메뉴 건너뛰기




Volumn 5, Issue 3, 2011, Pages 618-628

Active learning via multi-view and local proximity co-regularization for hyperspectral image classification

Author keywords

Active learning; classification; data regularization; hyperspectral data; multi view learning

Indexed keywords

ACTIVE LEARNING; CLASSIFICATION; DATA REGULARIZATION; HYPERSPECTRAL DATA; MULTI-VIEW LEARNING;

EID: 79957458331     PISSN: 19324553     EISSN: None     Source Type: Journal    
DOI: 10.1109/JSTSP.2011.2123077     Document Type: Article
Times cited : (92)

References (35)
  • 1
    • 33947617297 scopus 로고    scopus 로고
    • Interactive remote-sensing image retrieval using active relevance feedback
    • DOI 10.1109/TGRS.2007.892007
    • M. Ferecatu and N. Boujemaa, "Interactive remote-sensing image retrieval using active relevance feedback," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 818-826, Apr. 2007. (Pubitemid 46495617)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.4 , pp. 818-826
    • Ferecatu, M.1    Boujemaa, N.2
  • 2
    • 2942558578 scopus 로고    scopus 로고
    • Segmentation of multispectral remote sensing images using active support vector machines
    • DOI 10.1016/j.patrec.2004.03.004, PII S0167865504000704
    • P. Mitra, B. U. Shankar, and S. K. Pal, "Segmentation of multispectral remote sensing images using active support vector machines," Pattern Recognition Lett., vol. 25, no. 9, pp. 1067-1074, Jul. 2004. (Pubitemid 38763570)
    • (2004) Pattern Recognition Letters , vol.25 , Issue.9 , pp. 1067-1074
    • Mitra, P.1    Uma Shankar, B.2    Pal, S.K.3
  • 3
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • DOI 10.1109/TGRS.2007.910220, 4469868
    • S. Rajan, J. Ghosh, and M. M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008. (Pubitemid 351459470)
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 5
    • 68949155363 scopus 로고    scopus 로고
    • A self-training approach to cost sensitive uncertainty sampling
    • A. Liu, G. Jun, and J. Ghosh, "A self-training approach to cost sensitive uncertainty sampling,," Mach. Learn. J., vol. 76, no. 2, pp. 257-270, 2009.
    • (2009) Mach. Learn.J. , vol.76 , Issue.2 , pp. 257-270
    • Liu, A.1    Jun, G.2    Ghosh, J.3
  • 6
    • 78649286256 scopus 로고    scopus 로고
    • Locally consistent graph regularization based active learning for hyperspectral image classification
    • Reykjavik, Iceland
    • W. Di and M. Crawford, "Locally consistent graph regularization based active learning for hyperspectral image classification," in Proc. 2nd IEEE Workshop Hyperspectral Image Signal Process.: Evolut. Remote Sens., Reykjavik, Iceland, 2010, pp. 1-4.
    • (2010) Proc. 2nd IEEE Workshop Hyperspectral Image Signal Process.: Evolut. Remote Sens , pp. 1-4
    • Di, W.1    Crawford, M.2
  • 7
    • 78650907095 scopus 로고    scopus 로고
    • Multi-view adaptive disagreement based active learning for hyperspectral image classification
    • Honolulu, HI
    • W. Di and M. Crawford, "Multi-view adaptive disagreement based active learning for hyperspectral image classification," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Honolulu, HI, 2010, pp. 1374-1377.
    • (2010) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 1374-1377
    • Di, W.1    Crawford, M.2
  • 8
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vectors machines
    • Stanford, CA Jul.
    • G. Schohn and D. Cohn, "Less is more: Active learning with support vectors machines," in Proc. 17th Int. Conf. Mach. Learn., Stanford, CA, Jul. 2000, pp. 839-846.
    • (2000) Proc. 17th Int. Conf. Mach. Learn. , pp. 839-846
    • Schohn, G.1    Cohn, D.2
  • 9
  • 11
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Mar.
    • S. Tong and D. Koller, "Support vector machine active learning with applications to text classification," J. Mach. Learn. Res. Archive, vol. 2, pp. 45-66, Mar. 2002.
    • (2002) J. Mach. Learn. Res. Archive , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 15
    • 0005986550 scopus 로고
    • Learning classification with unlabeled data
    • V. R. de Sa, "Learning classification with unlabeled data," Adv. Neural Inf. Process. Syst., vol. 6, pp. 112-119, 1994.
    • (1994) Adv. Neural Inf. Process. Syst. , vol.6 , pp. 112-119
    • De Sa, V.R.1
  • 16
    • 67349142649 scopus 로고    scopus 로고
    • Multi-view kernel machine on single view data
    • Jun.
    • Z. Wang and S. Chen, "Multi-view kernel machine on single view data," Neurocomputing, vol. 72, no. 10-12, pp. 2444-2449, Jun. 2009.
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2444-2449
    • Wang, Z.1    Chen, S.2
  • 17
    • 3242788638 scopus 로고    scopus 로고
    • Active + semi-supervised learning = robust multi-view learning
    • Sydney, Australia Jul.
    • I. Muslea, S. Minton, and C. Knoblock, "Active + semi-supervised learning = robust multi-view learning," in Proc. 19th Int. Conf. Mach. Learn., Sydney, Australia, Jul. 2002, pp. 435-442.
    • (2002) Proc. 19th Int. Conf. Mach. Learn. , pp. 435-442
    • Muslea, I.1    Minton, S.2    Knoblock, C.3
  • 21
  • 23
    • 33745727401 scopus 로고    scopus 로고
    • Nonlinear feature extraction of hyperspectral data based on locally linear embedding
    • Seoul, Korea Jul.
    • T. Han and D. G. Goodenough, "Nonlinear feature extraction of hyperspectral data based on locally linear embedding," in IEEE Int. Conf. Symp. Geosci. Remote Sens. Symp., Seoul, Korea, Jul. 2005, vol. 2, pp. 1237-1240.
    • (2005) IEEE Int. Conf. Symp. Geosci. Remote Sens. Symp. , vol.2 , pp. 1237-1240
    • Han, T.1    Goodenough, D.G.2
  • 24
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 25
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
    • Dec.
    • Z. Zhang and H. Zha, "Principal manifolds and nonlinear dimensionality reduction via tangent space alignment," SIAM J. Sci. Comput., vol. 26, no. 1, pp. 313-338, Dec. 2004.
    • (2004) SIAM J. Sci. Comput. , vol.26 , Issue.1 , pp. 313-338
    • Zhang, Z.1    Zha, H.2
  • 26
    • 78049256476 scopus 로고    scopus 로고
    • Adaptive classification for hyperspectral image data using manifold regularization kernel machines
    • Nov.
    • W. Kim and M. M. Crawford, "Adaptive classification for hyperspectral image data using manifold regularization kernel machines,"IEEETrans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4110-4121, Nov. 2010.
    • (2010) IEEETrans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4110-4121
    • Kim, W.1    Crawford, M.M.2
  • 27
    • 78049264379 scopus 로고    scopus 로고
    • Local manifold learning-based k-nearest-neighbor for hyperspectral image classification
    • Nov.
    • L. Ma, M. M. Crawford, and J. Tian, "Local manifold learning-based k-nearest-neighbor for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4099-4109, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4099-4109
    • Ma, L.1    Crawford, M.M.2    Tian, J.3
  • 28
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification of hyperspectral data
    • DOI 10.1109/36.934070, PII S0196289201054894
    • S. Kumar, J. Ghosh, and M. M. Crawford, "Best-Bases feature extraction algorithms for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1368-1379, Jul. 2001. (Pubitemid 32732653)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 29
    • 0032737410 scopus 로고    scopus 로고
    • Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification
    • Jan.
    • X. Jia and J. A. Richards, "Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 1, pp. 538-542, Jan. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.1 , pp. 538-542
    • Jia, X.1    Richards, J.A.2
  • 33
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • DOI 10.1109/TGRS.2004.842481
    • J. Ham, Y. Chen, M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005. (Pubitemid 40320271)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.