-
1
-
-
0025207507
-
Miniaturized total chemical-analysis systems-a novel concept for chemical sensing
-
Manz, A.; Graver, N.; Widmer, H.M. Miniaturized total chemical-analysis systems-a novel concept for chemical sensing. Sens. Actuators B 1990, 1, 244-248.
-
(1990)
Sens. Actuators B
, vol.1
, pp. 244-248
-
-
Manz, A.1
Graver, N.2
Widmer, H.M.3
-
2
-
-
0000466510
-
Fluids for sensor systems
-
Shoji, S. Fluids for sensor systems. Top. Curr. Chem. 1998, 194, 163-188.
-
(1998)
Top. Curr. Chem.
, vol.194
, pp. 163-188
-
-
Shoji, S.1
-
3
-
-
0037126895
-
Bioanalysis in microfluidic devices
-
Khandurina, J.; Guttman, A. Bioanalysis in microfluidic devices. J. Chromatogr. A 2002, 943, 159-183.
-
(2002)
J. Chromatogr. A
, vol.943
, pp. 159-183
-
-
Khandurina, J.1
Guttman, A.2
-
4
-
-
0036498804
-
Microfabricated devices in biotechnology and biochemical processing
-
Chovan, T.; Guttman, A. Microfabricated devices in biotechnology and biochemical processing. Trends Biotechnol. 2002, 20, 116-122.
-
(2002)
Trends Biotechnol.
, vol.20
, pp. 116-122
-
-
Chovan, T.1
Guttman, A.2
-
5
-
-
0141447813
-
Introduction to micro-analytical systems: Bioanalytical and pharmaceutical applications
-
Huikko, K.; Kostiainen, R.; Kotiaho, T. Introduction to micro-analytical systems: Bioanalytical and pharmaceutical applications. Eur. J. Pharm. Sci. 2003, 20, 149-171.
-
(2003)
Eur. J. Pharm. Sci.
, vol.20
, pp. 149-171
-
-
Huikko, K.1
Kostiainen, R.2
Kotiaho, T.3
-
6
-
-
0037247886
-
The development of novel miniaturized immuno-sensing devices: A review of a small technology with a large future
-
Sheehan, A.D.; Quinn, J.; Daly, S.; Dillon, P.; O'Kennedy, R. The development of novel miniaturized immuno-sensing devices: A review of a small technology with a large future. Anal. Lett. 2003, 36, 511-537.
-
(2003)
Anal. Lett.
, vol.36
, pp. 511-537
-
-
Sheehan, A.D.1
Quinn, J.2
Daly, S.3
Dillon, P.4
O'Kennedy, R.5
-
7
-
-
0037462996
-
Microchip-based chemical and biochemical analysis systems
-
Sato, K.; Hibara, A.; Tokeshi, M.; Hisamoto, H.; Kitamori, T. Microchip-based chemical and biochemical analysis systems. Adv. Drug Deliv. Rev. 2003, 55, 379-391.
-
(2003)
Adv. Drug Deliv. Rev.
, vol.55
, pp. 379-391
-
-
Sato, K.1
Hibara, A.2
Tokeshi, M.3
Hisamoto, H.4
Kitamori, T.5
-
8
-
-
2442553856
-
Micro total analysis system (mu-TAS) in biotechnology
-
Lee, S.J.; Lee, S.Y. Micro total analysis system (mu-TAS) in biotechnology. Appl. Microbiol. Biot. 2004, 64, 289-299.
-
(2004)
Appl. Microbiol. Biot.
, vol.64
, pp. 289-299
-
-
Lee, S.J.1
Lee, S.Y.2
-
9
-
-
29944439904
-
Polymeric microfluidic system for DNA analysis
-
Sun, Y.; Kwok, Y.C. Polymeric microfluidic system for DNA analysis. Anal. Chim. Acta 2006, 556, 80-96.
-
(2006)
Anal. Chim. Acta
, vol.556
, pp. 80-96
-
-
Sun, Y.1
Kwok, Y.C.2
-
10
-
-
35649008448
-
A microfilter utilizing a polyethersulfone porous membrane with nanopores
-
Gu, Y.; Miki, N. A microfilter utilizing a polyethersulfone porous membrane with nanopores. J. Micromech. Microeng. 2007, 17, 2308-2315
-
(2007)
J. Micromech. Microeng.
, vol.17
, pp. 2308-2315
-
-
Gu, Y.1
Miki, N.2
-
11
-
-
35348902108
-
Biological cells on microchips: New technologies and applications
-
Tanaka, Y.; Sato, K.; Shimizu, T.; Yamato, M.; Okano, T.; Kitamori, T. Biological cells on microchips: New technologies and applications. Biosens. Bioelectron. 2007, 23, 449-458.
-
(2007)
Biosens. Bioelectron.
, vol.23
, pp. 449-458
-
-
Tanaka, Y.1
Sato, K.2
Shimizu, T.3
Yamato, M.4
Okano, T.5
Kitamori, T.6
-
12
-
-
47649133440
-
Surface-modified silicon nano-channel for urea sensing
-
Chen, Y.; Wang, X.H.; Hong, M.; Erramilli, S.; Mohanty, P. Surface-modified silicon nano-channel for urea sensing. Sens. Actuators 2008, 133, 593-598.
-
(2008)
Sens. Actuators
, vol.133
, pp. 593-598
-
-
Chen, Y.1
Wang, X.H.2
Hong, M.3
Erramilli, S.4
Mohanty, P.5
-
13
-
-
49049096890
-
Microtechnologies for membrane protein studies
-
Suzuki, H.; Takeuchi, S. Microtechnologies for membrane protein studies. Anal. Bioanal. Chem. 2008, 391, 2695-2702.
-
(2008)
Anal. Bioanal. Chem.
, vol.391
, pp. 2695-2702
-
-
Suzuki, H.1
Takeuchi, S.2
-
14
-
-
67849118864
-
Multilayered microfilter using a nanoporous PES membrane and applicable as the dialyzer of a wearable artificial kidney
-
doi:101088/0960-1317/19/6/065031
-
Gu, Y.; Miki, N. Multilayered microfilter using a nanoporous PES membrane and applicable as the dialyzer of a wearable artificial kidney. J. Micromech. Microeng. 2009, 19, doi:10.1088/0960-1317/19/6/065031.
-
(2009)
J. Micromech. Microeng.
, vol.19
-
-
Gu, Y.1
Miki, N.2
-
15
-
-
70349263305
-
Integration of electrochemistry in micro-total analysis systems for biochemical assays: Recent developments
-
Xu, X.; Zhang, S.; Chen, H.; Kong, J. Integration of electrochemistry in micro-total analysis systems for biochemical assays: Recent developments. Talanta 2009, 80, 8-18.
-
(2009)
Talanta
, vol.80
, pp. 8-18
-
-
Xu, X.1
Zhang, S.2
Chen, H.3
Kong, J.4
-
16
-
-
77953127292
-
Three-dimensional spheroid-forming lab-on-a-chip using micro-rotational flow
-
Ota, H.; Yamamoto, R.; Deguchi, K.; Tanaka, Y.; Kazoe, Y.; Sato, Y.; Miki, N. Three-dimensional spheroid-forming lab-on-a-chip using micro-rotational flow. Sens. Actuators B 2010, 147, 359-365.
-
(2010)
Sens. Actuators B
, vol.147
, pp. 359-365
-
-
Ota, H.1
Yamamoto, R.2
Deguchi, K.3
Tanaka, Y.4
Kazoe, Y.5
Sato, Y.6
Miki, N.7
-
17
-
-
77957110430
-
Microfluidic systems for biosensing
-
Liu, K.K.; Wu, R.G.; Chuang, Y.J.; Khoo, H.S.; Huang, S-H.; Tseng, F-G. Microfluidic systems for biosensing. Sensors 2010, 10, 6623-6661.
-
(2010)
Sensors
, vol.10
, pp. 6623-6661
-
-
Liu, K.K.1
Wu, R.G.2
Chuang, Y.J.3
Khoo, H.S.4
Huang, S.-H.5
Tseng, F.-G.6
-
18
-
-
77957754885
-
Tumors on chips: Oncology meets microfluidics
-
Wlodkowic, D.; Cooper, J.M. Tumors on chips: Oncology meets microfluidics. Curr. Opin. Chem. Biol. 2010, 14, 556-567.
-
(2010)
Curr. Opin. Chem. Biol.
, vol.14
, pp. 556-567
-
-
Wlodkowic, D.1
Cooper, J.M.2
-
19
-
-
80053440487
-
Rapid formation of size-controlled three dimensional hetero-cell aggregates using micro-rotation flow for spheroid study
-
doi:101063/1.3609969
-
Ota, H.; Kodama, T.; Miki, N. Rapid formation of size-controlled three dimensional hetero-cell aggregates using micro-rotation flow for spheroid study. Biomicrofluidics 2011, 5, doi:10.1063/1.3609969.
-
(2011)
Biomicrofluidics
, vol.5
-
-
Ota, H.1
Kodama, T.2
Miki, N.3
-
20
-
-
80052035105
-
Microfluidic experimental platform for producing size-controlled three-dimensional spheroids
-
Ota, H.; Miki, N. Microfluidic experimental platform for producing size-controlled three-dimensional spheroids. Sens. Actuators A 2011, 169, 266-273.
-
(2011)
Sens. Actuators A
, vol.169
, pp. 266-273
-
-
Ota, H.1
Miki, N.2
-
21
-
-
84857948974
-
Micromachined nanofiltration modules for lab-on-a-chip applications
-
doi:101088/0960-1317/22/2/025003
-
Shen, C.; Mokkapati, V.R.S.S.; Pham, H.T.M.; Sarro, P.M. Micromachined nanofiltration modules for lab-on-a-chip applications. J. Micromech. Microeng. 2012, 22, doi:10.1088/0960-1317/22/2/025003.
-
(2012)
J. Micromech. Microeng.
, vol.22
-
-
Shen, C.1
Mokkapati, V.R.S.S.2
Pham, H.T.M.3
Sarro, P.M.4
-
22
-
-
32944469615
-
Nanofluidic channels fabrication and manipulation of DNA molecules
-
Wang, K.; Yue, S.; Wang, L.; Jin, A.; Gu, C.; Wang, P.; Wang, H.; Xu, X.; Wang, Y.; Niu, H. Nanofluidic channels fabrication and manipulation of DNA molecules. IEEE Proc. Nanobiotechnol. 2006, 153, 11-15.
-
(2006)
IEEE Proc. Nanobiotechnol.
, vol.153
, pp. 11-15
-
-
Wang, K.1
Yue, S.2
Wang, L.3
Jin, A.4
Gu, C.5
Wang, P.6
Wang, H.7
Xu, X.8
Wang, Y.9
Niu, H.10
-
23
-
-
78649341898
-
Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probles
-
doi:101093/nar/gkq673
-
Das, S.K.; Austin, M.D.; Akana, M.C.; Deshpande, P.; Cao, H.; Xiao, M. Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probles. Nucleic Acids Res. 2010, 38, doi:10.1093/nar/gkq673.
-
(2010)
Nucleic Acids Res.
, vol.38
-
-
Das, S.K.1
Austin, M.D.2
Akana, M.C.3
Deshpande, P.4
Cao, H.5
Xiao, M.6
-
24
-
-
82755189901
-
Recent advances in single-molecule detection on micro- and nano-fluidic devices
-
Liu, C.; Qu, Y.Y.; Luo, Y.; Fang, N. Recent advances in single-molecule detection on micro- and nano-fluidic devices. Electrophoresis 2011, 32, 3308-3318.
-
(2011)
Electrophoresis
, vol.32
, pp. 3308-3318
-
-
Liu, C.1
Qu, Y.Y.2
Luo, Y.3
Fang, N.4
-
25
-
-
80053961932
-
Log-normal distribution of single molecule fluorescence bursts in micro/nano-fluidic channels
-
doi:101063/1.3648118
-
Kish, L.L.; Kameoka, J.; Granqvist, C.G.; Kish, L.B. Log-normal distribution of single molecule fluorescence bursts in micro/nano-fluidic channels. Appl. Phys. Lett. 2011, 99, doi:10.1063/1.3648118.
-
(2011)
Appl. Phys. Lett.
, vol.99
-
-
Kish, L.L.1
Kameoka, J.2
Granqvist, C.G.3
Kish, L.B.4
-
26
-
-
78650755659
-
DNA analysis by single molecule stretching in nanofluidic biochips
-
Abad, E.; Juarros, A.; Retolaza, A.; Merino, S.; Marie, R.; Kristensen, A. DNA analysis by single molecule stretching in nanofluidic biochips. Microelectron. Eng. 2011, 88, 300-304.
-
(2011)
Microelectron. Eng.
, vol.88
, pp. 300-304
-
-
Abad, E.1
Juarros, A.2
Retolaza, A.3
Merino, S.4
Marie, R.5
Kristensen, A.6
-
27
-
-
83255163684
-
Enhanced micro-PCR chip using TiO2nanofluidic heat-sink
-
Eun, D.S.; Shin, J.K.; Lee, J.H. Enhanced micro-PCR chip using TiO2nanofluidic heat-sink. Sens. Lett. 2009, 9, 276-282.
-
(2009)
Sens. Lett.
, vol.9
, pp. 276-282
-
-
Eun, D.S.1
Shin, J.K.2
Lee, J.H.3
-
28
-
-
38449105727
-
Microfluidic chips for cell sorting
-
Chen, P.; Feng, X.; Du, W.; Liu, B-F. Microfluidic chips for cell sorting. Front. Biosci. 2008, 13, 2464-2483.
-
(2008)
Front. Biosci.
, vol.13
, pp. 2464-2483
-
-
Chen, P.1
Feng, X.2
Du, W.3
Liu, B.-F.4
-
29
-
-
77956373200
-
Extended-nano fluidic systems for analytical and chemical technologies
-
Mawatari, K.; Tsukahara, T.; Sugii, Y.; Kitamori, T. Extended-nano fluidic systems for analytical and chemical technologies. Nanoscale 2010, 2, 1588-1595.
-
(2010)
Nanoscale
, vol.2
, pp. 1588-1595
-
-
Mawatari, K.1
Tsukahara, T.2
Sugii, Y.3
Kitamori, T.4
-
30
-
-
73949149945
-
Sub-wavelength nanofluidics in photonic crystal sensors
-
Huang, M.; Yanik, A.A.; Chang, T.Y.; Altug, H. Sub-wavelength nanofluidics in photonic crystal sensors. Opt. Express 2009, 17, 24224-24233.
-
(2009)
Opt. Express
, vol.17
, pp. 24224-24233
-
-
Huang, M.1
Yanik, A.A.2
Chang, T.Y.3
Altug, H.4
-
31
-
-
79958221815
-
Fabrication of 10 nm enclosed nanofluidic channels
-
Cao, H.; Yu, Z.N.; Wang, J.; Tegenfeldt, J.O.; Austin, R.H.; Chen, E.; Wu, W.; Chou, S.Y. Fabrication of 10 nm enclosed nanofluidic channels. Appl. Phys. Lett. 2002, 81, 174-176
-
(2002)
Appl. Phys. Lett.
, vol.81
, pp. 174-176
-
-
Cao, H.1
Yu, Z.N.2
Wang, J.3
Tegenfeldt, J.O.4
Austin, R.H.5
Chen, E.6
Wu, W.7
Chou, S.Y.8
-
32
-
-
0036643572
-
Nanoimprint lithography for the fabrication of DNA electrophoresis chips
-
Pepin, A.; Youninou, P.; Studer, V.; Lebib, A.; Chen, Y. Nanoimprint lithography for the fabrication of DNA electrophoresis chips. Microelectron. Eng. 2002, 61, 927-932.
-
(2002)
Microelectron. Eng.
, vol.61
, pp. 927-932
-
-
Pepin, A.1
Youninou, P.2
Studer, V.3
Lebib, A.4
Chen, Y.5
-
33
-
-
33746626949
-
Fabrication of micro/nano fluidic channels with sacrificial galvanic coupled metals
-
Zheng, H.J.; Wang, Z.L.; Feinerman, A.D. Fabrication of micro/nano fluidic channels with sacrificial galvanic coupled metals. Nanotechnology 2006, 17, 3183-3188.
-
(2006)
Nanotechnology
, vol.17
, pp. 3183-3188
-
-
Zheng, H.J.1
Wang, Z.L.2
Feinerman, A.D.3
-
34
-
-
33644667350
-
Fabrication of enclosed nanochannels in poly(methylmethacrylate) using proton beam writing and thermal bonding
-
doi:101063/1.2181631
-
Shao, P.E.; van Kan, A.; Wang, L.P.; Ansari, K.; Bettiol, A.A.; Watt, F. Fabrication of enclosed nanochannels in poly(methylmethacrylate) using proton beam writing and thermal bonding. Appl. Phys. Lett. 2006, 88, doi:10.1063/1.2181631.
-
(2006)
Appl. Phys. Lett.
, vol.88
-
-
Shao, P.E.1
van Kan, A.2
Wang, L.P.3
Ansari, K.4
Bettiol, A.A.5
Watt, F.6
-
35
-
-
34247618822
-
Embedded nano channels fabricated by non-selective reverse contact UV nanoimprint lithography technique
-
Kehagias, N.; Chansin, G.; Reboud, V.; Zelsmann, M.; Schuster, C.; Kubenz, M.; Reuther, F.; Gruetzner, G.; Sotomayer Torres, C.M. Embedded nano channels fabricated by non-selective reverse contact UV nanoimprint lithography technique. Microelectron. Eng. 2007, 84, 921-924.
-
(2007)
Microelectron. Eng.
, vol.84
, pp. 921-924
-
-
Kehagias, N.1
Chansin, G.2
Reboud, V.3
Zelsmann, M.4
Schuster, C.5
Kubenz, M.6
Reuther, F.7
Gruetzner, G.8
Sotomayer Torres, C.M.9
-
36
-
-
33947531758
-
Fabrication of self-sealed circular nano/microfluidic channels in glass substrates
-
doi:101088/0957-4484/18/13/135304
-
Wong, C.C.; Agarwal, A.; Balasubramanian, N.; Kwong, D.L. Fabrication of self-sealed circular nano/microfluidic channels in glass substrates. Nanotechnology 2007, 18, doi:10.1088/0957-4484/18/13/135304.
-
(2007)
Nanotechnology
, vol.18
-
-
Wong, C.C.1
Agarwal, A.2
Balasubramanian, N.3
Kwong, D.L.4
-
37
-
-
67349262752
-
Direct fabrication of micro/nano fluidic channels by electron beam lithography
-
Koller, D.M.; Galler, N.; Ditlbacher, H.; Hohenau, A.; Leitner, A.; Aussenegg, F.R.; Kren, J.R. Direct fabrication of micro/nano fluidic channels by electron beam lithography. Microelectron. Eng. 2009, 86, 1314-1316.
-
(2009)
Microelectron. Eng.
, vol.86
, pp. 1314-1316
-
-
Koller, D.M.1
Galler, N.2
Ditlbacher, H.3
Hohenau, A.4
Leitner, A.5
Aussenegg, F.R.6
Kren, J.R.7
-
38
-
-
67349163193
-
Fabrication of micro/nano fluidic channels by nanoimprint lithography and bonding using SU-8
-
Yang, R.; Lu, B.R.; Wang, J.; Xie, S-Q.; Chen, Y.; Hug, E.; Qu, X-P.; Liu, R. Fabrication of micro/nano fluidic channels by nanoimprint lithography and bonding using SU-8. Microelectron. Eng. 2009, 86, 1379-1381.
-
(2009)
Microelectron. Eng.
, vol.86
, pp. 1379-1381
-
-
Yang, R.1
Lu, B.R.2
Wang, J.3
Xie, S.-Q.4
Chen, Y.5
Hug, E.6
Qu, X.-P.7
Liu, R.8
-
39
-
-
60649110738
-
Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate
-
Venkatakrishnan, K.; Jariwala, S.; Tan, B. Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate. Opt. Express 2009, 17, 2756-2762.
-
(2009)
Opt. Express
, vol.17
, pp. 2756-2762
-
-
Venkatakrishnan, K.1
Jariwala, S.2
Tan, B.3
-
40
-
-
77951908306
-
Fabrication of nanochannels by anisotropic wet etching on silicon-on-insulator wafers and their applications to DNA stretch
-
Kim, S.K.; Cho, H.; Park, H.K.; Kim, J.H.; Chung, B.H. Fabrication of nanochannels by anisotropic wet etching on silicon-on-insulator wafers and their applications to DNA stretch. J. Nanosci. Nanotechnol. 2010, 10, 637-642.
-
(2010)
J. Nanosci. Nanotechnol.
, vol.10
, pp. 637-642
-
-
Kim, S.K.1
Cho, H.2
Park, H.K.3
Kim, J.H.4
Chung, B.H.5
-
41
-
-
84255189763
-
Fabrication of fluidic devices with 30 nm nanochannels by direct imprinting
-
doi:101116/1.3662886
-
Fernandez-Cuesta, I.; Palmarelli, A.L.; Liang, X.G.; Zhang, J.; Dhuey, S.; Olynick, D.; Cabrini, S. Fabrication of fluidic devices with 30 nm nanochannels by direct imprinting. J. Vac. Sci. Technol. B 2011, 29, doi:10.1116/1.3662886.
-
(2011)
J. Vac. Sci. Technol. B
, vol.29
-
-
Fernandez-Cuesta, I.1
Palmarelli, A.L.2
Liang, X.G.3
Zhang, J.4
Dhuey, S.5
Olynick, D.6
Cabrini, S.7
-
42
-
-
80052666605
-
Fabrication and electrical characterization of integrated nano-scale fluidic channels
-
Afanasiev, A.; Lahdesmaki, I.; Parviz, B.A. Fabrication and electrical characterization of integrated nano-scale fluidic channels. Microsyst. Technol. 2011, 17, 1511-1518.
-
(2011)
Microsyst. Technol.
, vol.17
, pp. 1511-1518
-
-
Afanasiev, A.1
Lahdesmaki, I.2
Parviz, B.A.3
-
43
-
-
79956148725
-
Surface microfluidics fabricated by photopatternable superhydrophobic nanocomposite
-
Hong, L.F.; Pan, T.R. Surface microfluidics fabricated by photopatternable superhydrophobic nanocomposite. Microfluid. Nanofluid. 2011, 10, 991-997.
-
(2011)
Microfluid. Nanofluid.
, vol.10
, pp. 991-997
-
-
Hong, L.F.1
Pan, T.R.2
-
44
-
-
0003575385
-
Zeta potential in Colloid Science: Principles and Applications
-
Academic Press: New York, NY, US
-
Hunter, R.J. Zeta potential in Colloid Science: Principles and Applications; Academic Press: New York, NY, US, 1981.
-
(1981)
-
-
Hunter, R.J.1
-
45
-
-
0037731387
-
Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electrosmotic flow
-
Sze, A.; Erickson, D.; Ren, L. Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electrosmotic flow. J. Colloid Interf. Sci. 2003, 261, 402-410.
-
(2003)
J. Colloid Interf. Sci.
, vol.261
, pp. 402-410
-
-
Sze, A.1
Erickson, D.2
Ren, L.3
-
46
-
-
33750285632
-
Experimental characterization of the temperature dependence of zeta potential and its effect on electroosmotic flow velocity in microchannels
-
Venditti, R.; Xuan, X.C.; Li, D.Q. Experimental characterization of the temperature dependence of zeta potential and its effect on electroosmotic flow velocity in microchannels. Microfluid. Nanofluid. 2006, 2, 493-499.
-
(2006)
Microfluid. Nanofluid.
, vol.2
, pp. 493-499
-
-
Venditti, R.1
Xuan, X.C.2
Li, D.Q.3
-
47
-
-
0032154939
-
A particle image velocimetry system for microfluidics
-
Santiago, J.G.; Wereley, S.T.; Meinhart, C.D.; Beebe, D.J.; Adrian, R.J. A particle image velocimetry system for microfluidics. Exp. Fluids 1998, 25, 316-319.
-
(1998)
Exp. Fluids
, vol.25
, pp. 316-319
-
-
Santiago, J.G.1
Wereley, S.T.2
Meinhart, C.D.3
Beebe, D.J.4
Adrian, R.J.5
-
48
-
-
33748918736
-
Electrokinetic effects on motion of submicron particles in microchannel
-
Sato, Y.; Hishida, K. Electrokinetic effects on motion of submicron particles in microchannel. Fluid Dyn. Res. 2006, 38, 787-802.
-
(2006)
Fluid Dyn. Res.
, vol.38
, pp. 787-802
-
-
Sato, Y.1
Hishida, K.2
-
49
-
-
70349307316
-
Micro-Particle Image Velocimetry (mu PIV): Recent developments, applications, and guidelines
-
Lindken, R.; Rossi, M.; Grosse, S.; Westerweel, J. Micro-Particle Image Velocimetry (mu PIV): Recent developments, applications, and guidelines. Lab Chip 2009, 9, 2551-2567.
-
(2009)
Lab Chip
, vol.9
, pp. 2551-2567
-
-
Lindken, R.1
Rossi, M.2
Grosse, S.3
Westerweel, J.4
-
50
-
-
78149394762
-
Measurement of electroosmotic flow velocity and electric field in microchannels by micro-particle image velocimetry
-
doi:101088/0957-0233/21/10/105402.
-
Tatsumi, K.; Nishitani, K.; Fukuda, K.; Katsumoto, Y.; Nakabe, K. Measurement of electroosmotic flow velocity and electric field in microchannels by micro-particle image velocimetry. Meas. Sci. Technol. 2010, 21, doi:10.1088/0957-0233/21/10/105402.
-
(2010)
Meas. Sci. Technol.
, vol.21
-
-
Tatsumi, K.1
Nishitani, K.2
Fukuda, K.3
Katsumoto, Y.4
Nakabe, K.5
-
51
-
-
3142690382
-
Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM)
-
Park, J.S.; Choi, C.K.; Kihm, K.D. Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Exp. Fluids 2004, 37, 105-119.
-
(2004)
Exp. Fluids
, vol.37
, pp. 105-119
-
-
Park, J.S.1
Choi, C.K.2
Kihm, K.D.3
-
52
-
-
33645241605
-
Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel
-
Lima, R.; Wada, S.; Tsubota, K.; Yamaguchi, T. Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel. Meas. Sci. Technol. 2006, 17, 797-808.
-
(2006)
Meas. Sci. Technol.
, vol.17
, pp. 797-808
-
-
Lima, R.1
Wada, S.2
Tsubota, K.3
Yamaguchi, T.4
-
53
-
-
28844473785
-
Use of confocal laser scanning microscopy (CLSM) for depthwise resolved microscale-particle image velocimetry (μ-PIV)
-
Park, J.S.; Kihm, K.D. Use of confocal laser scanning microscopy (CLSM) for depthwise resolved microscale-particle image velocimetry (μ-PIV). Opt. Lasers Eng. 2006, 44, 208-223.
-
(2006)
Opt. Lasers Eng.
, vol.44
, pp. 208-223
-
-
Park, J.S.1
Kihm, K.D.2
-
54
-
-
34548093019
-
Optically sliced measurement of velocity and pH distribution in microchannel
-
Ichiyanagi, M.; Sato, Y.; Hishida, K. Optically sliced measurement of velocity and pH distribution in microchannel. Exp. Fluids 2007, 43, 425-435.
-
(2007)
Exp. Fluids
, vol.43
, pp. 425-435
-
-
Ichiyanagi, M.1
Sato, Y.2
Hishida, K.3
-
55
-
-
33847342176
-
Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV
-
Kinoshita, H.; Kaneda, S.; Fujii, T.; Oshima, M. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab Chip 2007, 7, 338-346.
-
(2007)
Lab Chip
, vol.7
, pp. 338-346
-
-
Kinoshita, H.1
Kaneda, S.2
Fujii, T.3
Oshima, M.4
-
56
-
-
67949087938
-
Micro-PIV/LIF measurements on electrokinetically-driven flow in surface modified microchannels
-
doi:101088/0960-1317/19/4/045021
-
Ichiyanagi, M.; Sasaki, S.; Sato, Y.; Hishida, K. Micro-PIV/LIF measurements on electrokinetically-driven flow in surface modified microchannels. J. Micromech. Microeng. 2009, 19, doi:10.1088/0960-1317/19/4/045021.
-
(2009)
J. Micromech. Microeng.
, vol.19
-
-
Ichiyanagi, M.1
Sasaki, S.2
Sato, Y.3
Hishida, K.4
-
57
-
-
67349133885
-
Advanced particle-based velocimetry techniques for microscale flows
-
Lee, S.J.; Kim, S. Advanced particle-based velocimetry techniques for microscale flows. Microfluid. Nanofluid. 2009, 6, 577-588.
-
(2009)
Microfluid. Nanofluid.
, vol.6
, pp. 577-588
-
-
Lee, S.J.1
Kim, S.2
-
58
-
-
80052734637
-
Simultaneous measurement of internal and surrounding flows of a moving droplet using multicolour confocal micro-particle image velocimetry (micro-PIV)
-
doi:101088/0957-0233/22/10/105401
-
Oishi, M.; Kinoshita, H.; Fujii, T.; Oshima, M. Simultaneous measurement of internal and surrounding flows of a moving droplet using multicolour confocal micro-particle image velocimetry (micro-PIV). Meas. Sci. Technol. 2011, 22, doi:10.1088/0957-0233/22/10/105401.
-
(2011)
Meas. Sci. Technol.
, vol.22
-
-
Oishi, M.1
Kinoshita, H.2
Fujii, T.3
Oshima, M.4
-
59
-
-
77958099909
-
Advances and applications on microfluidic velocimetry techniques
-
Williams, S.J.; Park, C.; Wereley, S.T. Advances and applications on microfluidic velocimetry techniques. Microfluid. Nanofluid. 2010, 8, 709-726.
-
(2010)
Microfluid. Nanofluid.
, vol.8
, pp. 709-726
-
-
Williams, S.J.1
Park, C.2
Wereley, S.T.3
-
60
-
-
1842437126
-
Particle velocity field measurements in a near-wall flow using evanescent wave illumination
-
Zettner, C.M.; Yoda, M. Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp. Fluids 2003, 34, 115-121.
-
(2003)
Exp. Fluids
, vol.34
, pp. 115-121
-
-
Zettner, C.M.1
Yoda, M.2
-
61
-
-
7244251633
-
Three-dimensional tracking of nanoparticles using R-TIRFM technique
-
doi:101115/1.1811724
-
Banerjee, A.; Kihm, K.D. Three-dimensional tracking of nanoparticles using R-TIRFM technique. J. Heat Trans. 2004, 126, doi:10.1115/1.1811724.
-
(2004)
J. Heat Trans.
, vol.126
-
-
Banerjee, A.1
Kihm, K.D.2
-
62
-
-
34548593379
-
Effect of ion motion on zeta-potential distribution at microchannel wall obtained from nanoscale laser-induced fluorescence
-
Kazoe, Y.; Sato, Y. Effect of ion motion on zeta-potential distribution at microchannel wall obtained from nanoscale laser-induced fluorescence. Anal. Chem. 2007, 79, 6727-6733.
-
(2007)
Anal. Chem.
, vol.79
, pp. 6727-6733
-
-
Kazoe, Y.1
Sato, Y.2
-
63
-
-
71949104448
-
Fluorescence imaging technique of surface electrostatic potential using evanescent wave illumination
-
doi:10.1063/1.3266842
-
Kazoe, Y.; Miyakawa, S.; Miki, N.; Sato, Y. Fluorescence imaging technique of surface electrostatic potential using evanescent wave illumination. Appl. Phys. Lett. 2009, 95, doi:10.1063/1.3266842.
-
(2009)
Appl. Phys. Lett.
, vol.95
-
-
Kazoe, Y.1
Miyakawa, S.2
Miki, N.3
Sato, Y.4
-
64
-
-
79956106230
-
Hybrid micro-/nano-particle image velocimetry for 3D3C multi-scale velocity field measurement in microfluidics
-
doi:101088/0957-0233/22/6/064001
-
Min, Y.U.; Kim, K.C. Hybrid micro-/nano-particle image velocimetry for 3D3C multi-scale velocity field measurement in microfluidics. Meas. Sci. Technol. 2011, 22, doi:10.1088/0957-0233/22/6/064001.
-
(2011)
Meas. Sci. Technol.
, vol.22
-
-
Min, Y.U.1
Kim, K.C.2
-
65
-
-
33751579758
-
Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics
-
doi:101063/1.2397677
-
Joly, L.; Ybert, C.; Trizac, E.; Bocquet, L. Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics. J. Chem. Phys. 2006, 125, doi:10.1063/1.2397677.
-
(2006)
J. Chem. Phys.
, vol.125
-
-
Joly, L.1
Ybert, C.2
Trizac, E.3
Bocquet, L.4
-
66
-
-
80155171680
-
Curvature-induced secondary microflow motion in steady electro-osmotic transport with hydrodynamic slippage effect
-
doi:10.1063/1.3650911
-
Lim, J.M.; Chun, M.S. Curvature-induced secondary microflow motion in steady electro-osmotic transport with hydrodynamic slippage effect. Phys. Fluids 2011, 23, doi:10.1063/1.3650911.
-
(2011)
Phys. Fluids
, vol.23
-
-
Lim, J.M.1
Chun, M.S.2
-
67
-
-
0344467178
-
Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers
-
Miki, N.; Spearing, S.M. Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers. J. Appl. Phys. 2003, 94, 6800-6806.
-
(2003)
J. Appl. Phys.
, vol.94
, pp. 6800-6806
-
-
Miki, N.1
Spearing, S.M.2
-
68
-
-
0032753082
-
Characterization of a time multiplexed inductively coupled plasma etcher
-
Ayón, A.A.; Braff, R.; Lin, C.C., Sawin, H.H.; Schmidt, M.A. Characterization of a time multiplexed inductively coupled plasma etcher. J. Electrochem. Soc. 1999, 146, 339-349.
-
(1999)
J. Electrochem. Soc.
, vol.146
, pp. 339-349
-
-
Ayón, A.A.1
Braff, R.2
Lin, C.C.3
Sawin, H.H.4
Schmidt, M.A.5
-
69
-
-
0038054499
-
Enhancement of rotordynamic performance of high-speed micro-rotors for power MEMS applications by precision deep reactive ion etching
-
Miki, N.; Teo, C.J.; Ho, L.C.; Zhang, X. Enhancement of rotordynamic performance of high-speed micro-rotors for power MEMS applications by precision deep reactive ion etching. Sens. Actuators A 2003, 104, 263-267.
-
(2003)
Sens. Actuators A
, vol.104
, pp. 263-267
-
-
Miki, N.1
Teo, C.J.2
Ho, L.C.3
Zhang, X.4
-
70
-
-
0031699441
-
Dry etch process in magnetic neutral loop discharge plasma
-
Chen, W.; Itoh, M.; Hayashi, T.; Uchida, T. Dry etch process in magnetic neutral loop discharge plasma. Jpn. J. Appl. Phys. 1998, 37, 332-336.
-
(1998)
Jpn. J. Appl. Phys.
, vol.37
, pp. 332-336
-
-
Chen, W.1
Itoh, M.2
Hayashi, T.3
Uchida, T.4
-
71
-
-
0033440679
-
Very uniform and high aspect ratio anisotropy SiO2 etching process in magnetic neutral loop discharge plasma
-
Chen, W.; Morikawa, Y.; Itoh, M.; Hayashi, T.; Sugita, K.; Shindo, H.; Uchida, T. Very uniform and high aspect ratio anisotropy SiO2 etching process in magnetic neutral loop discharge plasma. J. Vac. Sci. Technol. A 1999, 17, 2546-2550.
-
(1999)
J. Vac. Sci. Technol. A
, vol.17
, pp. 2546-2550
-
-
Chen, W.1
Morikawa, Y.2
Itoh, M.3
Hayashi, T.4
Sugita, K.5
Shindo, H.6
Uchida, T.7
-
72
-
-
0035508233
-
Application of magnetic neutral loop discharge plasma in deep silica etching
-
Chen, W.; Sugita, K.; Morikawa, Y.; Yasunami, S.; Hayashi, T.; Uchida, T. Application of magnetic neutral loop discharge plasma in deep silica etching. J. Vac. Sci. Technol. A 2001, 19, 2936-2940.
-
(2001)
J. Vac. Sci. Technol. A
, vol.19
, pp. 2936-2940
-
-
Chen, W.1
Sugita, K.2
Morikawa, Y.3
Yasunami, S.4
Hayashi, T.5
Uchida, T.6
-
73
-
-
42549101638
-
Magnetic neutral loop discharge (NLD) plasmas for surface processing
-
doi:10.1088/0022-3727/41/8/083001
-
Uchida, T.; Hamaguchi, S. Magnetic neutral loop discharge (NLD) plasmas for surface processing. J. Phys. D 2008, 41, doi:10.1088/0022-3727/41/8/083001.
-
(2008)
J. Phys. D
, vol.41
-
-
Uchida, T.1
Hamaguchi, S.2
|