메뉴 건너뛰기




Volumn 48, Issue 11, 2010, Pages 4099-4109

Local manifold learning-based k-nearest-neighbor for hyperspectral image classification

Author keywords

Hyperspectral classification; k nearest neighbor (kNN); manifold learning (ML)

Indexed keywords

DIMENSIONALITY REDUCTION; HYPER-SPECTRAL CLASSIFICATION; HYPERION; HYPERSPECTRAL DATA; HYPERSPECTRAL IMAGE CLASSIFICATION; K-NEAREST NEIGHBORS; KERNEL FUNCTION; LAPLACIAN EIGENMAPS; LOCAL TANGENT SPACE ALIGNMENT; LOCALLY LINEAR EMBEDDING; MANIFOLD LEARNING;

EID: 78049264379     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2010.2055876     Document Type: Article
Times cited : (464)

References (32)
  • 1
    • 18844447262 scopus 로고    scopus 로고
    • Fast k-NN classification using the cluster-space approach
    • Apr.
    • X. P. Jia and J. A. Richards, "Fast k-NN classification using the cluster-space approach," IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2, pp. 225-228, Apr. 2005.
    • (2005) IEEE Geosci. Remote Sens. Lett. , vol.2 , Issue.2 , pp. 225-228
    • Jia, X.P.1    Richards, J.A.2
  • 2
    • 44049098082 scopus 로고    scopus 로고
    • Nearest neighbor classification of remote sensing images with the maximal margin principle
    • Jun.
    • E. Blanzieri and F. Melgani, "Nearest neighbor classification of remote sensing images with the maximal margin principle," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1804-1811, Jun. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.6 , pp. 1804-1811
    • Blanzieri, E.1    Melgani, F.2
  • 3
    • 66549099752 scopus 로고    scopus 로고
    • Kernel-based kNN and Gaussian classifiers for hyperspectral image classification
    • Boston, MA, Jul.
    • B. C. Kuo, J. M. Yang, T. W. Sheu, and S. W. Yang, "Kernel-based kNN and Gaussian classifiers for hyperspectral image classification," in Proc. IEEE Int. Symp. Geosci. Remote Sens., Boston, MA, Jul. 2008, vol. 2, pp. 1006-1008.
    • (2008) Proc. IEEE Int. Symp. Geosci. Remote Sens. , vol.2 , pp. 1006-1008
    • Kuo, B.C.1    Yang, J.M.2    Sheu, T.W.3    Yang, S.W.4
  • 4
    • 77958582596 scopus 로고    scopus 로고
    • A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data
    • Mar.
    • J. M. Yang, P. T. Yu, and B. C. Kuo, "A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 3, pp. 1279-1293, Mar. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.3 , pp. 1279-1293
    • Yang, J.M.1    Yu, P.T.2    Kuo, B.C.3
  • 5
    • 0030164799 scopus 로고    scopus 로고
    • Discriminant adaptive nearest neighbor classification
    • Jun.
    • T. Hastie and R. Tibshirani, "Discriminant adaptive nearest neighbor classification," IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 6, pp. 607-616, Jun. 1996.
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell. , vol.18 , Issue.6 , pp. 607-616
    • Hastie, T.1    Tibshirani, R.2
  • 7
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Jun.
    • K. Q. Weinberger and L. K. Saul, "Distance metric learning for large margin nearest neighbor classification," J. Mach. Learn. Res., vol. 10, pp. 207-244, Jun. 2009.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 8
    • 45849090383 scopus 로고    scopus 로고
    • Supervised classification of remotely sensed imagery using a modified k-NN technique
    • Jul.
    • L. Samaniego, A. Bardossy, and K. Schulz, "Supervised classification of remotely sensed imagery using a modified k-NN technique," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 7, pp. 2112-2125, Jul. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.7 , pp. 2112-2125
    • Samaniego, L.1    Bardossy, A.2    Schulz, K.3
  • 9
    • 53849126897 scopus 로고    scopus 로고
    • Investigation of nonlinearity in hyper-spectral imagery using surrogate data methods
    • Oct.
    • T. Han and D. G. Goodenough, "Investigation of nonlinearity in hyper-spectral imagery using surrogate data methods," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 10, pp. 2840-2847, Oct. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.10 , pp. 2840-2847
    • Han, T.1    Goodenough, D.G.2
  • 10
    • 14644422171 scopus 로고    scopus 로고
    • Exploiting manifold geometry in hyperspectral imagery
    • Mar.
    • C. M. Bachmann and T. L. Ainsworth, "Exploiting manifold geometry in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 441-454, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 441-454
    • Bachmann, C.M.1    Ainsworth, T.L.2
  • 11
    • 33745727401 scopus 로고    scopus 로고
    • Nonlinear feature extraction of hyper-spectral data based on locally linear embedding
    • Seoul, Korea, Jul.
    • T. Han and D. G. Goodenough, "Nonlinear feature extraction of hyper-spectral data based on locally linear embedding," in Proc. IEEE Int. Symp. Geosci. Remote Sens., Seoul, Korea, Jul. 2005, vol. 2, pp. 1237-1240.
    • (2005) Proc. IEEE Int. Symp. Geosci. Remote Sens. , vol.2 , pp. 1237-1240
    • Han, T.1    Goodenough, D.G.2
  • 12
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Dec.
    • J. B. Tenenbaum, V. Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 5500, pp. 2319-2323, Dec. 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    Silva, V.2    Langford, J.C.3
  • 13
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Dec.
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 14
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimension reduction via local tangent space alignment
    • Dec.
    • Z. Y. Zhang and H. Y. L. Zha, "Principal manifolds and nonlinear dimension reduction via local tangent space alignment," SIAM J. Sci. Comput., vol. 26, no. 1, pp. 313-338, Dec. 2004.
    • (2004) SIAM J. Sci. Comput. , vol.26 , Issue.1 , pp. 313-338
    • Zhang, Z.Y.1    Zha, H.Y.L.2
  • 15
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Mar.
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol. 15, no. 6, pp. 1373-396, Mar. 2003.
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-396
    • Belkin, M.1    Niyogi, P.2
  • 16
    • 38349018685 scopus 로고    scopus 로고
    • Online preprint A comparative reviewdate: Jan. [Online]. Available
    • Online preprint L. J. P. van der Maaten, E. O. Postma, and H. J. van den Herik, Dimensionality reduction: A comparative reviewdate: Jan. 2008. [Online]. Available: http://www.iai.uni-bonn.de/~jz/dimensionality-reduction-a- comparative-review.pdf
    • (2008) Dimensionality Reduction
    • Van Der Maaten, L.J.P.1    Postma, E.O.2    Van Den Herik, H.J.3
  • 18
    • 24944547136 scopus 로고    scopus 로고
    • Supervised learning on local tangent space
    • Lecture Notes in Computer Science, May
    • H. Y. Li, L. Teng, W. B. Chen, and I. F. Shen, "Supervised learning on local tangent space," in Proc. 2nd Int. Symp. Neural Netw., vol. 3496, Lecture Notes in Computer Science, May 2005, pp. 546-551.
    • (2005) Proc. 2nd Int. Symp. Neural Netw. , vol.3496 , pp. 546-551
    • Li, H.Y.1    Teng, L.2    Chen, W.B.3    Shen, I.F.4
  • 19
    • 77956317584 scopus 로고    scopus 로고
    • Generalized supervised local tangent space alignment for hyperspectral image classification
    • Apr.
    • L. Ma, M. M. Crawford, and J. W. Tian, "Generalized supervised local tangent space alignment for hyperspectral image classification," Electron. Lett., vol. 46, no. 7, pp. 497-498, Apr. 2010.
    • (2010) Electron. Lett. , vol.46 , Issue.7 , pp. 497-498
    • Ma, L.1    Crawford, M.M.2    Tian, J.W.3
  • 20
    • 0016939390 scopus 로고
    • The distance-weighted k-nearest-neighbor rule
    • Apr.
    • S. A. Dudani, "The distance-weighted k-nearest-neighbor rule," IEEE Trans. Syst., Man, Cybern., vol. SMC-6, no. 4, pp. 325-327, Apr. 1976.
    • (1976) IEEE Trans. Syst., Man, Cybern. , vol.SMC-6 , Issue.4 , pp. 325-327
    • Dudani, S.A.1
  • 21
    • 66149102911 scopus 로고    scopus 로고
    • Weighted k-nearest-neighbor techniques for high throughput screening data
    • Jun.
    • K. Kozak, M. Kozak, and K. Stapor, "Weighted k-nearest-neighbor techniques for high throughput screening data," Int. J. Biol. Med. Sci., vol. 1, no. 3, pp. 155-160, Jun. 2006.
    • (2006) Int. J. Biol. Med. Sci. , vol.1 , Issue.3 , pp. 155-160
    • Kozak, K.1    Kozak, M.2    Stapor, K.3
  • 22
    • 13844266947 scopus 로고    scopus 로고
    • Estimating the posterior probabilities using the k-nearest neighbor rule
    • Mar.
    • A. F. Atiya, "Estimating the posterior probabilities using the k-nearest neighbor rule," Neural Comput., vol. 17, no. 3, pp. 731-740, Mar. 2005.
    • (2005) Neural Comput. , vol.17 , Issue.3 , pp. 731-740
    • Atiya, A.F.1
  • 23
    • 33947233031 scopus 로고    scopus 로고
    • Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering
    • Cambridge, MA: MIT Press, Jul.
    • Y. Bengio, J. F. Paiement, and P. Vincent, "Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering," in Advances in Neural Information Processing Systems 16. Cambridge, MA: MIT Press, Jul. 2003, pp. 177-184.
    • (2003) Advances in Neural Information Processing Systems 16 , pp. 177-184
    • Bengio, Y.1    Paiement, J.F.2    Vincent, P.3
  • 24
    • 4344599431 scopus 로고    scopus 로고
    • Learning eigenfunctions links spectral embedding and kernel PCA
    • Oct.
    • Y. Bengio, O. Delalleau, N. Le Roux, J. F. Paiement, P. Vincent, and M. Ouimet, "Learning eigenfunctions links spectral embedding and kernel PCA," Neural Comput., vol. 16, no. 10, pp. 2197-2219, Oct. 2004.
    • (2004) Neural Comput. , vol.16 , Issue.10 , pp. 2197-2219
    • Bengio, Y.1    Delalleau, O.2    Le Roux, N.3    Paiement, J.F.4    Vincent, P.5    Ouimet, M.6
  • 25
    • 33947194180 scopus 로고    scopus 로고
    • Graph embedding and extensions: A general framework for dimensionality reduction
    • Jan.
    • S. Yan, X. Dong, H. J. Zhang, Q. Yang, and S. Lin, "Graph embedding and extensions: A general framework for dimensionality reduction," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 40-51, Jan. 2007.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.1 , pp. 40-51
    • Yan, S.1    Dong, X.2    Zhang, H.J.3    Yang, Q.4    Lin, S.5
  • 26
    • 56549124687 scopus 로고    scopus 로고
    • Improved local tangent space alignment using various dimensional local coordinates
    • Oct.
    • J. Wang, "Improved local tangent space alignment using various dimensional local coordinates," Neurocomputing, vol. 71, no. 16-18, pp. 3575-3581, Oct. 2008.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3575-3581
    • Wang, J.1
  • 27
    • 11144299132 scopus 로고    scopus 로고
    • A kernel view of the dimensionality reduction of manifold
    • Banff, AB, Canada, Jul.
    • J. Ham, D. Lee, S. Mika, and B. Scholkopf, "A kernel view of the dimensionality reduction of manifold," in Proc. 21st Int. Conf. Mach. Learn., Banff, AB, Canada, Jul. 2004, pp. 369-376.
    • (2004) Proc. 21st Int. Conf. Mach. Learn. , pp. 369-376
    • Ham, J.1    Lee, D.2    Mika, S.3    Scholkopf, B.4
  • 30
    • 17844387127 scopus 로고    scopus 로고
    • Neighbor-weighted K-nearest neighbor for unbalanced text corpus
    • DOI 10.1016/j.eswa.2004.12.023, PII S0957417404001708
    • S. Tan, "Neighbor-weighted k-nearest neighbor for unbalanced text corpus," Expert Syst. Appl., vol. 28, no. 4, pp. 667-671, May 2005. (Pubitemid 40583844)
    • (2005) Expert Systems with Applications , vol.28 , Issue.4 , pp. 667-671
    • Tan, S.1
  • 31
    • 50549085732 scopus 로고    scopus 로고
    • On kernel difference-weighted k-nearest neighbor classification
    • Sep.
    • W. M. Zuo, D. Zhang, and K. Q. Wang, "On kernel difference-weighted k-nearest neighbor classification," Pattern Anal. Appl., vol. 11, no. 3/4, pp. 247-257, Sep. 2008.
    • (2008) Pattern Anal. Appl. , vol.11 , Issue.3-4 , pp. 247-257
    • Zuo, W.M.1    Zhang, D.2    Wang, K.Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.