메뉴 건너뛰기




Volumn 38, Issue 12, 2013, Pages 612-620

Signaling interplay between transforming growth factor-β receptor and PI3K/AKT pathways in cancer

Author keywords

AKT; Mammalian target of rapamycin complex; Phosphatase and tensin homolog deleted on chromosome 10; Phosphoinositide 3 kinase; SMA and MAD related protein (SMAD) transforming growth factor

Indexed keywords

CYCLIN DEPENDENT KINASE INHIBITOR 1; CYCLIN DEPENDENT KINASE INHIBITOR 2B; EPIDERMAL GROWTH FACTOR RECEPTOR ANTIBODY; GLYCOGEN SYNTHASE KINASE 3BETA; INITIATION FACTOR 4E BINDING PROTEIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MITOGEN ACTIVATED PROTEIN KINASE; MITOGEN ACTIVATED PROTEIN KINASE INHIBITOR; PHOSPHATIDYLINOSITOL 3 KINASE; PHOSPHATIDYLINOSITOL 3 KINASE INHIBITOR; PHOSPHATIDYLINOSITOL 3,4,5 TRISPHOSPHATE 3 PHOSPHATASE; PROTEIN KINASE B; PROTEIN KINASE B INHIBITOR; RAS PROTEIN; S6 KINASE; SMAD2 PROTEIN; SMAD3 PROTEIN; SMAD4 PROTEIN; SMAD7 PROTEIN; TRANSCRIPTION FACTOR FOXO; TRANSCRIPTION FACTOR SLUG; TRANSCRIPTION FACTOR SNAIL; TRANSFORMING GROWTH FACTOR BETA; TRANSFORMING GROWTH FACTOR BETA RECEPTOR; TRANSFORMING GROWTH FACTOR BETA RECEPTOR 1; TRANSFORMING GROWTH FACTOR BETA RECEPTOR 2; TRASTUZUMAB; TUMOR NECROSIS FACTOR RECEPTOR ASSOCIATED FACTOR 6; UNINDEXED DRUG; UVOMORULIN;

EID: 84888132688     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2013.10.001     Document Type: Review
Times cited : (209)

References (75)
  • 1
    • 84866742560 scopus 로고    scopus 로고
    • TGF-β signalling in context
    • Massagué J. TGF-β signalling in context. Nat. Rev. Mol. Cell Biol. 2012, 13:616-630.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 616-630
    • Massagué, J.1
  • 2
    • 84871948755 scopus 로고    scopus 로고
    • TGF-β signaling and epithelial-mesenchymal transition in cancer progression
    • Katsuno Y., et al. TGF-β signaling and epithelial-mesenchymal transition in cancer progression. Curr. Opin. Oncol. 2013, 25:76-84.
    • (2013) Curr. Opin. Oncol. , vol.25 , pp. 76-84
    • Katsuno, Y.1
  • 3
    • 84862770017 scopus 로고    scopus 로고
    • Regulation of EMT by TGFβ in cancer
    • Heldin C.H., et al. Regulation of EMT by TGFβ in cancer. FEBS Lett. 2012, 586:1959-1970.
    • (2012) FEBS Lett. , vol.586 , pp. 1959-1970
    • Heldin, C.H.1
  • 4
    • 0242499448 scopus 로고    scopus 로고
    • Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer
    • Siegel P.M., Massagué J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat. Rev. Cancer 2003, 3:807-821.
    • (2003) Nat. Rev. Cancer , vol.3 , pp. 807-821
    • Siegel, P.M.1    Massagué, J.2
  • 5
    • 84856772032 scopus 로고    scopus 로고
    • Key signaling nodes in mammary gland development and cancer: Smad signal integration in epithelial cell plasticity
    • Sundqvist A., et al. Key signaling nodes in mammary gland development and cancer: Smad signal integration in epithelial cell plasticity. Breast Cancer Res. 2012, 14:204.
    • (2012) Breast Cancer Res. , vol.14 , pp. 204
    • Sundqvist, A.1
  • 6
    • 84859443358 scopus 로고    scopus 로고
    • Non-Smad signaling pathways
    • Mu Y., et al. Non-Smad signaling pathways. Cell Tissue Res. 2012, 347:11-20.
    • (2012) Cell Tissue Res. , vol.347 , pp. 11-20
    • Mu, Y.1
  • 7
    • 58149213801 scopus 로고    scopus 로고
    • Non-Smad pathways in TGF-β signaling
    • Zhang Y.E. Non-Smad pathways in TGF-β signaling. Cell Res. 2009, 19:128-139.
    • (2009) Cell Res. , vol.19 , pp. 128-139
    • Zhang, Y.E.1
  • 8
    • 24944497786 scopus 로고    scopus 로고
    • Non-Smad TGF-β signals
    • Moustakas A., Heldin C.H. Non-Smad TGF-β signals. J. Cell Sci. 2005, 118:3573-3584.
    • (2005) J. Cell Sci. , vol.118 , pp. 3573-3584
    • Moustakas, A.1    Heldin, C.H.2
  • 9
    • 34547587877 scopus 로고    scopus 로고
    • Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway
    • Lamouille S., Derynck R. Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J. Cell Biol. 2007, 178:437-451.
    • (2007) J. Cell Biol. , vol.178 , pp. 437-451
    • Lamouille, S.1    Derynck, R.2
  • 10
    • 15444372825 scopus 로고    scopus 로고
    • Type I transforming growth factor β receptor binds to and activates phosphatidylinositol 3-kinase
    • Yi J.Y., et al. Type I transforming growth factor β receptor binds to and activates phosphatidylinositol 3-kinase. J. Biol. Chem. 2005, 280:10870-10876.
    • (2005) J. Biol. Chem. , vol.280 , pp. 10870-10876
    • Yi, J.Y.1
  • 11
    • 84881028557 scopus 로고    scopus 로고
    • MiR-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer
    • Xia H., et al. MiR-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology 2013, 58:629-641.
    • (2013) Hepatology , vol.58 , pp. 629-641
    • Xia, H.1
  • 12
    • 67650085171 scopus 로고    scopus 로고
    • TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN
    • Kato M., et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 2009, 11:881-889.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 881-889
    • Kato, M.1
  • 13
    • 84864541155 scopus 로고    scopus 로고
    • TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion
    • Dey N., et al. TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion. PLoS ONE 2012, 7:e42316.
    • (2012) PLoS ONE , vol.7
    • Dey, N.1
  • 14
    • 53349164136 scopus 로고    scopus 로고
    • The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner
    • Sorrentino A., et al. The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat. Cell Biol. 2008, 10:1199-1207.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1199-1207
    • Sorrentino, A.1
  • 15
    • 52049111663 scopus 로고    scopus 로고
    • TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β
    • Yamashita M., et al. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β. Mol. Cell 2008, 31:918-924.
    • (2008) Mol. Cell , vol.31 , pp. 918-924
    • Yamashita, M.1
  • 16
    • 69549116880 scopus 로고    scopus 로고
    • The E3 ligase TRAF6 regulates Akt ubiquitination and activation
    • Yang W.L., et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 2009, 325:1134-1138.
    • (2009) Science , vol.325 , pp. 1134-1138
    • Yang, W.L.1
  • 17
    • 69549122045 scopus 로고    scopus 로고
    • Cell signaling. Blocking activity
    • Restuccia D.F., Hemmings B.A. Cell signaling. Blocking activity. Science 2009, 325:1083-1084.
    • (2009) Science , vol.325 , pp. 1083-1084
    • Restuccia, D.F.1    Hemmings, B.A.2
  • 18
    • 0036902409 scopus 로고    scopus 로고
    • Activin/TGF-β induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP
    • Valderrama-Carvajal H., et al. Activin/TGF-β induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nat. Cell Biol. 2002, 4:963-969.
    • (2002) Nat. Cell Biol. , vol.4 , pp. 963-969
    • Valderrama-Carvajal, H.1
  • 19
    • 0034644472 scopus 로고    scopus 로고
    • TGFβ signaling in growth control, cancer, and heritable disorders
    • Massagué J., et al. TGFβ signaling in growth control, cancer, and heritable disorders. Cell 2000, 103:295-309.
    • (2000) Cell , vol.103 , pp. 295-309
    • Massagué, J.1
  • 20
    • 47549090432 scopus 로고    scopus 로고
    • TGFβ in Cancer
    • Massague J. TGFβ in Cancer. Cell 2008, 134:215-230.
    • (2008) Cell , vol.134 , pp. 215-230
    • Massague, J.1
  • 21
    • 84865283954 scopus 로고    scopus 로고
    • Dichotomy effects of Akt signaling in breast cancer
    • Peng Z., et al. Dichotomy effects of Akt signaling in breast cancer. Mol. Cancer 2012, 11:61.
    • (2012) Mol. Cancer , vol.11 , pp. 61
    • Peng, Z.1
  • 22
    • 2342471301 scopus 로고    scopus 로고
    • Akt interacts directly with Smad3 to regulate the sensitivity to TGF-β induced apoptosis
    • Conery A.R., et al. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-β induced apoptosis. Nat. Cell Biol. 2004, 6:366-372.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 366-372
    • Conery, A.R.1
  • 23
    • 2342647439 scopus 로고    scopus 로고
    • PKB/Akt modulates TGF-β signalling through a direct interaction with Smad3
    • Remy I., et al. PKB/Akt modulates TGF-β signalling through a direct interaction with Smad3. Nat. Cell Biol. 2004, 6:358-365.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 358-365
    • Remy, I.1
  • 24
    • 1642332084 scopus 로고    scopus 로고
    • Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation
    • Seoane J., et al. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004, 117:211-223.
    • (2004) Cell , vol.117 , pp. 211-223
    • Seoane, J.1
  • 25
    • 80052970809 scopus 로고    scopus 로고
    • FoxO transcription factors; regulation by AKT and 14-3-3 proteins
    • Tzivion G., et al. FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta 2011, 1813:1938-1945.
    • (2011) Biochim. Biophys. Acta , vol.1813 , pp. 1938-1945
    • Tzivion, G.1
  • 26
    • 79951512852 scopus 로고    scopus 로고
    • SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression
    • Ding Z., et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 2011, 470:269-273.
    • (2011) Nature , vol.470 , pp. 269-273
    • Ding, Z.1
  • 27
    • 84872161627 scopus 로고    scopus 로고
    • COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis
    • Qin J., et al. COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis. Nature 2013, 493:236-240.
    • (2013) Nature , vol.493 , pp. 236-240
    • Qin, J.1
  • 28
    • 65349096856 scopus 로고    scopus 로고
    • TGF-β uses the E3-ligase TRAF6 to turn on the kinase TAK1 to kill prostate cancer cells
    • Thakur N., et al. TGF-β uses the E3-ligase TRAF6 to turn on the kinase TAK1 to kill prostate cancer cells. Future Oncol. 2009, 5:1-3.
    • (2009) Future Oncol. , vol.5 , pp. 1-3
    • Thakur, N.1
  • 29
    • 34548175512 scopus 로고    scopus 로고
    • Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression
    • Moustakas A., Heldin C.H. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007, 98:1512-1520.
    • (2007) Cancer Sci. , vol.98 , pp. 1512-1520
    • Moustakas, A.1    Heldin, C.H.2
  • 30
    • 59449090107 scopus 로고    scopus 로고
    • TGF-β-induced epithelial to mesenchymal transition
    • Xu J., et al. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 2009, 19:156-172.
    • (2009) Cell Res. , vol.19 , pp. 156-172
    • Xu, J.1
  • 31
    • 24644480749 scopus 로고    scopus 로고
    • Molecular requirements for epithelial-mesenchymal transition during tumor progression
    • Huber M.A., et al. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 2005, 17:548-558.
    • (2005) Curr. Opin. Cell Biol. , vol.17 , pp. 548-558
    • Huber, M.A.1
  • 32
    • 74949093198 scopus 로고    scopus 로고
    • Transforming growth factor-β signaling in epithelial-mesenchymal transition and progression of cancer
    • Miyazono K. Transforming growth factor-β signaling in epithelial-mesenchymal transition and progression of cancer. Proc. Jpn. Acad. Ser. B: Phys. Biol. Sci. 2009, 85:314-323.
    • (2009) Proc. Jpn. Acad. Ser. B: Phys. Biol. Sci. , vol.85 , pp. 314-323
    • Miyazono, K.1
  • 33
    • 84878183437 scopus 로고    scopus 로고
    • Snail and Slug, key regulators of TGF-β-induced EMT, are sufficient for the induction of single-cell invasion
    • Naber H.P., et al. Snail and Slug, key regulators of TGF-β-induced EMT, are sufficient for the induction of single-cell invasion. Biochem. Biophys. Res. Commun. 2012, 435:58-63.
    • (2012) Biochem. Biophys. Res. Commun. , vol.435 , pp. 58-63
    • Naber, H.P.1
  • 34
    • 0038488950 scopus 로고    scopus 로고
    • A multigenic program mediating breast cancer metastasis to bone
    • Kang Y., et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003, 3:537-549.
    • (2003) Cancer Cell , vol.3 , pp. 537-549
    • Kang, Y.1
  • 35
    • 33644534795 scopus 로고    scopus 로고
    • The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells
    • Deckers M., et al. The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 2006, 66:2202-2209.
    • (2006) Cancer Res. , vol.66 , pp. 2202-2209
    • Deckers, M.1
  • 36
    • 25444479744 scopus 로고    scopus 로고
    • Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway
    • Kang Y., et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:13909-13914.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 13909-13914
    • Kang, Y.1
  • 37
    • 77949265948 scopus 로고    scopus 로고
    • Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis
    • Petersen M., et al. Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene 2010, 29:1351-1361.
    • (2010) Oncogene , vol.29 , pp. 1351-1361
    • Petersen, M.1
  • 38
    • 41149157649 scopus 로고    scopus 로고
    • TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4
    • Padua D., et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 2008, 133:66-77.
    • (2008) Cell , vol.133 , pp. 66-77
    • Padua, D.1
  • 39
    • 84863229849 scopus 로고    scopus 로고
    • Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition
    • Leight J.L., et al. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition. Mol. Biol. Cell 2012, 23:781-791.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 781-791
    • Leight, J.L.1
  • 40
    • 23844528776 scopus 로고    scopus 로고
    • The Snail genes as inducers of cell movement and survival: implications in development and cancer
    • Barrallo-Gimeno A., Nieto M.A. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 2005, 132:3151-3161.
    • (2005) Development , vol.132 , pp. 3151-3161
    • Barrallo-Gimeno, A.1    Nieto, M.A.2
  • 41
    • 5444269904 scopus 로고    scopus 로고
    • Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial-mesenchymal transition
    • Zhou B.P., et al. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol. 2004, 6:931-940.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 931-940
    • Zhou, B.P.1
  • 42
    • 36349011403 scopus 로고    scopus 로고
    • Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition
    • Julien S., et al. Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 2007, 26:7445-7456.
    • (2007) Oncogene , vol.26 , pp. 7445-7456
    • Julien, S.1
  • 43
    • 65349092794 scopus 로고    scopus 로고
    • Stabilization of Snail by NF-κB is required for inflammation-induced cell migration and invasion
    • Wu Y., et al. Stabilization of Snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer Cell 2009, 15:416-428.
    • (2009) Cancer Cell , vol.15 , pp. 416-428
    • Wu, Y.1
  • 44
    • 84865830634 scopus 로고    scopus 로고
    • Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-β signaling axes
    • Xue G., et al. Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-β signaling axes. Cancer Discov. 2012, 2:248-259.
    • (2012) Cancer Discov. , vol.2 , pp. 248-259
    • Xue, G.1
  • 45
    • 0034711307 scopus 로고    scopus 로고
    • Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration
    • Bakin A.V., et al. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 2000, 275:36803-36810.
    • (2000) J. Biol. Chem. , vol.275 , pp. 36803-36810
    • Bakin, A.V.1
  • 46
    • 0036201871 scopus 로고    scopus 로고
    • The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-β/Smad signalling
    • Itoh F., et al. The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-β/Smad signalling. Genes Cells 2002, 7:321-331.
    • (2002) Genes Cells , vol.7 , pp. 321-331
    • Itoh, F.1
  • 47
    • 84863218422 scopus 로고    scopus 로고
    • USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor
    • Zhang L., et al. USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nat. Cell Biol. 2012, 14:717-726.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 717-726
    • Zhang, L.1
  • 48
    • 84860284249 scopus 로고    scopus 로고
    • CYLD negatively regulates transforming growth factor-β-signalling via deubiquitinating Akt
    • Lim J.H., et al. CYLD negatively regulates transforming growth factor-β-signalling via deubiquitinating Akt. Nat. Commun. 2012, 3:771.
    • (2012) Nat. Commun. , vol.3 , pp. 771
    • Lim, J.H.1
  • 49
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 50
    • 84875582776 scopus 로고    scopus 로고
    • PKB/Akt-dependent regulation of cell motility
    • Xue G., Hemmings B.A. PKB/Akt-dependent regulation of cell motility. J. Natl. Cancer Inst. 2013, 105:393-404.
    • (2013) J. Natl. Cancer Inst. , vol.105 , pp. 393-404
    • Xue, G.1    Hemmings, B.A.2
  • 51
    • 68249093818 scopus 로고    scopus 로고
    • Targeting the phosphoinositide 3-kinase pathway in cancer
    • Liu P., et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 2009, 8:627-644.
    • (2009) Nat. Rev. Drug Discov. , vol.8 , pp. 627-644
    • Liu, P.1
  • 52
    • 84866985855 scopus 로고    scopus 로고
    • Targeting the TGFβ signalling pathway in disease
    • Akhurst R.J., Hata A. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov. 2012, 11:790-811.
    • (2012) Nat. Rev. Drug Discov. , vol.11 , pp. 790-811
    • Akhurst, R.J.1    Hata, A.2
  • 53
    • 84869211657 scopus 로고    scopus 로고
    • Inhibition of TGF-β enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy
    • Bedi A., et al. Inhibition of TGF-β enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy. Mol. Cancer Ther. 2012, 11:2429-2439.
    • (2012) Mol. Cancer Ther. , vol.11 , pp. 2429-2439
    • Bedi, A.1
  • 54
    • 84862983498 scopus 로고    scopus 로고
    • Concomitant targeting of EGF receptor, TGF-β and SRC points to a novel therapeutic approach in pancreatic cancer
    • Deharvengt S., et al. Concomitant targeting of EGF receptor, TGF-β and SRC points to a novel therapeutic approach in pancreatic cancer. PLoS ONE 2012, 7:e39684.
    • (2012) PLoS ONE , vol.7
    • Deharvengt, S.1
  • 55
    • 51349164414 scopus 로고    scopus 로고
    • Transforming growth factor β engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab
    • Wang S.E., et al. Transforming growth factor β engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol. Cell. Biol. 2008, 28:5605-5620.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 5605-5620
    • Wang, S.E.1
  • 56
    • 58349117913 scopus 로고    scopus 로고
    • Transforming growth factor β induces clustering of HER2 and integrins by activating Src-focal adhesion kinase and receptor association to the cytoskeleton
    • Wang S.E., et al. Transforming growth factor β induces clustering of HER2 and integrins by activating Src-focal adhesion kinase and receptor association to the cytoskeleton. Cancer Res. 2009, 69:475-482.
    • (2009) Cancer Res. , vol.69 , pp. 475-482
    • Wang, S.E.1
  • 57
    • 84873811988 scopus 로고    scopus 로고
    • Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition
    • Yu M., et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013, 339:580-584.
    • (2013) Science , vol.339 , pp. 580-584
    • Yu, M.1
  • 58
    • 84870020040 scopus 로고    scopus 로고
    • MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling
    • Huang S., et al. MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling. Cell 2012, 151:937-950.
    • (2012) Cell , vol.151 , pp. 937-950
    • Huang, S.1
  • 59
    • 77952962769 scopus 로고    scopus 로고
    • Development of personalized tumor biomarkers using massively parallel sequencing
    • Leary R.J., et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2010, 2:20ra14.
    • (2010) Sci. Transl. Med. , vol.2
    • Leary, R.J.1
  • 60
    • 84878630476 scopus 로고    scopus 로고
    • Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components
    • Ji H., et al. Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics 2013, 13:1672-1686.
    • (2013) Proteomics , vol.13 , pp. 1672-1686
    • Ji, H.1
  • 61
    • 80054857419 scopus 로고    scopus 로고
    • Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium
    • Sato T., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 2011, 141:1762-1772.
    • (2011) Gastroenterology , vol.141 , pp. 1762-1772
    • Sato, T.1
  • 62
    • 84874663933 scopus 로고    scopus 로고
    • The practicalities of using tissue slices as preclinical organotypic breast cancer models
    • Holliday D.L., et al. The practicalities of using tissue slices as preclinical organotypic breast cancer models. J. Clin. Pathol. 2013, 66:253-255.
    • (2013) J. Clin. Pathol. , vol.66 , pp. 253-255
    • Holliday, D.L.1
  • 63
    • 84863241921 scopus 로고    scopus 로고
    • Signaling network crosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls the balance between self-renewal and differentiation
    • Singh A.M., et al. Signaling network crosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls the balance between self-renewal and differentiation. Cell Stem Cell 2012, 10:312-326.
    • (2012) Cell Stem Cell , vol.10 , pp. 312-326
    • Singh, A.M.1
  • 64
    • 77957797819 scopus 로고    scopus 로고
    • TGF-β and insulin signaling regulate reproductive aging via oocyte and germline quality maintenance
    • Luo S., et al. TGF-β and insulin signaling regulate reproductive aging via oocyte and germline quality maintenance. Cell 2010, 143:299-312.
    • (2010) Cell , vol.143 , pp. 299-312
    • Luo, S.1
  • 65
    • 79952111161 scopus 로고    scopus 로고
    • PI3 kinase regulation of skeletal muscle hypertrophy and atrophy
    • Glass D.J. PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr. Top. Microbiol. Immunol. 2010, 346:267-278.
    • (2010) Curr. Top. Microbiol. Immunol. , vol.346 , pp. 267-278
    • Glass, D.J.1
  • 66
    • 43749120732 scopus 로고    scopus 로고
    • The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications
    • Carnero A., et al. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets 2008, 8:187-198.
    • (2008) Curr. Cancer Drug Targets , vol.8 , pp. 187-198
    • Carnero, A.1
  • 67
    • 39049094092 scopus 로고    scopus 로고
    • Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery
    • Cheng G.Z., et al. Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery. Curr. Cancer Drug Targets 2008, 8:2-6.
    • (2008) Curr. Cancer Drug Targets , vol.8 , pp. 2-6
    • Cheng, G.Z.1
  • 68
    • 58249083478 scopus 로고    scopus 로고
    • The TGF-β, PI3K/Akt and PTEN pathways: established and proposed biochemical integration in prostate cancer
    • Assinder S.J., et al. The TGF-β, PI3K/Akt and PTEN pathways: established and proposed biochemical integration in prostate cancer. Biochem. J. 2009, 417:411-421.
    • (2009) Biochem. J. , vol.417 , pp. 411-421
    • Assinder, S.J.1
  • 69
    • 0033551070 scopus 로고    scopus 로고
    • New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase AKT pathway
    • Cantley L.C., Neel B.G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase AKT pathway. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:4240-4245.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 4240-4245
    • Cantley, L.C.1    Neel, B.G.2
  • 70
    • 4344602002 scopus 로고    scopus 로고
    • The biology and clinical relevance of the PTEN tumor suppressor pathway
    • Sansal I., Sellers W.R. The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol. 2004, 22:2954-2963.
    • (2004) J. Clin. Oncol. , vol.22 , pp. 2954-2963
    • Sansal, I.1    Sellers, W.R.2
  • 71
    • 0031566693 scopus 로고    scopus 로고
    • Apoptosis. A bad kinase makes good
    • Franke T.F., Cantley L.C. Apoptosis. A bad kinase makes good. Nature 1997, 390:116-117.
    • (1997) Nature , vol.390 , pp. 116-117
    • Franke, T.F.1    Cantley, L.C.2
  • 72
    • 0029587224 scopus 로고
    • Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B
    • Cross D.A., et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995, 378:785-789.
    • (1995) Nature , vol.378 , pp. 785-789
    • Cross, D.A.1
  • 73
    • 0037155691 scopus 로고    scopus 로고
    • Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism
    • Liu C., et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002, 108:837-847.
    • (2002) Cell , vol.108 , pp. 837-847
    • Liu, C.1
  • 74
    • 0032533225 scopus 로고    scopus 로고
    • Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization
    • Diehl J.A., et al. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998, 12:3499-3511.
    • (1998) Genes Dev. , vol.12 , pp. 3499-3511
    • Diehl, J.A.1
  • 75
    • 78649348967 scopus 로고    scopus 로고
    • Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
    • Sengupta S., et al. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 2010, 40:310-322.
    • (2010) Mol. Cell , vol.40 , pp. 310-322
    • Sengupta, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.