, S.4
Hall, S.5
Garcia, M.A.6
Zaitseva, T.S.7
Bouley, D.M.8
Boekelheide, K.9
Handel, M.A.10
Conti, M.11
Kopito, R.R.12
-
12
-
-
34250007128
-
The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance
-
Ryu K.Y., Maehr R., Gilchrist C.A., Long M.A., Bouley D.M., Mueller B., Ploegh H.L., Kopito R.R. The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. EMBO J. 2007, 26:2693-2706.
-
(2007)
EMBO J.
, vol.26
, pp. 2693-2706
-
-
Ryu, K.Y.1
Maehr, R.2
Gilchrist, C.A.3
Long, M.A.4
Bouley, D.M.5
Mueller, B.6
Ploegh, H.L.7
Kopito, R.R.8
-
13
-
-
0023140474
-
Ubiquitin is a component of paired helical filaments in Alzheimer's disease
-
Mori H., Kondo J., Ihara Y. Ubiquitin is a component of paired helical filaments in Alzheimer's disease. Science 1987, 235:1641-1644.
-
(1987)
Science
, vol.235
, pp. 1641-1644
-
-
Mori, H.1
Kondo, J.2
Ihara, Y.3
-
14
-
-
84870061595
-
Cellular mechanisms of protein aggregate propagation
-
Holmes B.B., Diamond M.I. Cellular mechanisms of protein aggregate propagation. Curr. Opin. Neurol. 2012, 25:721-726.
-
(2012)
Curr. Opin. Neurol.
, vol.25
, pp. 721-726
-
-
Holmes, B.B.1
Diamond, M.I.2
-
15
-
-
0034578389
-
Aggresomes, inclusion bodies and protein aggregation
-
Kopito R.R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000, 10:524-530.
-
(2000)
Trends Cell Biol.
, vol.10
, pp. 524-530
-
-
Kopito, R.R.1
-
16
-
-
0030016595
-
Structure and functions of the 20S and 26S proteasomes
-
Coux O., Tanaka K., Goldberg A.L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 1996, 65:801-847.
-
(1996)
Annu. Rev. Biochem.
, vol.65
, pp. 801-847
-
-
Coux, O.1
Tanaka, K.2
Goldberg, A.L.3
-
17
-
-
0032488846
-
The proteasome: paradigm of a self-compartmentalizing protease
-
Baumeister W., Walz J., Zuhl F., Seemuller E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 1998, 92:367-380.
-
(1998)
Cell
, vol.92
, pp. 367-380
-
-
Baumeister, W.1
Walz, J.2
Zuhl, F.3
Seemuller, E.4
-
18
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78:477-513.
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
19
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4A resolution
-
Groll M., Ditzel L., Lowe J., Stock D., Bochtler M., Bartunik H.D., Huber R. Structure of 20S proteasome from yeast at 2.4A resolution. Nature 1997, 386:463-471.
-
(1997)
Nature
, vol.386
, pp. 463-471
-
-
Groll, M.1
Ditzel, L.2
Lowe, J.3
Stock, D.4
Bochtler, M.5
Bartunik, H.D.6
Huber, R.7
-
20
-
-
0036103598
-
The structure of the mammalian 20S proteasome at 2.75A resolution
-
Unno M., Mizushima T., Morimoto Y., Tomisugi Y., Tanaka K., Yasuoka N., Tsukihara T. The structure of the mammalian 20S proteasome at 2.75A resolution. Structure 2002, 10:609-618.
-
(2002)
Structure
, vol.10
, pp. 609-618
-
-
Unno, M.1
Mizushima, T.2
Morimoto, Y.3
Tomisugi, Y.4
Tanaka, K.5
Yasuoka, N.6
Tsukihara, T.7
-
21
-
-
84863115607
-
Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy
-
Sakata E., Bohn S., Mihalache O., Kiss P., Beck F., Nagy I., Nickell S., Tanaka K., Saeki Y., Forster F., Baumeister W. Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:1479-1484.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 1479-1484
-
-
Sakata, E.1
Bohn, S.2
Mihalache, O.3
Kiss, P.4
Beck, F.5
Nagy, I.6
Nickell, S.7
Tanaka, K.8
Saeki, Y.9
Forster, F.10
Baumeister, W.11
-
22
-
-
84859702750
-
Molecular model of the human 26S proteasome
-
da Fonseca P.C., He J., Morris E.P. Molecular model of the human 26S proteasome. Mol. Cell 2012, 46:54-66.
-
(2012)
Mol. Cell
, vol.46
, pp. 54-66
-
-
da Fonseca, P.C.1
He, J.2
Morris, E.P.3
-
23
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander G.C., Estrin E., Matyskiela M.E., Bashore C., Nogales E., Martin A. Complete subunit architecture of the proteasome regulatory particle. Nature 2012, 482:186-191.
-
(2012)
Nature
, vol.482
, pp. 186-191
-
-
Lander, G.C.1
Estrin, E.2
Matyskiela, M.E.3
Bashore, C.4
Nogales, E.5
Martin, A.6
-
24
-
-
84866269021
-
Near-atomic resolution structural model of the yeast 26S proteasome
-
Beck F., Unverdorben P., Bohn S., Schweitzer A., Pfeifer G., Sakata E., Nickell S., Plitzko J.M., Villa E., Baumeister W., Forster F. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:14870-14875.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 14870-14875
-
-
Beck, F.1
Unverdorben, P.2
Bohn, S.3
Schweitzer, A.4
Pfeifer, G.5
Sakata, E.6
Nickell, S.7
Plitzko, J.M.8
Villa, E.9
Baumeister, W.10
Forster, F.11
-
25
-
-
84857134729
-
Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
-
Lasker K., Forster F., Bohn S., Walzthoeni T., Villa E., Unverdorben P., Beck F., Aebersold R., Sali A., Baumeister W. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:1380-1387.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 1380-1387
-
-
Lasker, K.1
Forster, F.2
Bohn, S.3
Walzthoeni, T.4
Villa, E.5
Unverdorben, P.6
Beck, F.7
Aebersold, R.8
Sali, A.9
Baumeister, W.10
-
26
-
-
79951707743
-
ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle
-
Smith D.M., Fraga H., Reis C., Kafri G., Goldberg A.L. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 2011, 144:526-538.
-
(2011)
Cell
, vol.144
, pp. 526-538
-
-
Smith, D.M.1
Fraga, H.2
Reis, C.3
Kafri, G.4
Goldberg, A.L.5
-
27
-
-
3042794162
-
Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease
-
McNaught K.S., Perl D.P., Brownell A.L., Olanow C.W. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease. Ann. Neurol. 2004, 56:149-162.
-
(2004)
Ann. Neurol.
, vol.56
, pp. 149-162
-
-
McNaught, K.S.1
Perl, D.P.2
Brownell, A.L.3
Olanow, C.W.4
-
28
-
-
75149126921
-
Does impairment of the ubiquitin-proteasome system or the autophagy-lysosome pathway predispose individuals to neurodegenerative disorders such as Parkinson's disease?
-
Matsuda N., Tanaka K. Does impairment of the ubiquitin-proteasome system or the autophagy-lysosome pathway predispose individuals to neurodegenerative disorders such as Parkinson's disease?. J. Alzheimers Dis. 2010, 19:1-9.
-
(2010)
J. Alzheimers Dis.
, vol.19
, pp. 1-9
-
-
Matsuda, N.1
Tanaka, K.2
-
29
-
-
84855921130
-
Mice completely lacking immunoproteasomes show major changes in antigen presentation
-
Kincaid E.Z., Che J.W., York I., Escobar H., Reyes-Vargas E., Delgado J.C., Welsh R.M., Karow M.L., Murphy A.J., Valenzuela D.M., Yancopoulos G.D., Rock K.L. Mice completely lacking immunoproteasomes show major changes in antigen presentation. Nat. Immunol. 2012, 13:129-135.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 129-135
-
-
Kincaid, E.Z.1
Che, J.W.2
York, I.3
Escobar, H.4
Reyes-Vargas, E.5
Delgado, J.C.6
Welsh, R.M.7
Karow, M.L.8
Murphy, A.J.9
Valenzuela, D.M.10
Yancopoulos, G.D.11
Rock, K.L.12
-
30
-
-
34249883977
-
Regulation of CD8+ T cell development by thymus-specific proteasomes
-
Murata S., Sasaki K., Kishimoto T., Niwa S., Hayashi H., Takahama Y., Tanaka K. Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 2007, 316:1349-1353.
-
(2007)
Science
, vol.316
, pp. 1349-1353
-
-
Murata, S.1
Sasaki, K.2
Kishimoto, T.3
Niwa, S.4
Hayashi, H.5
Takahama, Y.6
Tanaka, K.7
-
31
-
-
51149121890
-
Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies
-
Bedford L., Hay D., Devoy A., Paine S., Powe D.G., Seth R., Gray T., Topham I., Fone K., Rezvani N., Mee M., Soane T., Layfield R., Sheppard P.W., Ebendal T., Usoskin D., Lowe J., Mayer R.J. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J. Neurosci. 2008, 28:8189-8198.
-
(2008)
J. Neurosci.
, vol.28
, pp. 8189-8198
-
-
Bedford, L.1
Hay, D.2
Devoy, A.3
Paine, S.4
Powe, D.G.5
Seth, R.6
Gray, T.7
Topham, I.8
Fone, K.9
Rezvani, N.10
Mee, M.11
Soane, T.12
Layfield, R.13
Sheppard, P.W.14
Ebendal, T.15
Usoskin, D.16
Lowe, J.17
Mayer, R.J.18
-
32
-
-
84863084445
-
Heterozygosity for the proteasomal Psmc1 ATPase is insufficient to cause neuropathology in mouse brain, but causes cell cycle defects in mouse embryonic fibroblasts
-
Rezvani N., Elkharaz J., Lawler K., Mee M., Mayer R.J., Bedford L. Heterozygosity for the proteasomal Psmc1 ATPase is insufficient to cause neuropathology in mouse brain, but causes cell cycle defects in mouse embryonic fibroblasts. Neurosci. Lett. 2012, 521:130-135.
-
(2012)
Neurosci. Lett.
, vol.521
, pp. 130-135
-
-
Rezvani, N.1
Elkharaz, J.2
Lawler, K.3
Mee, M.4
Mayer, R.J.5
Bedford, L.6
-
33
-
-
84871150225
-
Motor neuron-specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis
-
Tashiro Y., Urushitani M., Inoue H., Koike M., Uchiyama Y., Komatsu M., Tanaka K., Yamazaki M., Abe M., Misawa H., Sakimura K., Ito H., Takahashi R. Motor neuron-specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis. J. Biol. Chem. 2012, 287:42984-42994.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 42984-42994
-
-
Tashiro, Y.1
Urushitani, M.2
Inoue, H.3
Koike, M.4
Uchiyama, Y.5
Komatsu, M.6
Tanaka, K.7
Yamazaki, M.8
Abe, M.9
Misawa, H.10
Sakimura, K.11
Ito, H.12
Takahashi, R.13
-
34
-
-
59449095881
-
Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process
-
Tonoki A., Kuranaga E., Tomioka T., Hamazaki J., Murata S., Tanaka K., Miura M. Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol. Cell. Biol. 2009, 29:1095-1106.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 1095-1106
-
-
Tonoki, A.1
Kuranaga, E.2
Tomioka, T.3
Hamazaki, J.4
Murata, S.5
Tanaka, K.6
Miura, M.7
-
35
-
-
84866182143
-
RPN-6 determines C. elegans longevity under proteotoxic stress conditions
-
Vilchez D., Morantte I., Liu Z., Douglas P.M., Merkwirth C., Rodrigues A.P., Manning G., Dillin A. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 2012, 489:263-268.
-
(2012)
Nature
, vol.489
, pp. 263-268
-
-
Vilchez, D.1
Morantte, I.2
Liu, Z.3
Douglas, P.M.4
Merkwirth, C.5
Rodrigues, A.P.6
Manning, G.7
Dillin, A.8
-
36
-
-
84866167976
-
Increased proteasome activity in human embryonic stem cells is regulated by PSMD11
-
Vilchez D., Boyer L., Morantte I., Lutz M., Merkwirth C., Joyce D., Spencer B., Page L., Masliah E., Berggren W.T., Gage F.H., Dillin A. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 2012, 489:304-308.
-
(2012)
Nature
, vol.489
, pp. 304-308
-
-
Vilchez, D.1
Boyer, L.2
Morantte, I.3
Lutz, M.4
Merkwirth, C.5
Joyce, D.6
Spencer, B.7
Page, L.8
Masliah, E.9
Berggren, W.T.10
Gage, F.H.11
Dillin, A.12
-
37
-
-
84856023509
-
The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together
-
Pathare G.R., Nagy I., Bohn S., Unverdorben P., Hubert A., Korner R., Nickell S., Lasker K., Sali A., Tamura T., Nishioka T., Forster F., Baumeister W., Bracher A. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:149-154.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 149-154
-
-
Pathare, G.R.1
Nagy, I.2
Bohn, S.3
Unverdorben, P.4
Hubert, A.5
Korner, R.6
Nickell, S.7
Lasker, K.8
Sali, A.9
Tamura, T.10
Nishioka, T.11
Forster, F.12
Baumeister, W.13
Bracher, A.14
-
38
-
-
77955302229
-
PAC1 gene knockout reveals an essential role of chaperone-mediated 20S proteasome biogenesis and latent 20S proteasomes in cellular homeostasis
-
Sasaki K., Hamazaki J., Koike M., Hirano Y., Komatsu M., Uchiyama Y., Tanaka K., Murata S. PAC1 gene knockout reveals an essential role of chaperone-mediated 20S proteasome biogenesis and latent 20S proteasomes in cellular homeostasis. Mol. Cell. Biol. 2010, 30:3864-3874.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 3864-3874
-
-
Sasaki, K.1
Hamazaki, J.2
Koike, M.3
Hirano, Y.4
Komatsu, M.5
Uchiyama, Y.6
Tanaka, K.7
Murata, S.8
-
40
-
-
84863230500
-
Assembly and function of the proteasome
-
Saeki Y., Tanaka K. Assembly and function of the proteasome. Methods Mol. Biol. 2012, 832:315-337.
-
(2012)
Methods Mol. Biol.
, vol.832
, pp. 315-337
-
-
Saeki, Y.1
Tanaka, K.2
-
41
-
-
72549095406
-
Regulation mechanisms and signaling pathways of autophagy
-
He C., Klionsky D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 2009, 43:67-93.
-
(2009)
Annu. Rev. Genet.
, vol.43
, pp. 67-93
-
-
He, C.1
Klionsky, D.J.2
-
42
-
-
81055144784
-
Autophagy: renovation of cells and tissues
-
Mizushima N., Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011, 147:728-741.
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
43
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma A., Hatano M., Matsui M., Yamamoto A., Nakaya H., Yoshimori T., Ohsumi Y., Tokuhisa T., Mizushima N. The role of autophagy during the early neonatal starvation period. Nature 2004, 432:1032-1036.
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
Hatano, M.2
Matsui, M.3
Yamamoto, A.4
Nakaya, H.5
Yoshimori, T.6
Ohsumi, Y.7
Tokuhisa, T.8
Mizushima, N.9
-
44
-
-
46849115787
-
Autophagy is essential for preimplantation development of mouse embryos
-
Tsukamoto S., Kuma A., Murakami M., Kishi C., Yamamoto A., Mizushima N. Autophagy is essential for preimplantation development of mouse embryos. Science 2008, 321:117-120.
-
(2008)
Science
, vol.321
, pp. 117-120
-
-
Tsukamoto, S.1
Kuma, A.2
Murakami, M.3
Kishi, C.4
Yamamoto, A.5
Mizushima, N.6
-
45
-
-
77955894794
-
Short-term fasting induces profound neuronal autophagy
-
Alirezaei M., Kemball C.C., Flynn C.T., Wood M.R., Whitton J.L., Kiosses W.B. Short-term fasting induces profound neuronal autophagy. Autophagy 2010, 6:702-710.
-
(2010)
Autophagy
, vol.6
, pp. 702-710
-
-
Alirezaei, M.1
Kemball, C.C.2
Flynn, C.T.3
Wood, M.R.4
Whitton, J.L.5
Kiosses, W.B.6
-
46
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu M., Waguri S., Chiba T., Murata S., Iwata J., Tanida I., Ueno T., Koike M., Uchiyama Y., Kominami E., Tanaka K. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441:880-884.
-
(2006)
Nature
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
Waguri, S.2
Chiba, T.3
Murata, S.4
Iwata, J.5
Tanida, I.6
Ueno, T.7
Koike, M.8
Uchiyama, Y.9
Kominami, E.10
Tanaka, K.11
-
47
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara T., Nakamura K., Matsui M., Yamamoto A., Nakahara Y., Suzuki-Migishima R., Yokoyama M., Mishima K., Saito I., Okano H., Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006, 441:885-889.
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
Yamamoto, A.4
Nakahara, Y.5
Suzuki-Migishima, R.6
Yokoyama, M.7
Mishima, K.8
Saito, I.9
Okano, H.10
Mizushima, N.11
-
48
-
-
35448938087
-
Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration
-
Komatsu M., Wang Q.J., Holstein G.R., Friedrich V.L., Iwata J., Kominami E., Chait B.T., Tanaka K., Yue Z. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:14489-14494.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 14489-14494
-
-
Komatsu, M.1
Wang, Q.J.2
Holstein, G.R.3
Friedrich, V.L.4
Iwata, J.5
Kominami, E.6
Chait, B.T.7
Tanaka, K.8
Yue, Z.9
-
50
-
-
84861939463
-
P62: a versatile multitasker takes on cancer
-
Moscat J., Diaz-Meco M.T. p62: a versatile multitasker takes on cancer. Trends Biochem. Sci. 2012, 37:230-236.
-
(2012)
Trends Biochem. Sci.
, vol.37
, pp. 230-236
-
-
Moscat, J.1
Diaz-Meco, M.T.2
-
51
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
-
Komatsu M., Waguri S., Koike M., Sou Y.S., Ueno T., Hara T., Mizushima N., Iwata J., Ezaki J., Murata S., Hamazaki J., Nishito Y., Iemura S., Natsume T., Yanagawa T., Uwayama J., Warabi E., Yoshida H., Ishii T., Kobayashi A., Yamamoto M., Yue Z., Uchiyama Y., Kominami E., Tanaka K. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007, 131:1149-1163.
-
(2007)
Cell
, vol.131
, pp. 1149-1163
-
-
Komatsu, M.1
Waguri, S.2
Koike, M.3
Sou, Y.S.4
Ueno, T.5
Hara, T.6
Mizushima, N.7
Iwata, J.8
Ezaki, J.9
Murata, S.10
Hamazaki, J.11
Nishito, Y.12
Iemura, S.13
Natsume, T.14
Yanagawa, T.15
Uwayama, J.16
Warabi, E.17
Yoshida, H.18
Ishii, T.19
Kobayashi, A.20
Yamamoto, M.21
Yue, Z.22
Uchiyama, Y.23
Kominami, E.24
Tanaka, K.25
more..
-
52
-
-
4444220680
-
Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation
-
Seibenhener M.L., Babu J.R., Geetha T., Wong H.C., Krishna N.R., Wooten M.W. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol. 2004, 24:8055-8068.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 8055-8068
-
-
Seibenhener, M.L.1
Babu, J.R.2
Geetha, T.3
Wong, H.C.4
Krishna, N.R.5
Wooten, M.W.6
-
54
-
-
33644543761
-
Expanding insights of mitochondrial dysfunction in Parkinson's disease
-
Abou-Sleiman P.M., Muqit M.M., Wood N.W. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat. Rev. Neurosci. 2006, 7:207-219.
-
(2006)
Nat. Rev. Neurosci.
, vol.7
, pp. 207-219
-
-
Abou-Sleiman, P.M.1
Muqit, M.M.2
Wood, N.W.3
-
55
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., Yokochi M., Mizuno Y., Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392:605-608.
-
(1998)
Nature
, vol.392
, pp. 605-608
-
-
Kitada, T.1
Asakawa, S.2
Hattori, N.3
Matsumine, H.4
Yamamura, Y.5
Minoshima, S.6
Yokochi, M.7
Mizuno, Y.8
Shimizu, N.9
-
56
-
-
0033933048
-
Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase
-
Shimura H., Hattori N., Kubo S., Mizuno Y., Asakawa S., Minoshima S., Shimizu N., Iwai K., Chiba T., Tanaka K., Suzuki T. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 2000, 25:302-305.
-
(2000)
Nat. Genet.
, vol.25
, pp. 302-305
-
-
Shimura, H.1
Hattori, N.2
Kubo, S.3
Mizuno, Y.4
Asakawa, S.5
Minoshima, S.6
Shimizu, N.7
Iwai, K.8
Chiba, T.9
Tanaka, K.10
Suzuki, T.11
-
57
-
-
2442668926
-
Hereditary early-onset Parkinson's disease caused by mutations in PINK1
-
Valente E.M., Abou-Sleiman P.M., Caputo V., Muqit M.M., Harvey K., Gispert S., Ali Z., Del Turco D., Bentivoglio A.R., Healy D.G., Albanese A., Nussbaum R., Gonzalez-Maldonado R., Deller T., Salvi S., Cortelli P., Gilks W.P., Latchman D.S., Harvey R.J., Dallapiccola B., Auburger G., Wood N.W. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004, 304:1158-1160.
-
(2004)
Science
, vol.304
, pp. 1158-1160
-
-
Valente, E.M.1
Abou-Sleiman, P.M.2
Caputo, V.3
Muqit, M.M.4
Harvey, K.5
Gispert, S.6
Ali, Z.7
Del Turco, D.8
Bentivoglio, A.R.9
Healy, D.G.10
Albanese, A.11
Nussbaum, R.12
Gonzalez-Maldonado, R.13
Deller, T.14
Salvi, S.15
Cortelli, P.16
Gilks, W.P.17
Latchman, D.S.18
Harvey, R.J.19
Dallapiccola, B.20
Auburger, G.21
Wood, N.W.22
more..
-
58
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra D.P., Jin S.M., Tanaka A., Suen D.F., Gautier C.A., Shen J., Cookson M.R., Youle R.J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010, 8:e1000298.
-
(2010)
PLoS Biol.
, vol.8
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
Cookson, M.R.7
Youle, R.J.8
-
59
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
Matsuda N., Sato S., Shiba K., Okatsu K., Saisho K., Gautier C.A., Sou Y.S., Saiki S., Kawajiri S., Sato F., Kimura M., Komatsu M., Hattori N., Tanaka K. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 2010, 189:211-221.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
Sato, S.2
Shiba, K.3
Okatsu, K.4
Saisho, K.5
Gautier, C.A.6
Sou, Y.S.7
Saiki, S.8
Kawajiri, S.9
Sato, F.10
Kimura, M.11
Komatsu, M.12
Hattori, N.13
Tanaka, K.14
-
60
-
-
77950384477
-
Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin
-
Ziviani E., Tao R.N., Whitworth A.J. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:5018-5023.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 5018-5023
-
-
Ziviani, E.1
Tao, R.N.2
Whitworth, A.J.3
-
61
-
-
75949098487
-
PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
-
Vives-Bauza C., Zhou C., Huang Y., Cui M., de Vries R.L., Kim J., May J., Tocilescu M.A., Liu W., Ko H.S., Magrane J., Moore D.J., Dawson V.L., Grailhe R., Dawson T.M., Li C., Tieu K., Przedborski S. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:378-383.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 378-383
-
-
Vives-Bauza, C.1
Zhou, C.2
Huang, Y.3
Cui, M.4
de Vries, R.L.5
Kim, J.6
May, J.7
Tocilescu, M.A.8
Liu, W.9
Ko, H.S.10
Magrane, J.11
Moore, D.J.12
Dawson, V.L.13
Grailhe, R.14
Dawson, T.M.15
Li, C.16
Tieu, K.17
Przedborski, S.18
-
62
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler S., Holmstrom K.M., Skujat D., Fiesel F.C., Rothfuss O.C., Kahle P.J., Springer W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 2010, 12:119-131.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmstrom, K.M.2
Skujat, D.3
Fiesel, F.C.4
Rothfuss, O.C.5
Kahle, P.J.6
Springer, W.7
-
63
-
-
78649685455
-
Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
-
Jin S.M., Lazarou M., Wang C., Kane L.A., Narendra D.P., Youle R.J. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 2010, 191:933-942.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 933-942
-
-
Jin, S.M.1
Lazarou, M.2
Wang, C.3
Kane, L.A.4
Narendra, D.P.5
Youle, R.J.6
-
64
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
-
Lazarou M., Jin S.M., Kane L.A., Youle R.J. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell 2012, 22:320-333.
-
(2012)
Dev. Cell
, vol.22
, pp. 320-333
-
-
Lazarou, M.1
Jin, S.M.2
Kane, L.A.3
Youle, R.J.4
-
65
-
-
84866072587
-
PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
-
Okatsu K., Oka T., Iguchi M., Imamura K., Kosako H., Tani N., Kimura M., Go E., Koyano F., Funayama M., Shiba-Fukushima K., Sato S., Shimizu H., Fukunaga Y., Taniguchi H., Komatsu M., Hattori N., Mihara K., Tanaka K., Matsuda N. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun. 2012, 3:1016.
-
(2012)
Nat. Commun.
, vol.3
, pp. 1016
-
-
Okatsu, K.1
Oka, T.2
Iguchi, M.3
Imamura, K.4
Kosako, H.5
Tani, N.6
Kimura, M.7
Go, E.8
Koyano, F.9
Funayama, M.10
Shiba-Fukushima, K.11
Sato, S.12
Shimizu, H.13
Fukunaga, Y.14
Taniguchi, H.15
Komatsu, M.16
Hattori, N.17
Mihara, K.18
Tanaka, K.19
Matsuda, N.20
more..
-
66
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
-
Kondapalli C., Kazlauskaite A., Zhang N., Woodroof H.I., Campbell D.G., Gourlay R., Burchell L., Walden H., Macartney T.J., Deak M., Knebel A., Alessi D.R., Muqit M.M. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2012, 2:120080.
-
(2012)
Open Biol.
, vol.2
, pp. 120080
-
-
Kondapalli, C.1
Kazlauskaite, A.2
Zhang, N.3
Woodroof, H.I.4
Campbell, D.G.5
Gourlay, R.6
Burchell, L.7
Walden, H.8
Macartney, T.J.9
Deak, M.10
Knebel, A.11
Alessi, D.R.12
Muqit, M.M.13
-
67
-
-
79957949190
-
UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids
-
Wenzel D.M., Lissounov A., Brzovic P.S., Klevit R.E. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 2011, 474:105-108.
-
(2011)
Nature
, vol.474
, pp. 105-108
-
-
Wenzel, D.M.1
Lissounov, A.2
Brzovic, P.S.3
Klevit, R.E.4
-
68
-
-
84866122688
-
Autophagy modulation as a potential therapeutic target for diverse diseases
-
Rubinsztein D.C., Codogno P., Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 2012, 11:709-730.
-
(2012)
Nat. Rev. Drug Discov.
, vol.11
, pp. 709-730
-
-
Rubinsztein, D.C.1
Codogno, P.2
Levine, B.3
-
69
-
-
77956527159
-
Enhancement of proteasome activity by a small-molecule inhibitor of USP14
-
Lee B.H., Lee M.J., Park S., Oh D.C., Elsasser S., Chen P.C., Gartner C., Dimova N., Hanna J., Gygi S.P., Wilson S.M., King R.W., Finley D. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 2010, 467:179-184.
-
(2010)
Nature
, vol.467
, pp. 179-184
-
-
Lee, B.H.1
Lee, M.J.2
Park, S.3
Oh, D.C.4
Elsasser, S.5
Chen, P.C.6
Gartner, C.7
Dimova, N.8
Hanna, J.9
Gygi, S.P.10
Wilson, S.M.11
King, R.W.12
Finley, D.13
|