메뉴 건너뛰기




Volumn 34, Issue 2, 1996, Pages 398-404

Remote sensing of forest change using artificial neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; FORESTRY; IMAGE ANALYSIS; IMAGE SEGMENTATION; LAND USE; MATHEMATICAL MODELS; MATHEMATICAL TRANSFORMATIONS; MODIFICATION; REMOTE SENSING;

EID: 0030104285     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/36.485117     Document Type: Article
Times cited : (212)

References (43)
  • 1
    • 0000588294 scopus 로고    scopus 로고
    • "Improving the generalization properties of radial basis function neural networks,"
    • vol. 3, pp. 930-945, 1991.
    • C. Bishop, "Improving the generalization properties of radial basis function neural networks," Neural Computation, vol. 3, pp. 930-945, 1991.
    • Neural Computation
    • Bishop, C.1
  • 2
    • 0025453627 scopus 로고    scopus 로고
    • "Neural network approaches versus statistical methods in classification of multisource remote sensing data,"
    • vol. 28, pp. 540-552, 1990.
    • I. A. Benediktsson, P. H. Swain, and O. K. Ersoy, "Neural network approaches versus statistical methods in classification of multisource remote sensing data," IEEE Trans. Ceosci. Remote Sensing, vol. 28, pp. 540-552, 1990.
    • IEEE Trans. Ceosci. Remote Sensing
    • Benediktsson, I.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 3
    • 84973857317 scopus 로고    scopus 로고
    • "ART2: Self-organization of stable category recognition codes for analogue input patterns,"
    • vol. 26, pp. 4919-41930, 1987.
    • G. A. Carpenter and S. Grossberg, "ART2: Self-organization of stable category recognition codes for analogue input patterns," Appl. Opt., vol. 26, pp. 4919-41930, 1987.
    • Appl. Opt.
    • Carpenter, G.A.1    Grossberg, S.2
  • 5
    • 0025889915 scopus 로고    scopus 로고
    • "ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network,"
    • vol. 4, pp. 565-588, 1991.
    • G. A. Carpenter, S. Grossberg, and J. H. Reynolds, "ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network," Neural Networks, vol. 4, pp. 565-588, 1991.
    • Neural Networks
    • Carpenter, G.A.1    Grossberg, S.2    Reynolds, J.H.3
  • 6
    • 0026408256 scopus 로고    scopus 로고
    • "Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system,"
    • vol. 4, pp. 759-771, 1991.
    • G. A. Carpenter, S. Grossberg, and D. N. Rosen, "Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system," Neural Networks, vol. 4, pp. 759-771, 1991.
    • Neural Networks
    • Carpenter, G.A.1    Grossberg, S.2    Rosen, D.N.3
  • 8
    • 0028669115 scopus 로고    scopus 로고
    • "Change detection using the GrammSchmidt transformation applied to mapping forest mortality,''
    • vol. 50, pp. 267-279, 1995.
    • I. B. Collins and C. E. Woodcock, "Change detection using the GrammSchmidt transformation applied to mapping forest mortality,'' Remote Sensing Environ., vol. 50, pp. 267-279, 1995.
    • Remote Sensing Environ.
    • Collins, I.B.1    Woodcock, C.E.2
  • 9
    • 0028467503 scopus 로고    scopus 로고
    • "Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features,"
    • vol. 32, no. 4, pp. 918-927, 1994.
    • P. R. Coppin and M. E. Bauer, "Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features," IEEE Trans. Geosci. Remote Sensing, vol. 32, no. 4, pp. 918-927, 1994.
    • IEEE Trans. Geosci. Remote Sensing
    • Coppin, P.R.1    Bauer, M.E.2
  • 11
    • 0024861871 scopus 로고    scopus 로고
    • "Approximation by superpositions of sigmoidal function,"
    • vol. 2, pp. 303-314, 1980.
    • G. Cybenko, "Approximation by superpositions of sigmoidal function," Math. Contr., Signals, Syst., vol. 2, pp. 303-314, 1980.
    • Math. Contr., Signals, Syst.
    • Cybenko, G.1
  • 12
    • 84964515433 scopus 로고    scopus 로고
    • "Sea ice classification using fast learning neural networks," in
    • Houston, TX, 1992, vol. 2, pp. 1070-1071.
    • M. S. Dawson. A. K. Fung, and M. T. Manry, "Sea ice classification using fast learning neural networks," in P roc. IGARSS'92. Houston, TX, 1992, vol. 2, pp. 1070-1071.
    • P Roc. IGARSS'92
    • Dawson, M.S.1    Fung, A.K.2    Manry, M.T.3
  • 15
    • 0029749418 scopus 로고    scopus 로고
    • "Learning in single hidden layer feedforward neural network models,"
    • 1996, in press.
    • S. Gopal and M. Fischer, "Learning in single hidden layer feedforward neural network models," Geographical Analysis, 1996, in press.
    • Geographical Analysis
    • Gopal, S.1    Fischer, M.2
  • 16
    • 40649128119 scopus 로고    scopus 로고
    • "Nonlinear neural networks: Principles, mechanisms and architectures,"
    • vol. 1, pp. 17-61, 1988.
    • S. Grossberg, "Nonlinear neural networks: Principles, mechanisms and architectures," Neural Networks, vol. 1, pp. 17-61, 1988.
    • Neural Networks
    • Grossberg, S.1
  • 18
    • 0025573206 scopus 로고    scopus 로고
    • "Artificial neural network classification using a minimal training set comparison of conventional supervised classification,"
    • vol. 56, pp. 469-473, 1990.
    • G. F. Hepner, T. Logan, N. Ritter, and N. Bryant, "Artificial neural network classification using a minimal training set comparison of conventional supervised classification," Photogrammetric Eng. Remote Sensing, vol. 56, pp. 469-473, 1990.
    • Photogrammetric Eng. Remote Sensing
    • Hepner, G.F.1    Logan, T.2    Ritter, N.3    Bryant, N.4
  • 19
    • 0020118274 scopus 로고    scopus 로고
    • "Neural networks and physical systems with emergent collective computational abilities," in
    • 1982, vol. 79, pp.' 2554-2558.
    • J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities," in Proc. National Academy of Sciences, 1982, vol. 79, pp.' 2554-2558.
    • Proc. National Academy of Sciences
    • Hopfield, J.J.1
  • 20
    • 0024880831 scopus 로고    scopus 로고
    • "Multilayer feedforward networks are universal approximators,"
    • vol. 2, pp. 359-366, 1989.
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, vol. 2, pp. 359-366, 1989.
    • Neural Networks
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 21
    • 0024137490 scopus 로고    scopus 로고
    • "Increased rates of .convergence through learning rate adaptations,"
    • vol. 1, pp. 295-307, 1988.
    • R. A. Jacobs, "Increased rates of .convergence through learning rate adaptations," Neural Networks, vol. 1, pp. 295-307, 1988.
    • Neural Networks
    • Jacobs, R.A.1
  • 22
    • 0026442955 scopus 로고    scopus 로고
    • "Landcover discrimination in SPOT HRV imagery using an artificial neural network-A 20-class experiment,"
    • vol. 13, no. 5, pp. 917-924, 1992.
    • J A. Kanellopoulos, A. Yarn's, G. G. Wilkinson, and J. Megier, "Landcover discrimination in SPOT HRV imagery using an artificial neural network-A 20-class experiment," Int. J. Remote Sensing, vol. 13, no. 5, pp. 917-924, 1992.
    • Int. J. Remote Sensing
    • Kanellopoulos, J.A.1    Yarn'S, A.2    Wilkinson, G.G.3    Megier, J.4
  • 25
    • 0028581089 scopus 로고    scopus 로고
    • "Indicators of land-cover change for change-vector analysis in multitemporal space at coarse spatial scales,"
    • vol. 15, no. 10, pp. 2099-2119, 1994.
    • E. F. Lambin and A. H. Strahler, "Indicators of land-cover change for change-vector analysis in multitemporal space at coarse spatial scales," Int. J. Remote Sensing, vol. 15, no. 10, pp. 2099-2119, 1994.
    • Int. J. Remote Sensing
    • Lambin, E.F.1    Strahler, A.H.2
  • 26
    • 0028431032 scopus 로고    scopus 로고
    • "Change-vector analysis in multitemporal space: A tool to detect and categorize land-cover change processes using high temporalresolution satellite data,"
    • vol. 48, pp. 231-244, 1994.
    • _, "Change-vector analysis in multitemporal space: A tool to detect and categorize land-cover change processes using high temporalresolution satellite data," Remote Sensing Environ., vol. 48, pp. 231-244, 1994.
    • Remote Sensing Environ.
  • 28
    • 0025508916 scopus 로고    scopus 로고
    • "A statistical approach to learning and generalization in layered neural networks,"
    • vol. 78, pp. 1568-1575, 1990.
    • E. Levin, N. Tishby, and S. A. Solla, "A statistical approach to learning and generalization in layered neural networks," Proc. IEEE, vol. 78, pp. 1568-1575, 1990.
    • Proc. IEEE
    • Levin, E.1    Tishby, N.2    Solla, S.A.3
  • 30
    • 0028669119 scopus 로고    scopus 로고
    • "Mapping and monitoring conifer mortality using remote sensing in the lake tahoc basin,"
    • vol. 50, pp. 255-266, 1995.
    • S. Macomber and C. E. Woodcock, "Mapping and monitoring conifer mortality using remote sensing in the lake tahoc basin," Remote Sensing Environ., vol. 50, pp. 255-266, 1995.
    • Remote Sensing Environ.
    • Macomber, S.1    Woodcock, C.E.2
  • 31
    • 0028519423 scopus 로고    scopus 로고
    • "Change detection for monitoring forest defoliation,"
    • vol. 60, no. 10, pp. 1243-1251, 1994.
    • D. M. Muchoney and B. N. Haack, "Change detection for monitoring forest defoliation," Photogrammetric Eng. Remote Sensing, vol. 60, no. 10, pp. 1243-1251, 1994.
    • Photogrammetric Eng. Remote Sensing
    • Muchoney, D.M.1    Haack, B.N.2
  • 32
    • 0020821796 scopus 로고    scopus 로고
    • "Detecting forest canopy change due to insect activity using Landsat MSS,"
    • vol. 49, pp. 1303-1314, 1983.
    • R. F. Nelson, "Detecting forest canopy change due to insect activity using Landsat MSS," Phologrummetric Eng. Remote Sensing, vol. 49, pp. 1303-1314, 1983.
    • Phologrummetric Eng. Remote Sensing
    • Nelson, R.F.1
  • 33
    • 0020464111 scopus 로고    scopus 로고
    • "A simplified neuron model as a principal component analyzer," 7
    • vol. 15, pp. 267-273, 1982.
    • E. Oja, "A simplified neuron model as a principal component analyzer," 7. Math. Biology, vol. 15, pp. 267-273, 1982.
    • Math. Biology
    • Oja, E.1
  • 34
    • 33747929299 scopus 로고    scopus 로고
    • "Neural networks, principal components, and subspaces,"
    • vol. 1, pp. 61-68, 1989.
    • _, "Neural networks, principal components, and subspaces," Int. J. Neural Systems, vol. 1, pp. 61-68, 1989.
    • Int. J. Neural Systems
  • 35
    • 0025164912 scopus 로고    scopus 로고
    • "Development of feature detectors by self-organization: A network model,"
    • vol. 62, pp. 193-199, 1990.
    • J. Rubner and K. Schulten, "Development of feature detectors by self-organization: A network model," Biological Cybern., vol. 62, pp. 193-199, 1990.
    • Biological Cybern.
    • Rubner, J.1    Schulten, K.2
  • 36
    • 0022471098 scopus 로고    scopus 로고
    • "Learning representations by back-propagating errors,"
    • vol. 323, pp. 533-536, 1986.
    • D. H. Rummelhart, G. K. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, pp. 533-536, 1986.
    • Nature
    • Rummelhart, D.H.1    Hinton, G.K.2    Williams, R.J.3
  • 37
    • 0024855524 scopus 로고    scopus 로고
    • "Digital change detection techniques using remotely-sensed data,"
    • vol. 10, pp. 989-1003, 1989.
    • A. Singh, "Digital change detection techniques using remotely-sensed data," Int. J. Remote Sensing, vol. 10, pp. 989-1003, 1989.
    • Int. J. Remote Sensing
    • Singh, A.1
  • 38
    • 0024856757 scopus 로고    scopus 로고
    • "Use of thematic mapper data for the detection for forest damage caused by the pear thirps,"
    • vol. 30, pp. 217-225, 1988.
    • J. E. Vogelmann, "Use of thematic mapper data for the detection for forest damage caused by the pear thirps," Remote Sensing Environ., vol. 30, pp. 217-225, 1988.
    • Remote Sensing Environ.
    • Vogelmann, J.E.1
  • 39
    • 0024165770 scopus 로고    scopus 로고
    • "Assessing forest damage in highelevation coniferous forests in Vermont and New Hampshire using thematic mapper data,"
    • vol. 24, pp. 227-246, 1988.
    • J. E. Vogelmann and B. N. Rock, "Assessing forest damage in highelevation coniferous forests in Vermont and New Hampshire using thematic mapper data," Remote Sensing Environ., vol. 24, pp. 227-246, 1988.
    • Remote Sensing Environ.
    • Vogelmann, J.E.1    Rock, B.N.2
  • 40
    • 0000243355 scopus 로고    scopus 로고
    • "Learning in artificial neural networks: A statistical perspective,"
    • vol. 1, pp. 425-464, 1989.
    • H. White, "Learning in artificial neural networks: A statistical perspective," Neural Computation, vol. 1, pp. 425-464, 1989.
    • Neural Computation
    • White, H.1
  • 41
    • 0022267348 scopus 로고    scopus 로고
    • "A georeferenced LANDSAT digital database for forest insect-damage assessment,"
    • vol. 6, no. 5, pp. 643-656, 1989.
    • D. L. Williams, R. F. Nelson, and C. L. Dottavio, "A georeferenced LANDSAT digital database for forest insect-damage assessment," Int. J. Remote Sensing, vol. 6, no. 5, pp. 643-656, 1989.
    • Int. J. Remote Sensing
    • Williams, D.L.1    Nelson, R.F.2    Dottavio, C.L.3
  • 42
    • 0027009286 scopus 로고    scopus 로고
    • "Nested hierarchical scene models and image segmentation,"
    • vol. 13, no. 16, pp. 3167-3189, 1992.
    • C. Woodcock and V. Harward. "Nested hierarchical scene models and image segmentation," Int. J. Remote Sensing, vol. 13, no. 16, pp. 3167-3189, 1992.
    • Int. J. Remote Sensing
    • Woodcock, C.1    Harward, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.