메뉴 건너뛰기




Volumn 6, Issue , 2013, Pages 169-179

MicroRNA and nephropathy: Emerging concepts

Author keywords

Kidney diseases; microRNAs; Renal fibrosis; Signaling; TGF

Indexed keywords

BIOLOGICAL MARKER; MICRORNA; MICRORNA 192; MICRORNA 200; MICRORNA 21; MICRORNA 29; MICRORNA 93; SHORT HAIRPIN RNA; SMAD3 PROTEIN; TRANSFORMING GROWTH FACTOR BETA; TRANSFORMING GROWTH FACTOR BETA1; UNCLASSIFIED DRUG;

EID: 84884796121     PISSN: None     EISSN: 11787058     Source Type: Journal    
DOI: 10.2147/IJNRD.S37885     Document Type: Review
Times cited : (60)

References (92)
  • 1
    • 9144225636 scopus 로고    scopus 로고
    • The Microprocessor complex mediates the genesis of microRNAs
    • Gregory RI, Yan KP, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432(7014):235-240.
    • (2004) Nature , vol.432 , Issue.7014 , pp. 235-240
    • Gregory, R.I.1    Yan, K.P.2    Amuthan, G.3
  • 2
    • 0141843656 scopus 로고    scopus 로고
    • The nuclear RNase III Drosha initiates microRNA processing
    • Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415-419.
    • (2003) Nature , vol.425 , Issue.6956 , pp. 415-419
    • Lee, Y.1    Ahn, C.2    Han, J.3
  • 3
    • 28044455435 scopus 로고    scopus 로고
    • microPrimer: The biogenesis and function of microRNA
    • Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development. 2005;132(21):4645-4652.
    • (2005) Development , vol.132 , Issue.21 , pp. 4645-4652
    • Du, T.1    Zamore, P.D.2
  • 4
    • 22144489833 scopus 로고    scopus 로고
    • RNAi: The nuts and bolts of the RISC machine
    • Filipowicz W. RNAi: the nuts and bolts of the RISC machine. Cell. 2005;122(1):17-20.
    • (2005) Cell , vol.122 , Issue.1 , pp. 17-20
    • Filipowicz, W.1
  • 5
    • 40449104335 scopus 로고    scopus 로고
    • MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis
    • Tian Z, Greene AS, Pietrusz JL, Matus IR, Liang M. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res. 2008;18(3):404-411.
    • (2008) Genome Res , vol.18 , Issue.3 , pp. 404-411
    • Tian, Z.1    Greene, A.S.2    Pietrusz, J.L.3    Matus, I.R.4    Liang, M.5
  • 6
    • 16344383409 scopus 로고    scopus 로고
    • Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs
    • Sun Y, Koo S, White N, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 2004;32(22):e188.
    • (2004) Nucleic Acids Res , vol.32 , Issue.22
    • Sun, Y.1    Koo, S.2    White, N.3
  • 7
    • 79954468469 scopus 로고    scopus 로고
    • microRNAs in kidneys: Biogenesis, regulation, and pathophysiological roles
    • Bhatt K, Mi QS, Dong Z. microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am J Physiol Renal Physiol. 2011;300(3): F602-F610.
    • (2011) Am J Physiol Renal Physiol , vol.300 , Issue.3
    • Bhatt, K.1    Mi, Q.S.2    Dong, Z.3
  • 9
    • 70349337337 scopus 로고    scopus 로고
    • MicroRNAs and their role in progressive kidney diseases
    • Kato M, Arce L, Natarajan R. MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol. 2009;4(7):1255-1266.
    • (2009) Clin J Am Soc Nephrol , vol.4 , Issue.7 , pp. 1255-1266
    • Kato, M.1    Arce, L.2    Natarajan, R.3
  • 10
    • 79955593914 scopus 로고    scopus 로고
    • MicroRNAs as mediators and therapeutic targets in chronic kidney disease
    • Lorenzen JM, Haller H, Thum T. MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nat Rev Nephrol. 2011;7(5):286-294.
    • (2011) Nat Rev Nephrol , vol.7 , Issue.5 , pp. 286-294
    • Lorenzen, J.M.1    Haller, H.2    Thum, T.3
  • 11
    • 85011941618 scopus 로고    scopus 로고
    • MicroRNAs in kidney development: Lessons from the frog
    • Wessely O, Agrawal R, Tran U. MicroRNAs in kidney development: lessons from the frog. RNA Biol. 2010;7(3):296-299.
    • (2010) RNA Biol , vol.7 , Issue.3 , pp. 296-299
    • Wessely, O.1    Agrawal, R.2    Tran, U.3
  • 12
    • 67849099709 scopus 로고    scopus 로고
    • MicroRNAs and the kidney: Coming of age
    • Saal S, Harvey SJ. MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hypertens. 2009;18(4):317-323.
    • (2009) Curr Opin Nephrol Hypertens , vol.18 , Issue.4 , pp. 317-323
    • Saal, S.1    Harvey, S.J.2
  • 13
    • 34249052234 scopus 로고    scopus 로고
    • TGF-beta in renal injury and disease
    • Böttinger EP. TGF-beta in renal injury and disease. Semin Nephrol. 2007;27(3):309-320.
    • (2007) Semin Nephrol , vol.27 , Issue.3 , pp. 309-320
    • Böttinger, E.P.1
  • 14
    • 82355190219 scopus 로고    scopus 로고
    • Cellular and molecular mechanisms of renal fibrosis
    • Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684-696.
    • (2011) Nat Rev Nephrol , vol.7 , Issue.12 , pp. 684-696
    • Liu, Y.1
  • 15
    • 0031933224 scopus 로고    scopus 로고
    • Molecular and cell biology of TGF-beta
    • Roberts AB. Molecular and cell biology of TGF-beta. Miner Electrolyte Metab. 1998;24(2-3):111-119.
    • (1998) Miner Electrolyte Metab , vol.24 , Issue.2-3 , pp. 111-119
    • Roberts, A.B.1
  • 16
    • 23944486004 scopus 로고    scopus 로고
    • Signaling mechanism of TGF-beta1 in prevention of renal inflammation: Role of Smad7
    • Wang W, Huang XR, Li AG, et al. Signaling mechanism of TGF-beta1 in prevention of renal inflammation: role of Smad7. J Am Soc Nephrol. 2005;16(5):1371-1383.
    • (2005) J Am Soc Nephrol , vol.16 , Issue.5 , pp. 1371-1383
    • Wang, W.1    Huang, X.R.2    Li, A.G.3
  • 17
    • 84925939424 scopus 로고    scopus 로고
    • Transforming growth factor-β and Smads
    • Lan HY, Chung AC. Transforming growth factor-β and Smads. Contrib Nephrol. 2011;170:75-82.
    • (2011) Contrib Nephrol , vol.170 , pp. 75-82
    • Lan, H.Y.1    Chung, A.C.2
  • 18
    • 84856691720 scopus 로고    scopus 로고
    • Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro
    • Meng XM, Huang XR, Xiao J, et al. Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Kidney Int. 2012;81(3):266-279.
    • (2012) Kidney Int , vol.81 , Issue.3 , pp. 266-279
    • Meng, X.M.1    Huang, X.R.2    Xiao, J.3
  • 19
    • 84862785580 scopus 로고    scopus 로고
    • Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro
    • Meng XM, Huang XR, Xiao J, et al. Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro. J Pathol. 2012;227(2):175-188.
    • (2012) J Pathol , vol.227 , Issue.2 , pp. 175-188
    • Meng, X.M.1    Huang, X.R.2    Xiao, J.3
  • 20
    • 77956548300 scopus 로고    scopus 로고
    • Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis
    • Meng XM, Huang XR, Chung AC, et al. Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis. J Am Soc Nephrol. 2010;21(9): 1477-1487.
    • (2010) J Am Soc Nephrol , vol.21 , Issue.9 , pp. 1477-1487
    • Meng, X.M.1    Huang, X.R.2    Chung, A.C.3
  • 21
    • 0034654497 scopus 로고    scopus 로고
    • Controlling TGF-beta signaling
    • Massagué J, Chen YG. Controlling TGF-beta signaling. Genes Dev. 2000;14(6):627-644.
    • (2000) Genes Dev , vol.14 , Issue.6 , pp. 627-644
    • Massagué, J.1    Chen, Y.G.2
  • 22
    • 0034016101 scopus 로고    scopus 로고
    • Positive and negative regulation of TGF-beta signaling
    • Miyazono K. Positive and negative regulation of TGF-beta signaling. J Cell Sci. 2000;113(Pt 7):1101-1109.
    • (2000) J Cell Sci , vol.113 , Issue.PART 7 , pp. 1101-1109
    • Miyazono, K.1
  • 23
    • 84872104961 scopus 로고    scopus 로고
    • Role of the TGF-β/BMP-7/Smad pathways in renal diseases
    • Meng XM, Chung AC, Lan HY. Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin Sci. 2013;124(4):243-254.
    • (2013) Clin Sci , vol.124 , Issue.4 , pp. 243-254
    • Meng, X.M.1    Chung, A.C.2    Lan, H.Y.3
  • 24
    • 77949395650 scopus 로고    scopus 로고
    • Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling
    • Chung AC, Zhang H, Kong YZ, et al. Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling. J Am Soc Nephrol. 2010;21(2):249-260.
    • (2010) J Am Soc Nephrol , vol.21 , Issue.2 , pp. 249-260
    • Chung, A.C.1    Zhang, H.2    Kong, Y.Z.3
  • 25
    • 79551599216 scopus 로고    scopus 로고
    • The protective role of Smad7 in diabetic kidney disease: Mechanism and therapeutic potential
    • Chen HY, Huang XR, Wang W, et al. The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes. 2011;60(2):590-601.
    • (2011) Diabetes , vol.60 , Issue.2 , pp. 590-601
    • Chen, H.Y.1    Huang, X.R.2    Wang, W.3
  • 26
    • 77950845870 scopus 로고    scopus 로고
    • Mechanism of chronic aristolochic acid nephropathy: Role of Smad3
    • Zhou L, Fu P, Huang XR, et al. Mechanism of chronic aristolochic acid nephropathy: role of Smad3. Am J Physiol Renal Physiol. 2010;298(4): F1006-F1017.
    • (2010) Am J Physiol Renal Physiol , vol.298 , Issue.4
    • Zhou, L.1    Fu, P.2    Huang, X.R.3
  • 27
    • 84878273492 scopus 로고    scopus 로고
    • Distinct roles of Smads and microRNAs in TGF-β signaling during kidney diseases
    • Li R, Lan HY, Chung AC. Distinct roles of Smads and microRNAs in TGF-β signaling during kidney diseases. Hong Kong Journal of Nephrology. 2013;15(1):14-21.
    • (2013) Hong Kong Journal of Nephrology , vol.15 , Issue.1 , pp. 14-21
    • Li, R.1    Lan, H.Y.2    Chung, A.C.3
  • 29
    • 0031883395 scopus 로고    scopus 로고
    • Potential role of TGF-beta in diabetic nephropathy
    • Hoffman BB, Sharma K, Ziyadeh FN. Potential role of TGF-beta in diabetic nephropathy. Miner Electrolyte Metab. 1998;24(2-3):190-196.
    • (1998) Miner Electrolyte Metab , vol.24 , Issue.2-3 , pp. 190-196
    • Hoffman, B.B.1    Sharma, K.2    Ziyadeh, F.N.3
  • 30
    • 65249099522 scopus 로고    scopus 로고
    • Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice
    • Chung AC, Huang XR, Zhou L, Heuchel R, Lai KN, Lan HY. Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice. Nephrol Dial Transplant. 2009;24(5):1443-1454.
    • (2009) Nephrol Dial Transplant , vol.24 , Issue.5 , pp. 1443-1454
    • Chung, A.C.1    Huang, X.R.2    Zhou, L.3    Heuchel, R.4    Lai, K.N.5    Lan, H.Y.6
  • 31
    • 80052102044 scopus 로고    scopus 로고
    • Diabetes complications: The microRNA perspective
    • Kantharidis P, Wang B, Carew RM, Lan HY. Diabetes complications: the microRNA perspective. Diabetes. 2011;60(7):1832-1837.
    • (2011) Diabetes , vol.60 , Issue.7 , pp. 1832-1837
    • Kantharidis, P.1    Wang, B.2    Carew, R.M.3    Lan, H.Y.4
  • 32
    • 84864148484 scopus 로고    scopus 로고
    • TGF-β/Smad signaling in kidney disease
    • Lan HY, Chung AC. TGF-β/Smad signaling in kidney disease. Semin Nephrol. 2012;32(3):236-243.
    • (2012) Semin Nephrol , vol.32 , Issue.3 , pp. 236-243
    • Lan, H.Y.1    Chung, A.C.2
  • 33
    • 84873406358 scopus 로고    scopus 로고
    • Smad7 suppresses renal fibrosis via altering expression of TGF-β/Smad3-regulated microRNAs
    • Chung AC, Dong Y, Yang W, Zhong X, Li R, Lan HY. Smad7 suppresses renal fibrosis via altering expression of TGF-β/Smad3-regulated microRNAs. Mol Ther. 2013;21(2):388-398.
    • (2013) Mol Ther , vol.21 , Issue.2 , pp. 388-398
    • Chung, A.C.1    Dong, Y.2    Yang, W.3    Zhong, X.4    Li, R.5    Lan, H.Y.6
  • 34
    • 84863229877 scopus 로고    scopus 로고
    • MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis
    • Kriegel AJ, Liu Y, Cohen B, Usa K, Liu Y, Liang M. MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis. Physiol Genomics. 2012;44(4):259-267.
    • (2012) Physiol Genomics , vol.44 , Issue.4 , pp. 259-267
    • Kriegel, A.J.1    Liu, Y.2    Cohen, B.3    Usa, K.4    Liu, Y.5    Liang, M.6
  • 35
    • 78650470110 scopus 로고    scopus 로고
    • MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: A novel role of miR-382
    • Kriegel AJ, Fang Y, Liu Y, et al. MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: a novel role of miR-382. Nucleic Acids Res. 2010;38(22):8338-8347.
    • (2010) Nucleic Acids Res , vol.38 , Issue.22 , pp. 8338-8347
    • Kriegel, A.J.1    Fang, Y.2    Liu, Y.3
  • 36
    • 77956921020 scopus 로고    scopus 로고
    • MicroRNA-21: From cancer to cardiovascular disease
    • Jazbutyte V, Thum T. MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets. 2010;11(8):926-935.
    • (2010) Curr Drug Targets , vol.11 , Issue.8 , pp. 926-935
    • Jazbutyte, V.1    Thum, T.2
  • 37
    • 46449128469 scopus 로고    scopus 로고
    • SMAD proteins control DROSHA-mediated microRNA maturation
    • Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454(7200): 56-61.
    • (2008) Nature , vol.454 , Issue.7200 , pp. 56-61
    • Davis, B.N.1    Hilyard, A.C.2    Lagna, G.3    Hata, A.4
  • 38
    • 34250770436 scopus 로고    scopus 로고
    • Transforming growth factor-beta and microRNA: MRNA regulatory networks in epithelial plasticity
    • Zavadil J, Narasimhan M, Blumenberg M, Schneider RJ. Transforming growth factor-beta and microRNA: mRNA regulatory networks in epithelial plasticity. Cells Tissues Organs (Print). 2007;185(1-3): 157-161.
    • (2007) Cells Tissues Organs (Print) , vol.185 , Issue.1-3 , pp. 157-161
    • Zavadil, J.1    Narasimhan, M.2    Blumenberg, M.3    Schneider, R.J.4
  • 39
    • 77955484492 scopus 로고    scopus 로고
    • Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha
    • Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell. 2010;39(3):373-384.
    • (2010) Mol Cell , vol.39 , Issue.3 , pp. 373-384
    • Davis, B.N.1    Hilyard, A.C.2    Nguyen, P.H.3    Lagna, G.4    Hata, A.5
  • 40
    • 57749168828 scopus 로고    scopus 로고
    • MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
    • Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980-984.
    • (2008) Nature , vol.456 , Issue.7224 , pp. 980-984
    • Thum, T.1    Gross, C.2    Fiedler, J.3
  • 41
    • 77955373730 scopus 로고    scopus 로고
    • miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis
    • Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207(8): 1589-1597.
    • (2010) J Exp Med , vol.207 , Issue.8 , pp. 1589-1597
    • Liu, G.1    Friggeri, A.2    Yang, Y.3
  • 42
    • 84863116324 scopus 로고    scopus 로고
    • MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways
    • Chau BN, Xin C, Hartner J, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012;4(121): 121ra18.
    • (2012) Sci Transl Med , vol.4 , Issue.121
    • Chau, B.N.1    Xin, C.2    Hartner, J.3
  • 43
    • 80052316668 scopus 로고    scopus 로고
    • Smad3-mediated upregulation of miR-21 promotes renal fibrosis
    • Zhong X, Chung AC, Chen HY, Meng XM, Lan HY. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol. 2011;22(9):1668-1681.
    • (2011) J Am Soc Nephrol , vol.22 , Issue.9 , pp. 1668-1681
    • Zhong, X.1    Chung, A.C.2    Chen, H.Y.3    Meng, X.M.4    Lan, H.Y.5
  • 45
    • 84886590520 scopus 로고    scopus 로고
    • Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice
    • Wang J, Gao Y, Ma M, et al. Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem Biophys. 2013.
    • (2013) Cell Biochem Biophys
    • Wang, J.1    Gao, Y.2    Ma, M.3
  • 46
    • 84878269299 scopus 로고    scopus 로고
    • miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes
    • Zhong X, Chung AC, Chen HY, et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia. 2013;56(3):663-674.
    • (2013) Diabetologia , vol.56 , Issue.3 , pp. 663-674
    • Zhong, X.1    Chung, A.C.2    Chen, H.Y.3
  • 47
    • 84869212341 scopus 로고    scopus 로고
    • Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21
    • Xu X, Kriegel AJ, Liu Y, et al. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int. 2012;82(11):1167-1175.
    • (2012) Kidney Int , vol.82 , Issue.11 , pp. 1167-1175
    • Xu, X.1    Kriegel, A.J.2    Liu, Y.3
  • 49
    • 62349141343 scopus 로고    scopus 로고
    • MicroRNA expression in response to murine myocardial infarction: MiR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue
    • Roy S, Khanna S, Hussain SR, et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 2009;82(1):21-29.
    • (2009) Cardiovasc Res , vol.82 , Issue.1 , pp. 21-29
    • Roy, S.1    Khanna, S.2    Hussain, S.R.3
  • 50
    • 55249089456 scopus 로고    scopus 로고
    • Focal adhesion kinase (FAK)-related non-kinase inhibits myofibroblast differentiation through differential MAPK activation in a FAK-dependent manner
    • Ding Q, Gladson CL, Wu H, Hayasaka H, Olman MA. Focal adhesion kinase (FAK)-related non-kinase inhibits myofibroblast differentiation through differential MAPK activation in a FAK-dependent manner. J Biol Chem. 2008;283(40):26839-26849.
    • (2008) J Biol Chem , vol.283 , Issue.40 , pp. 26839-26849
    • Ding, Q.1    Gladson, C.L.2    Wu, H.3    Hayasaka, H.4    Olman, M.A.5
  • 51
    • 79960418116 scopus 로고    scopus 로고
    • MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes
    • Dey N, Das F, Mariappan MM, et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J Biol Chem. 2011;286(29):25586-25603.
    • (2011) J Biol Chem , vol.286 , Issue.29 , pp. 25586-25603
    • Dey, N.1    Das, F.2    Mariappan, M.M.3
  • 52
    • 75649113377 scopus 로고    scopus 로고
    • Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21
    • Sheedy FJ, Palsson-McDermott E, Hennessy EJ, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol. 2010;11(2): 141-147.
    • (2010) Nat Immunol , vol.11 , Issue.2 , pp. 141-147
    • Sheedy, F.J.1    Palsson-McDermott, E.2    Hennessy, E.J.3
  • 53
    • 81455155655 scopus 로고    scopus 로고
    • Signaling by the matrix proteoglycan decorin controls inflammation and cancer through PDCD4 and MicroRNA-21
    • Merline R, Moreth K, Beckmann J, et al. Signaling by the matrix proteoglycan decorin controls inflammation and cancer through PDCD4 and MicroRNA-21. Sci Signal. 2011;4(199):ra75.
    • (2011) Sci Signal , vol.4 , Issue.199
    • Merline, R.1    Moreth, K.2    Beckmann, J.3
  • 54
    • 84857979740 scopus 로고    scopus 로고
    • Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy
    • Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol. 2012;23(3):458-469.
    • (2012) J Am Soc Nephrol , vol.23 , Issue.3 , pp. 458-469
    • Putta, S.1    Lanting, L.2    Sun, G.3    Lawson, G.4    Kato, M.5    Natarajan, R.6
  • 55
    • 77955611511 scopus 로고    scopus 로고
    • miR-192 mediates TGF-beta/Smad3-driven renal fibrosis
    • Chung AC, Huang XR, Meng X, Lan HY. miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J Am Soc Nephrol. 2010;21(8): 1317-1325.
    • (2010) J Am Soc Nephrol , vol.21 , Issue.8 , pp. 1317-1325
    • Chung, A.C.1    Huang, X.R.2    Meng, X.3    Lan, H.Y.4
  • 56
    • 33847682663 scopus 로고    scopus 로고
    • MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors
    • Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A. 2007;104(9): 3432-3437.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , Issue.9 , pp. 3432-3437
    • Kato, M.1    Zhang, J.2    Wang, M.3
  • 57
    • 84884793994 scopus 로고    scopus 로고
    • Transforming growth factor-β induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy
    • Deshpande SD, Putta S, Wang M, et al. Transforming growth factor-β induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes. 2013.
    • (2013) Diabetes
    • Deshpande, S.D.1    Putta, S.2    Wang, M.3
  • 59
    • 77954274715 scopus 로고    scopus 로고
    • E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta
    • Wang B, Herman-Edelstein M, Koh P, et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes. 2010;59(7):1794-1802.
    • (2010) Diabetes , vol.59 , Issue.7 , pp. 1794-1802
    • Wang, B.1    Herman-Edelstein, M.2    Koh, P.3
  • 60
    • 84863230332 scopus 로고    scopus 로고
    • The miR-29 family: Genomics, cell biology, and relevance to renal and cardiovascular injury
    • Kriegel AJ, Liu Y, Fang Y, Ding X, Liang M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics. 2012;44(4):237-244.
    • (2012) Physiol Genomics , vol.44 , Issue.4 , pp. 237-244
    • Kriegel, A.J.1    Liu, Y.2    Fang, Y.3    Ding, X.4    Liang, M.5
  • 61
    • 51349141401 scopus 로고    scopus 로고
    • Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
    • van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105(35):13027-13032.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , Issue.35 , pp. 13027-13032
    • van Rooij, E.1    Sutherland, L.B.2    Thatcher, J.E.3
  • 62
    • 84861916258 scopus 로고    scopus 로고
    • miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice
    • Xiao J, Meng XM, Huang XR, et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther. 2012;20(6):1251-1260.
    • (2012) Mol Ther , vol.20 , Issue.6 , pp. 1251-1260
    • Xiao, J.1    Meng, X.M.2    Huang, X.R.3
  • 63
    • 79960946532 scopus 로고    scopus 로고
    • TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29
    • Qin W, Chung AC, Huang XR, et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol. 2011;22(8): 1462-1474.
    • (2011) J Am Soc Nephrol , vol.22 , Issue.8 , pp. 1462-1474
    • Qin, W.1    Chung, A.C.2    Huang, X.R.3
  • 64
    • 77954766181 scopus 로고    scopus 로고
    • Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury
    • Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res. 2010;87(3):535-544.
    • (2010) Cardiovasc Res , vol.87 , Issue.3 , pp. 535-544
    • Ye, Y.1    Hu, Z.2    Lin, Y.3    Zhang, C.4    Perez-Polo, J.R.5
  • 65
    • 77649270362 scopus 로고    scopus 로고
    • High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells
    • Du B, Ma LM, Huang MB, et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett. 2010;584(4):811-816.
    • (2010) FEBS Lett , vol.584 , Issue.4 , pp. 811-816
    • Du, B.1    Ma, L.M.2    Huang, M.B.3
  • 66
    • 77950500403 scopus 로고    scopus 로고
    • Renal medullary microRNAs in Dahl salt-sensitive rats: MiR-29b regulates several collagens and related genes
    • Liu Y, Taylor NE, Lu L, et al. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension. 2010;55(4):974-982.
    • (2010) Hypertension , vol.55 , Issue.4 , pp. 974-982
    • Liu, Y.1    Taylor, N.E.2    Lu, L.3
  • 67
    • 84858703841 scopus 로고    scopus 로고
    • The miR-200 and miR-221/222 microRNA families: Opposing effects on epithelial identity
    • Howe EN, Cochrane DR, Richer JK. The miR-200 and miR-221/222 microRNA families: opposing effects on epithelial identity. J Mammary Gland Biol Neoplasia. 2012;17(1):65-77.
    • (2012) J Mammary Gland Biol Neoplasia , vol.17 , Issue.1 , pp. 65-77
    • Howe, E.N.1    Cochrane, D.R.2    Richer, J.K.3
  • 68
    • 43049103824 scopus 로고    scopus 로고
    • The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
    • Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593-601.
    • (2008) Nat Cell Biol , vol.10 , Issue.5 , pp. 593-601
    • Gregory, P.A.1    Bert, A.G.2    Paterson, E.L.3
  • 69
    • 41649091906 scopus 로고    scopus 로고
    • The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2
    • Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894-907.
    • (2008) Genes Dev , vol.22 , Issue.7 , pp. 894-907
    • Park, S.M.1    Gaur, A.B.2    Lengyel, E.3    Peter, M.E.4
  • 70
    • 44649163918 scopus 로고    scopus 로고
    • A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells
    • Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9(6):582-589.
    • (2008) EMBO Rep , vol.9 , Issue.6 , pp. 582-589
    • Burk, U.1    Schubert, J.2    Wellner, U.3
  • 71
    • 47249091921 scopus 로고    scopus 로고
    • The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2
    • Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283(22):14910-14914.
    • (2008) J Biol Chem , vol.283 , Issue.22 , pp. 14910-14914
    • Korpal, M.1    Lee, E.S.2    Hu, G.3    Kang, Y.4
  • 72
    • 84856006423 scopus 로고    scopus 로고
    • Participation of miR-200 in pulmonary fibrosis
    • Yang S, Banerjee S, de Freitas A, et al. Participation of miR-200 in pulmonary fibrosis. Am J Pathol. 2012;180(2):484-493.
    • (2012) Am J Pathol , vol.180 , Issue.2 , pp. 484-493
    • Yang, S.1    Banerjee, S.2    de Freitas, A.3
  • 73
    • 84862909357 scopus 로고    scopus 로고
    • The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression
    • Xiong M, Jiang L, Zhou Y, et al. The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol. 2012;302(3):F369-F379.
    • (2012) Am J Physiol Renal Physiol , vol.302 , Issue.3
    • Xiong, M.1    Jiang, L.2    Zhou, Y.3
  • 74
    • 78751516162 scopus 로고    scopus 로고
    • miR-200a prevents renal fibrogenesis through repression of TGF-β2 expression
    • Wang B, Koh P, Winbanks C, et al. miR-200a prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes. 2011;60(1): 280-287.
    • (2011) Diabetes , vol.60 , Issue.1 , pp. 280-287
    • Wang, B.1    Koh, P.2    Winbanks, C.3
  • 75
    • 78149459698 scopus 로고    scopus 로고
    • miR-200b precursor can ameliorate renal tubulointerstitial fibrosis
    • Oba S, Kumano S, Suzuki E, et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS ONE. 2010;5(10):e13614.
    • (2010) PLoS ONE , vol.5 , Issue.10
    • Oba, S.1    Kumano, S.2    Suzuki, E.3
  • 77
    • 34247589595 scopus 로고    scopus 로고
    • Control of stress-dependent cardiac growth and gene expression by a microRNA
    • van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575-579.
    • (2007) Science , vol.316 , Issue.5824 , pp. 575-579
    • van Rooij, E.1    Sutherland, L.B.2    Qi, X.3    Richardson, J.A.4    Hill, J.5    Olson, E.N.6
  • 78
    • 84878372360 scopus 로고    scopus 로고
    • MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling
    • Wei J, Feng L, Li Z, Xu G, Fan X. MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling. Biomed Pharmacother. 2013;67(5): 387-392.
    • (2013) Biomed Pharmacother , vol.67 , Issue.5 , pp. 387-392
    • Wei, J.1    Feng, L.2    Li, Z.3    Xu, G.4    Fan, X.5
  • 79
    • 80051655553 scopus 로고    scopus 로고
    • miR-29 is a major regulator of genes associated with pulmonary fibrosis
    • Cushing L, Kuang PP, Qian J, et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol. 2011;45(2):287-294.
    • (2011) Am J Respir Cell Mol Biol , vol.45 , Issue.2 , pp. 287-294
    • Cushing, L.1    Kuang, P.P.2    Qian, J.3
  • 81
    • 78751476297 scopus 로고    scopus 로고
    • Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis
    • Roderburg C, Urban GW, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2011;53(1):209-218.
    • (2011) Hepatology , vol.53 , Issue.1 , pp. 209-218
    • Roderburg, C.1    Urban, G.W.2    Bettermann, K.3
  • 82
    • 77957259450 scopus 로고    scopus 로고
    • Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice
    • Pogribny IP, Starlard-Davenport A, Tryndyak VP, et al. Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice. Lab Invest. 2010;90(10): 1437-1446.
    • (2010) Lab Invest , vol.90 , Issue.10 , pp. 1437-1446
    • Pogribny, I.P.1    Starlard-Davenport, A.2    Tryndyak, V.P.3
  • 83
    • 0037498439 scopus 로고    scopus 로고
    • Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model
    • Lan HY, Mu W, Tomita N, et al. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol. 2003;14(6):1535-1548.
    • (2003) J Am Soc Nephrol , vol.14 , Issue.6 , pp. 1535-1548
    • Lan, H.Y.1    Mu, W.2    Tomita, N.3
  • 84
    • 67349254469 scopus 로고    scopus 로고
    • MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells
    • Li T, Li D, Sha J, Sun P, Huang Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun. 2009;383(3):280-285.
    • (2009) Biochem Biophys Res Commun , vol.383 , Issue.3 , pp. 280-285
    • Li, T.1    Li, D.2    Sha, J.3    Sun, P.4    Huang, Y.5
  • 85
    • 80054066278 scopus 로고    scopus 로고
    • Overexpression of microRNA-29b induces apoptosis of multiple myeloma cells through down regulating Mcl-1
    • Zhang YK, Wang H, Leng Y, et al. Overexpression of microRNA-29b induces apoptosis of multiple myeloma cells through down regulating Mcl-1. Biochem Biophys Res Commun. 2011;414(1):233-239.
    • (2011) Biochem Biophys Res Commun , vol.414 , Issue.1 , pp. 233-239
    • Zhang, Y.K.1    Wang, H.2    Leng, Y.3
  • 86
    • 84871916518 scopus 로고    scopus 로고
    • Circulating microRNAs as biomarkers in health and disease
    • Velu VK, Ramesh R, Srinivasan AR. Circulating microRNAs as biomarkers in health and disease. J Clin Diagn Res. 2012;6(10): 1791-1795.
    • (2012) J Clin Diagn Res , vol.6 , Issue.10 , pp. 1791-1795
    • Velu, V.K.1    Ramesh, R.2    Srinivasan, A.R.3
  • 87
    • 84874558141 scopus 로고    scopus 로고
    • Increased circulating miR-21 levels are associated with kidney fibrosis
    • Glowacki F, Savary G, Gnemmi V, et al. Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS ONE. 2013;8(2): e58014.
    • (2013) PLoS ONE , vol.8 , Issue.2
    • Glowacki, F.1    Savary, G.2    Gnemmi, V.3
  • 88
    • 84872860732 scopus 로고    scopus 로고
    • Urinary microRNA profiling in the nephropathy of type 1 diabetes
    • Argyropoulos C, Wang K, McClarty S, et al. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS ONE. 2013;8(1):e54662.
    • (2013) PLoS ONE , vol.8 , Issue.1
    • Argyropoulos, C.1    Wang, K.2    McClarty, S.3
  • 89
    • 84867897248 scopus 로고    scopus 로고
    • Urinary miR-21, miR-29, and miR-93: Novel biomarkers of fibrosis
    • Wang G, Kwan BC, Lai FM, Chow KM, Li PK, Szeto CC. Urinary miR-21, miR-29, and miR-93: novel biomarkers of fibrosis. Am J Nephrol. 2012;36(5):412-418.
    • (2012) Am J Nephrol , vol.36 , Issue.5 , pp. 412-418
    • Wang, G.1    Kwan, B.C.2    Lai, F.M.3    Chow, K.M.4    Li, P.K.5    Szeto, C.C.6
  • 90
    • 83655184642 scopus 로고    scopus 로고
    • Exploring the role of miRNAs in renal cell carcinoma progression and metastasis through bioinformatic and experimental analyses
    • Khella HW, White NM, Faragalla H, et al. Exploring the role of miRNAs in renal cell carcinoma progression and metastasis through bioinformatic and experimental analyses. Tumour Biol. 2012;33(1):131-140.
    • (2012) Tumour Biol , vol.33 , Issue.1 , pp. 131-140
    • Khella, H.W.1    White, N.M.2    Faragalla, H.3
  • 91
    • 13944260434 scopus 로고    scopus 로고
    • Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes
    • Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11(3):241-247.
    • (2005) RNA , vol.11 , Issue.3 , pp. 241-247
    • Baskerville, S.1    Bartel, D.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.