-
1
-
-
84866742560
-
TGF-β signalling in context
-
Massagué J. TGF-β signalling in context. Nat. Rev. Mol. Cell Biol. 2012, 13:616-630.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 616-630
-
-
Massagué, J.1
-
2
-
-
84871948755
-
TGF-β signaling and epithelial-mesenchymal transition in cancer progression
-
Katsuno Y., et al. TGF-β signaling and epithelial-mesenchymal transition in cancer progression. Curr. Opin. Oncol. 2013, 25:76-84.
-
(2013)
Curr. Opin. Oncol.
, vol.25
, pp. 76-84
-
-
Katsuno, Y.1
-
3
-
-
84862770017
-
Regulation of EMT by TGFβ in cancer
-
Heldin C.H., et al. Regulation of EMT by TGFβ in cancer. FEBS Lett. 2012, 586:1959-1970.
-
(2012)
FEBS Lett.
, vol.586
, pp. 1959-1970
-
-
Heldin, C.H.1
-
4
-
-
0242499448
-
Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer
-
Siegel P.M., Massagué J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat. Rev. Cancer 2003, 3:807-821.
-
(2003)
Nat. Rev. Cancer
, vol.3
, pp. 807-821
-
-
Siegel, P.M.1
Massagué, J.2
-
5
-
-
84856772032
-
Key signaling nodes in mammary gland development and cancer: Smad signal integration in epithelial cell plasticity
-
Sundqvist A., et al. Key signaling nodes in mammary gland development and cancer: Smad signal integration in epithelial cell plasticity. Breast Cancer Res. 2012, 14:204.
-
(2012)
Breast Cancer Res.
, vol.14
, pp. 204
-
-
Sundqvist, A.1
-
6
-
-
84859443358
-
Non-Smad signaling pathways
-
Mu Y., et al. Non-Smad signaling pathways. Cell Tissue Res. 2012, 347:11-20.
-
(2012)
Cell Tissue Res.
, vol.347
, pp. 11-20
-
-
Mu, Y.1
-
7
-
-
58149213801
-
Non-Smad pathways in TGF-β signaling
-
Zhang Y.E. Non-Smad pathways in TGF-β signaling. Cell Res. 2009, 19:128-139.
-
(2009)
Cell Res.
, vol.19
, pp. 128-139
-
-
Zhang, Y.E.1
-
9
-
-
34547587877
-
Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway
-
Lamouille S., Derynck R. Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J. Cell Biol. 2007, 178:437-451.
-
(2007)
J. Cell Biol.
, vol.178
, pp. 437-451
-
-
Lamouille, S.1
Derynck, R.2
-
10
-
-
15444372825
-
Type I transforming growth factor β receptor binds to and activates phosphatidylinositol 3-kinase
-
Yi J.Y., et al. Type I transforming growth factor β receptor binds to and activates phosphatidylinositol 3-kinase. J. Biol. Chem. 2005, 280:10870-10876.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 10870-10876
-
-
Yi, J.Y.1
-
11
-
-
84881028557
-
MiR-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer
-
Xia H., et al. MiR-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology 2013, 58:629-641.
-
(2013)
Hepatology
, vol.58
, pp. 629-641
-
-
Xia, H.1
-
12
-
-
67650085171
-
TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN
-
Kato M., et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 2009, 11:881-889.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 881-889
-
-
Kato, M.1
-
13
-
-
84864541155
-
TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion
-
Dey N., et al. TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion. PLoS ONE 2012, 7:e42316.
-
(2012)
PLoS ONE
, vol.7
-
-
Dey, N.1
-
14
-
-
53349164136
-
The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner
-
Sorrentino A., et al. The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat. Cell Biol. 2008, 10:1199-1207.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 1199-1207
-
-
Sorrentino, A.1
-
15
-
-
52049111663
-
TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β
-
Yamashita M., et al. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β. Mol. Cell 2008, 31:918-924.
-
(2008)
Mol. Cell
, vol.31
, pp. 918-924
-
-
Yamashita, M.1
-
16
-
-
69549116880
-
The E3 ligase TRAF6 regulates Akt ubiquitination and activation
-
Yang W.L., et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 2009, 325:1134-1138.
-
(2009)
Science
, vol.325
, pp. 1134-1138
-
-
Yang, W.L.1
-
17
-
-
69549122045
-
Cell signaling. Blocking activity
-
Restuccia D.F., Hemmings B.A. Cell signaling. Blocking activity. Science 2009, 325:1083-1084.
-
(2009)
Science
, vol.325
, pp. 1083-1084
-
-
Restuccia, D.F.1
Hemmings, B.A.2
-
18
-
-
0036902409
-
Activin/TGF-β induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP
-
Valderrama-Carvajal H., et al. Activin/TGF-β induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nat. Cell Biol. 2002, 4:963-969.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 963-969
-
-
Valderrama-Carvajal, H.1
-
19
-
-
0034644472
-
TGFβ signaling in growth control, cancer, and heritable disorders
-
Massagué J., et al. TGFβ signaling in growth control, cancer, and heritable disorders. Cell 2000, 103:295-309.
-
(2000)
Cell
, vol.103
, pp. 295-309
-
-
Massagué, J.1
-
20
-
-
47549090432
-
TGFβ in Cancer
-
Massague J. TGFβ in Cancer. Cell 2008, 134:215-230.
-
(2008)
Cell
, vol.134
, pp. 215-230
-
-
Massague, J.1
-
21
-
-
84865283954
-
Dichotomy effects of Akt signaling in breast cancer
-
Peng Z., et al. Dichotomy effects of Akt signaling in breast cancer. Mol. Cancer 2012, 11:61.
-
(2012)
Mol. Cancer
, vol.11
, pp. 61
-
-
Peng, Z.1
-
22
-
-
2342471301
-
Akt interacts directly with Smad3 to regulate the sensitivity to TGF-β induced apoptosis
-
Conery A.R., et al. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-β induced apoptosis. Nat. Cell Biol. 2004, 6:366-372.
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 366-372
-
-
Conery, A.R.1
-
23
-
-
2342647439
-
PKB/Akt modulates TGF-β signalling through a direct interaction with Smad3
-
Remy I., et al. PKB/Akt modulates TGF-β signalling through a direct interaction with Smad3. Nat. Cell Biol. 2004, 6:358-365.
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 358-365
-
-
Remy, I.1
-
24
-
-
1642332084
-
Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation
-
Seoane J., et al. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004, 117:211-223.
-
(2004)
Cell
, vol.117
, pp. 211-223
-
-
Seoane, J.1
-
25
-
-
80052970809
-
FoxO transcription factors; regulation by AKT and 14-3-3 proteins
-
Tzivion G., et al. FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta 2011, 1813:1938-1945.
-
(2011)
Biochim. Biophys. Acta
, vol.1813
, pp. 1938-1945
-
-
Tzivion, G.1
-
26
-
-
79951512852
-
SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression
-
Ding Z., et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 2011, 470:269-273.
-
(2011)
Nature
, vol.470
, pp. 269-273
-
-
Ding, Z.1
-
27
-
-
84872161627
-
COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis
-
Qin J., et al. COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis. Nature 2013, 493:236-240.
-
(2013)
Nature
, vol.493
, pp. 236-240
-
-
Qin, J.1
-
28
-
-
65349096856
-
TGF-β uses the E3-ligase TRAF6 to turn on the kinase TAK1 to kill prostate cancer cells
-
Thakur N., et al. TGF-β uses the E3-ligase TRAF6 to turn on the kinase TAK1 to kill prostate cancer cells. Future Oncol. 2009, 5:1-3.
-
(2009)
Future Oncol.
, vol.5
, pp. 1-3
-
-
Thakur, N.1
-
29
-
-
34548175512
-
Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression
-
Moustakas A., Heldin C.H. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007, 98:1512-1520.
-
(2007)
Cancer Sci.
, vol.98
, pp. 1512-1520
-
-
Moustakas, A.1
Heldin, C.H.2
-
30
-
-
59449090107
-
TGF-β-induced epithelial to mesenchymal transition
-
Xu J., et al. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 2009, 19:156-172.
-
(2009)
Cell Res.
, vol.19
, pp. 156-172
-
-
Xu, J.1
-
31
-
-
24644480749
-
Molecular requirements for epithelial-mesenchymal transition during tumor progression
-
Huber M.A., et al. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 2005, 17:548-558.
-
(2005)
Curr. Opin. Cell Biol.
, vol.17
, pp. 548-558
-
-
Huber, M.A.1
-
32
-
-
74949093198
-
Transforming growth factor-β signaling in epithelial-mesenchymal transition and progression of cancer
-
Miyazono K. Transforming growth factor-β signaling in epithelial-mesenchymal transition and progression of cancer. Proc. Jpn. Acad. Ser. B: Phys. Biol. Sci. 2009, 85:314-323.
-
(2009)
Proc. Jpn. Acad. Ser. B: Phys. Biol. Sci.
, vol.85
, pp. 314-323
-
-
Miyazono, K.1
-
33
-
-
84878183437
-
Snail and Slug, key regulators of TGF-β-induced EMT, are sufficient for the induction of single-cell invasion
-
Naber H.P., et al. Snail and Slug, key regulators of TGF-β-induced EMT, are sufficient for the induction of single-cell invasion. Biochem. Biophys. Res. Commun. 2012, 435:58-63.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.435
, pp. 58-63
-
-
Naber, H.P.1
-
34
-
-
0038488950
-
A multigenic program mediating breast cancer metastasis to bone
-
Kang Y., et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003, 3:537-549.
-
(2003)
Cancer Cell
, vol.3
, pp. 537-549
-
-
Kang, Y.1
-
35
-
-
33644534795
-
The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells
-
Deckers M., et al. The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 2006, 66:2202-2209.
-
(2006)
Cancer Res.
, vol.66
, pp. 2202-2209
-
-
Deckers, M.1
-
36
-
-
25444479744
-
Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway
-
Kang Y., et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:13909-13914.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 13909-13914
-
-
Kang, Y.1
-
37
-
-
77949265948
-
Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis
-
Petersen M., et al. Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene 2010, 29:1351-1361.
-
(2010)
Oncogene
, vol.29
, pp. 1351-1361
-
-
Petersen, M.1
-
38
-
-
41149157649
-
TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4
-
Padua D., et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 2008, 133:66-77.
-
(2008)
Cell
, vol.133
, pp. 66-77
-
-
Padua, D.1
-
39
-
-
84863229849
-
Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition
-
Leight J.L., et al. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition. Mol. Biol. Cell 2012, 23:781-791.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 781-791
-
-
Leight, J.L.1
-
40
-
-
23844528776
-
The Snail genes as inducers of cell movement and survival: implications in development and cancer
-
Barrallo-Gimeno A., Nieto M.A. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 2005, 132:3151-3161.
-
(2005)
Development
, vol.132
, pp. 3151-3161
-
-
Barrallo-Gimeno, A.1
Nieto, M.A.2
-
41
-
-
5444269904
-
Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial-mesenchymal transition
-
Zhou B.P., et al. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol. 2004, 6:931-940.
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 931-940
-
-
Zhou, B.P.1
-
42
-
-
36349011403
-
Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition
-
Julien S., et al. Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 2007, 26:7445-7456.
-
(2007)
Oncogene
, vol.26
, pp. 7445-7456
-
-
Julien, S.1
-
43
-
-
65349092794
-
Stabilization of Snail by NF-κB is required for inflammation-induced cell migration and invasion
-
Wu Y., et al. Stabilization of Snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer Cell 2009, 15:416-428.
-
(2009)
Cancer Cell
, vol.15
, pp. 416-428
-
-
Wu, Y.1
-
44
-
-
84865830634
-
Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-β signaling axes
-
Xue G., et al. Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-β signaling axes. Cancer Discov. 2012, 2:248-259.
-
(2012)
Cancer Discov.
, vol.2
, pp. 248-259
-
-
Xue, G.1
-
45
-
-
0034711307
-
Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration
-
Bakin A.V., et al. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 2000, 275:36803-36810.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 36803-36810
-
-
Bakin, A.V.1
-
46
-
-
0036201871
-
The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-β/Smad signalling
-
Itoh F., et al. The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-β/Smad signalling. Genes Cells 2002, 7:321-331.
-
(2002)
Genes Cells
, vol.7
, pp. 321-331
-
-
Itoh, F.1
-
47
-
-
84863218422
-
USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor
-
Zhang L., et al. USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nat. Cell Biol. 2012, 14:717-726.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 717-726
-
-
Zhang, L.1
-
48
-
-
84860284249
-
CYLD negatively regulates transforming growth factor-β-signalling via deubiquitinating Akt
-
Lim J.H., et al. CYLD negatively regulates transforming growth factor-β-signalling via deubiquitinating Akt. Nat. Commun. 2012, 3:771.
-
(2012)
Nat. Commun.
, vol.3
, pp. 771
-
-
Lim, J.H.1
-
49
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
50
-
-
84875582776
-
PKB/Akt-dependent regulation of cell motility
-
Xue G., Hemmings B.A. PKB/Akt-dependent regulation of cell motility. J. Natl. Cancer Inst. 2013, 105:393-404.
-
(2013)
J. Natl. Cancer Inst.
, vol.105
, pp. 393-404
-
-
Xue, G.1
Hemmings, B.A.2
-
51
-
-
68249093818
-
Targeting the phosphoinositide 3-kinase pathway in cancer
-
Liu P., et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 2009, 8:627-644.
-
(2009)
Nat. Rev. Drug Discov.
, vol.8
, pp. 627-644
-
-
Liu, P.1
-
52
-
-
84866985855
-
Targeting the TGFβ signalling pathway in disease
-
Akhurst R.J., Hata A. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov. 2012, 11:790-811.
-
(2012)
Nat. Rev. Drug Discov.
, vol.11
, pp. 790-811
-
-
Akhurst, R.J.1
Hata, A.2
-
53
-
-
84869211657
-
Inhibition of TGF-β enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy
-
Bedi A., et al. Inhibition of TGF-β enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy. Mol. Cancer Ther. 2012, 11:2429-2439.
-
(2012)
Mol. Cancer Ther.
, vol.11
, pp. 2429-2439
-
-
Bedi, A.1
-
54
-
-
84862983498
-
Concomitant targeting of EGF receptor, TGF-β and SRC points to a novel therapeutic approach in pancreatic cancer
-
Deharvengt S., et al. Concomitant targeting of EGF receptor, TGF-β and SRC points to a novel therapeutic approach in pancreatic cancer. PLoS ONE 2012, 7:e39684.
-
(2012)
PLoS ONE
, vol.7
-
-
Deharvengt, S.1
-
55
-
-
51349164414
-
Transforming growth factor β engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab
-
Wang S.E., et al. Transforming growth factor β engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol. Cell. Biol. 2008, 28:5605-5620.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 5605-5620
-
-
Wang, S.E.1
-
56
-
-
58349117913
-
Transforming growth factor β induces clustering of HER2 and integrins by activating Src-focal adhesion kinase and receptor association to the cytoskeleton
-
Wang S.E., et al. Transforming growth factor β induces clustering of HER2 and integrins by activating Src-focal adhesion kinase and receptor association to the cytoskeleton. Cancer Res. 2009, 69:475-482.
-
(2009)
Cancer Res.
, vol.69
, pp. 475-482
-
-
Wang, S.E.1
-
57
-
-
84873811988
-
Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition
-
Yu M., et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013, 339:580-584.
-
(2013)
Science
, vol.339
, pp. 580-584
-
-
Yu, M.1
-
58
-
-
84870020040
-
MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling
-
Huang S., et al. MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling. Cell 2012, 151:937-950.
-
(2012)
Cell
, vol.151
, pp. 937-950
-
-
Huang, S.1
-
59
-
-
77952962769
-
Development of personalized tumor biomarkers using massively parallel sequencing
-
Leary R.J., et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2010, 2:20ra14.
-
(2010)
Sci. Transl. Med.
, vol.2
-
-
Leary, R.J.1
-
60
-
-
84878630476
-
Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components
-
Ji H., et al. Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics 2013, 13:1672-1686.
-
(2013)
Proteomics
, vol.13
, pp. 1672-1686
-
-
Ji, H.1
-
61
-
-
80054857419
-
Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium
-
Sato T., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 2011, 141:1762-1772.
-
(2011)
Gastroenterology
, vol.141
, pp. 1762-1772
-
-
Sato, T.1
-
62
-
-
84874663933
-
The practicalities of using tissue slices as preclinical organotypic breast cancer models
-
Holliday D.L., et al. The practicalities of using tissue slices as preclinical organotypic breast cancer models. J. Clin. Pathol. 2013, 66:253-255.
-
(2013)
J. Clin. Pathol.
, vol.66
, pp. 253-255
-
-
Holliday, D.L.1
-
63
-
-
84863241921
-
Signaling network crosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls the balance between self-renewal and differentiation
-
Singh A.M., et al. Signaling network crosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls the balance between self-renewal and differentiation. Cell Stem Cell 2012, 10:312-326.
-
(2012)
Cell Stem Cell
, vol.10
, pp. 312-326
-
-
Singh, A.M.1
-
64
-
-
77957797819
-
TGF-β and insulin signaling regulate reproductive aging via oocyte and germline quality maintenance
-
Luo S., et al. TGF-β and insulin signaling regulate reproductive aging via oocyte and germline quality maintenance. Cell 2010, 143:299-312.
-
(2010)
Cell
, vol.143
, pp. 299-312
-
-
Luo, S.1
-
65
-
-
79952111161
-
PI3 kinase regulation of skeletal muscle hypertrophy and atrophy
-
Glass D.J. PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr. Top. Microbiol. Immunol. 2010, 346:267-278.
-
(2010)
Curr. Top. Microbiol. Immunol.
, vol.346
, pp. 267-278
-
-
Glass, D.J.1
-
66
-
-
43749120732
-
The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications
-
Carnero A., et al. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets 2008, 8:187-198.
-
(2008)
Curr. Cancer Drug Targets
, vol.8
, pp. 187-198
-
-
Carnero, A.1
-
67
-
-
39049094092
-
Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery
-
Cheng G.Z., et al. Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery. Curr. Cancer Drug Targets 2008, 8:2-6.
-
(2008)
Curr. Cancer Drug Targets
, vol.8
, pp. 2-6
-
-
Cheng, G.Z.1
-
68
-
-
58249083478
-
The TGF-β, PI3K/Akt and PTEN pathways: established and proposed biochemical integration in prostate cancer
-
Assinder S.J., et al. The TGF-β, PI3K/Akt and PTEN pathways: established and proposed biochemical integration in prostate cancer. Biochem. J. 2009, 417:411-421.
-
(2009)
Biochem. J.
, vol.417
, pp. 411-421
-
-
Assinder, S.J.1
-
69
-
-
0033551070
-
New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase AKT pathway
-
Cantley L.C., Neel B.G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase AKT pathway. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:4240-4245.
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 4240-4245
-
-
Cantley, L.C.1
Neel, B.G.2
-
70
-
-
4344602002
-
The biology and clinical relevance of the PTEN tumor suppressor pathway
-
Sansal I., Sellers W.R. The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol. 2004, 22:2954-2963.
-
(2004)
J. Clin. Oncol.
, vol.22
, pp. 2954-2963
-
-
Sansal, I.1
Sellers, W.R.2
-
71
-
-
0031566693
-
Apoptosis. A bad kinase makes good
-
Franke T.F., Cantley L.C. Apoptosis. A bad kinase makes good. Nature 1997, 390:116-117.
-
(1997)
Nature
, vol.390
, pp. 116-117
-
-
Franke, T.F.1
Cantley, L.C.2
-
72
-
-
0029587224
-
Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B
-
Cross D.A., et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995, 378:785-789.
-
(1995)
Nature
, vol.378
, pp. 785-789
-
-
Cross, D.A.1
-
73
-
-
0037155691
-
Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism
-
Liu C., et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002, 108:837-847.
-
(2002)
Cell
, vol.108
, pp. 837-847
-
-
Liu, C.1
-
74
-
-
0032533225
-
Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization
-
Diehl J.A., et al. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998, 12:3499-3511.
-
(1998)
Genes Dev.
, vol.12
, pp. 3499-3511
-
-
Diehl, J.A.1
-
75
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
-
Sengupta S., et al. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 2010, 40:310-322.
-
(2010)
Mol. Cell
, vol.40
, pp. 310-322
-
-
Sengupta, S.1
|