-
1
-
-
9144225636
-
The Microprocessor complex mediates the genesis of microRNAs
-
Gregory RI, Yan KP, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432(7014):235-240.
-
(2004)
Nature
, vol.432
, Issue.7014
, pp. 235-240
-
-
Gregory, R.I.1
Yan, K.P.2
Amuthan, G.3
-
2
-
-
0141843656
-
The nuclear RNase III Drosha initiates microRNA processing
-
Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415-419.
-
(2003)
Nature
, vol.425
, Issue.6956
, pp. 415-419
-
-
Lee, Y.1
Ahn, C.2
Han, J.3
-
3
-
-
28044455435
-
microPrimer: The biogenesis and function of microRNA
-
Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development. 2005;132(21):4645-4652.
-
(2005)
Development
, vol.132
, Issue.21
, pp. 4645-4652
-
-
Du, T.1
Zamore, P.D.2
-
4
-
-
22144489833
-
RNAi: The nuts and bolts of the RISC machine
-
Filipowicz W. RNAi: the nuts and bolts of the RISC machine. Cell. 2005;122(1):17-20.
-
(2005)
Cell
, vol.122
, Issue.1
, pp. 17-20
-
-
Filipowicz, W.1
-
5
-
-
40449104335
-
MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis
-
Tian Z, Greene AS, Pietrusz JL, Matus IR, Liang M. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res. 2008;18(3):404-411.
-
(2008)
Genome Res
, vol.18
, Issue.3
, pp. 404-411
-
-
Tian, Z.1
Greene, A.S.2
Pietrusz, J.L.3
Matus, I.R.4
Liang, M.5
-
6
-
-
16344383409
-
Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs
-
Sun Y, Koo S, White N, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 2004;32(22):e188.
-
(2004)
Nucleic Acids Res
, vol.32
, Issue.22
-
-
Sun, Y.1
Koo, S.2
White, N.3
-
7
-
-
79954468469
-
microRNAs in kidneys: Biogenesis, regulation, and pathophysiological roles
-
Bhatt K, Mi QS, Dong Z. microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am J Physiol Renal Physiol. 2011;300(3): F602-F610.
-
(2011)
Am J Physiol Renal Physiol
, vol.300
, Issue.3
-
-
Bhatt, K.1
Mi, Q.S.2
Dong, Z.3
-
8
-
-
77956195166
-
Review: The role of microRNAs in kidney disease
-
Li JY, Yong TY, Michael MZ, Gleadle JM. Review: the role of microRNAs in kidney disease. Nephrology (Carlton). 2010;15(6):599-608.
-
(2010)
Nephrology (Carlton)
, vol.15
, Issue.6
, pp. 599-608
-
-
Li, J.Y.1
Yong, T.Y.2
Michael, M.Z.3
Gleadle, J.M.4
-
9
-
-
70349337337
-
MicroRNAs and their role in progressive kidney diseases
-
Kato M, Arce L, Natarajan R. MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol. 2009;4(7):1255-1266.
-
(2009)
Clin J Am Soc Nephrol
, vol.4
, Issue.7
, pp. 1255-1266
-
-
Kato, M.1
Arce, L.2
Natarajan, R.3
-
10
-
-
79955593914
-
MicroRNAs as mediators and therapeutic targets in chronic kidney disease
-
Lorenzen JM, Haller H, Thum T. MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nat Rev Nephrol. 2011;7(5):286-294.
-
(2011)
Nat Rev Nephrol
, vol.7
, Issue.5
, pp. 286-294
-
-
Lorenzen, J.M.1
Haller, H.2
Thum, T.3
-
11
-
-
85011941618
-
MicroRNAs in kidney development: Lessons from the frog
-
Wessely O, Agrawal R, Tran U. MicroRNAs in kidney development: lessons from the frog. RNA Biol. 2010;7(3):296-299.
-
(2010)
RNA Biol
, vol.7
, Issue.3
, pp. 296-299
-
-
Wessely, O.1
Agrawal, R.2
Tran, U.3
-
12
-
-
67849099709
-
MicroRNAs and the kidney: Coming of age
-
Saal S, Harvey SJ. MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hypertens. 2009;18(4):317-323.
-
(2009)
Curr Opin Nephrol Hypertens
, vol.18
, Issue.4
, pp. 317-323
-
-
Saal, S.1
Harvey, S.J.2
-
13
-
-
34249052234
-
TGF-beta in renal injury and disease
-
Böttinger EP. TGF-beta in renal injury and disease. Semin Nephrol. 2007;27(3):309-320.
-
(2007)
Semin Nephrol
, vol.27
, Issue.3
, pp. 309-320
-
-
Böttinger, E.P.1
-
14
-
-
82355190219
-
Cellular and molecular mechanisms of renal fibrosis
-
Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684-696.
-
(2011)
Nat Rev Nephrol
, vol.7
, Issue.12
, pp. 684-696
-
-
Liu, Y.1
-
15
-
-
0031933224
-
Molecular and cell biology of TGF-beta
-
Roberts AB. Molecular and cell biology of TGF-beta. Miner Electrolyte Metab. 1998;24(2-3):111-119.
-
(1998)
Miner Electrolyte Metab
, vol.24
, Issue.2-3
, pp. 111-119
-
-
Roberts, A.B.1
-
16
-
-
23944486004
-
Signaling mechanism of TGF-beta1 in prevention of renal inflammation: Role of Smad7
-
Wang W, Huang XR, Li AG, et al. Signaling mechanism of TGF-beta1 in prevention of renal inflammation: role of Smad7. J Am Soc Nephrol. 2005;16(5):1371-1383.
-
(2005)
J Am Soc Nephrol
, vol.16
, Issue.5
, pp. 1371-1383
-
-
Wang, W.1
Huang, X.R.2
Li, A.G.3
-
17
-
-
84925939424
-
Transforming growth factor-β and Smads
-
Lan HY, Chung AC. Transforming growth factor-β and Smads. Contrib Nephrol. 2011;170:75-82.
-
(2011)
Contrib Nephrol
, vol.170
, pp. 75-82
-
-
Lan, H.Y.1
Chung, A.C.2
-
18
-
-
84856691720
-
Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro
-
Meng XM, Huang XR, Xiao J, et al. Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Kidney Int. 2012;81(3):266-279.
-
(2012)
Kidney Int
, vol.81
, Issue.3
, pp. 266-279
-
-
Meng, X.M.1
Huang, X.R.2
Xiao, J.3
-
19
-
-
84862785580
-
Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro
-
Meng XM, Huang XR, Xiao J, et al. Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro. J Pathol. 2012;227(2):175-188.
-
(2012)
J Pathol
, vol.227
, Issue.2
, pp. 175-188
-
-
Meng, X.M.1
Huang, X.R.2
Xiao, J.3
-
20
-
-
77956548300
-
Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis
-
Meng XM, Huang XR, Chung AC, et al. Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis. J Am Soc Nephrol. 2010;21(9): 1477-1487.
-
(2010)
J Am Soc Nephrol
, vol.21
, Issue.9
, pp. 1477-1487
-
-
Meng, X.M.1
Huang, X.R.2
Chung, A.C.3
-
21
-
-
0034654497
-
Controlling TGF-beta signaling
-
Massagué J, Chen YG. Controlling TGF-beta signaling. Genes Dev. 2000;14(6):627-644.
-
(2000)
Genes Dev
, vol.14
, Issue.6
, pp. 627-644
-
-
Massagué, J.1
Chen, Y.G.2
-
22
-
-
0034016101
-
Positive and negative regulation of TGF-beta signaling
-
Miyazono K. Positive and negative regulation of TGF-beta signaling. J Cell Sci. 2000;113(Pt 7):1101-1109.
-
(2000)
J Cell Sci
, vol.113
, Issue.PART 7
, pp. 1101-1109
-
-
Miyazono, K.1
-
23
-
-
84872104961
-
Role of the TGF-β/BMP-7/Smad pathways in renal diseases
-
Meng XM, Chung AC, Lan HY. Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin Sci. 2013;124(4):243-254.
-
(2013)
Clin Sci
, vol.124
, Issue.4
, pp. 243-254
-
-
Meng, X.M.1
Chung, A.C.2
Lan, H.Y.3
-
24
-
-
77949395650
-
Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling
-
Chung AC, Zhang H, Kong YZ, et al. Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling. J Am Soc Nephrol. 2010;21(2):249-260.
-
(2010)
J Am Soc Nephrol
, vol.21
, Issue.2
, pp. 249-260
-
-
Chung, A.C.1
Zhang, H.2
Kong, Y.Z.3
-
25
-
-
79551599216
-
The protective role of Smad7 in diabetic kidney disease: Mechanism and therapeutic potential
-
Chen HY, Huang XR, Wang W, et al. The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes. 2011;60(2):590-601.
-
(2011)
Diabetes
, vol.60
, Issue.2
, pp. 590-601
-
-
Chen, H.Y.1
Huang, X.R.2
Wang, W.3
-
26
-
-
77950845870
-
Mechanism of chronic aristolochic acid nephropathy: Role of Smad3
-
Zhou L, Fu P, Huang XR, et al. Mechanism of chronic aristolochic acid nephropathy: role of Smad3. Am J Physiol Renal Physiol. 2010;298(4): F1006-F1017.
-
(2010)
Am J Physiol Renal Physiol
, vol.298
, Issue.4
-
-
Zhou, L.1
Fu, P.2
Huang, X.R.3
-
27
-
-
84878273492
-
Distinct roles of Smads and microRNAs in TGF-β signaling during kidney diseases
-
Li R, Lan HY, Chung AC. Distinct roles of Smads and microRNAs in TGF-β signaling during kidney diseases. Hong Kong Journal of Nephrology. 2013;15(1):14-21.
-
(2013)
Hong Kong Journal of Nephrology
, vol.15
, Issue.1
, pp. 14-21
-
-
Li, R.1
Lan, H.Y.2
Chung, A.C.3
-
30
-
-
65249099522
-
Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice
-
Chung AC, Huang XR, Zhou L, Heuchel R, Lai KN, Lan HY. Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice. Nephrol Dial Transplant. 2009;24(5):1443-1454.
-
(2009)
Nephrol Dial Transplant
, vol.24
, Issue.5
, pp. 1443-1454
-
-
Chung, A.C.1
Huang, X.R.2
Zhou, L.3
Heuchel, R.4
Lai, K.N.5
Lan, H.Y.6
-
31
-
-
80052102044
-
Diabetes complications: The microRNA perspective
-
Kantharidis P, Wang B, Carew RM, Lan HY. Diabetes complications: the microRNA perspective. Diabetes. 2011;60(7):1832-1837.
-
(2011)
Diabetes
, vol.60
, Issue.7
, pp. 1832-1837
-
-
Kantharidis, P.1
Wang, B.2
Carew, R.M.3
Lan, H.Y.4
-
32
-
-
84864148484
-
TGF-β/Smad signaling in kidney disease
-
Lan HY, Chung AC. TGF-β/Smad signaling in kidney disease. Semin Nephrol. 2012;32(3):236-243.
-
(2012)
Semin Nephrol
, vol.32
, Issue.3
, pp. 236-243
-
-
Lan, H.Y.1
Chung, A.C.2
-
33
-
-
84873406358
-
Smad7 suppresses renal fibrosis via altering expression of TGF-β/Smad3-regulated microRNAs
-
Chung AC, Dong Y, Yang W, Zhong X, Li R, Lan HY. Smad7 suppresses renal fibrosis via altering expression of TGF-β/Smad3-regulated microRNAs. Mol Ther. 2013;21(2):388-398.
-
(2013)
Mol Ther
, vol.21
, Issue.2
, pp. 388-398
-
-
Chung, A.C.1
Dong, Y.2
Yang, W.3
Zhong, X.4
Li, R.5
Lan, H.Y.6
-
34
-
-
84863229877
-
MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis
-
Kriegel AJ, Liu Y, Cohen B, Usa K, Liu Y, Liang M. MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis. Physiol Genomics. 2012;44(4):259-267.
-
(2012)
Physiol Genomics
, vol.44
, Issue.4
, pp. 259-267
-
-
Kriegel, A.J.1
Liu, Y.2
Cohen, B.3
Usa, K.4
Liu, Y.5
Liang, M.6
-
35
-
-
78650470110
-
MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: A novel role of miR-382
-
Kriegel AJ, Fang Y, Liu Y, et al. MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: a novel role of miR-382. Nucleic Acids Res. 2010;38(22):8338-8347.
-
(2010)
Nucleic Acids Res
, vol.38
, Issue.22
, pp. 8338-8347
-
-
Kriegel, A.J.1
Fang, Y.2
Liu, Y.3
-
36
-
-
77956921020
-
MicroRNA-21: From cancer to cardiovascular disease
-
Jazbutyte V, Thum T. MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets. 2010;11(8):926-935.
-
(2010)
Curr Drug Targets
, vol.11
, Issue.8
, pp. 926-935
-
-
Jazbutyte, V.1
Thum, T.2
-
37
-
-
46449128469
-
SMAD proteins control DROSHA-mediated microRNA maturation
-
Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454(7200): 56-61.
-
(2008)
Nature
, vol.454
, Issue.7200
, pp. 56-61
-
-
Davis, B.N.1
Hilyard, A.C.2
Lagna, G.3
Hata, A.4
-
38
-
-
34250770436
-
Transforming growth factor-beta and microRNA: MRNA regulatory networks in epithelial plasticity
-
Zavadil J, Narasimhan M, Blumenberg M, Schneider RJ. Transforming growth factor-beta and microRNA: mRNA regulatory networks in epithelial plasticity. Cells Tissues Organs (Print). 2007;185(1-3): 157-161.
-
(2007)
Cells Tissues Organs (Print)
, vol.185
, Issue.1-3
, pp. 157-161
-
-
Zavadil, J.1
Narasimhan, M.2
Blumenberg, M.3
Schneider, R.J.4
-
39
-
-
77955484492
-
Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha
-
Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell. 2010;39(3):373-384.
-
(2010)
Mol Cell
, vol.39
, Issue.3
, pp. 373-384
-
-
Davis, B.N.1
Hilyard, A.C.2
Nguyen, P.H.3
Lagna, G.4
Hata, A.5
-
40
-
-
57749168828
-
MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
-
Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980-984.
-
(2008)
Nature
, vol.456
, Issue.7224
, pp. 980-984
-
-
Thum, T.1
Gross, C.2
Fiedler, J.3
-
41
-
-
77955373730
-
miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis
-
Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207(8): 1589-1597.
-
(2010)
J Exp Med
, vol.207
, Issue.8
, pp. 1589-1597
-
-
Liu, G.1
Friggeri, A.2
Yang, Y.3
-
42
-
-
84863116324
-
MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways
-
Chau BN, Xin C, Hartner J, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012;4(121): 121ra18.
-
(2012)
Sci Transl Med
, vol.4
, Issue.121
-
-
Chau, B.N.1
Xin, C.2
Hartner, J.3
-
43
-
-
80052316668
-
Smad3-mediated upregulation of miR-21 promotes renal fibrosis
-
Zhong X, Chung AC, Chen HY, Meng XM, Lan HY. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol. 2011;22(9):1668-1681.
-
(2011)
J Am Soc Nephrol
, vol.22
, Issue.9
, pp. 1668-1681
-
-
Zhong, X.1
Chung, A.C.2
Chen, H.Y.3
Meng, X.M.4
Lan, H.Y.5
-
44
-
-
77956279443
-
Identification of a microRNA signature of renal ischemia reperfusion injury
-
Godwin JG, Ge X, Stephan K, Jurisch A, Tullius SG, Iacomini J. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci U S A. 2010;107(32):14339-14344.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.32
, pp. 14339-14344
-
-
Godwin, J.G.1
Ge, X.2
Stephan, K.3
Jurisch, A.4
Tullius, S.G.5
Iacomini, J.6
-
45
-
-
84886590520
-
Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice
-
Wang J, Gao Y, Ma M, et al. Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem Biophys. 2013.
-
(2013)
Cell Biochem Biophys
-
-
Wang, J.1
Gao, Y.2
Ma, M.3
-
46
-
-
84878269299
-
miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes
-
Zhong X, Chung AC, Chen HY, et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia. 2013;56(3):663-674.
-
(2013)
Diabetologia
, vol.56
, Issue.3
, pp. 663-674
-
-
Zhong, X.1
Chung, A.C.2
Chen, H.Y.3
-
47
-
-
84869212341
-
Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21
-
Xu X, Kriegel AJ, Liu Y, et al. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int. 2012;82(11):1167-1175.
-
(2012)
Kidney Int
, vol.82
, Issue.11
, pp. 1167-1175
-
-
Xu, X.1
Kriegel, A.J.2
Liu, Y.3
-
48
-
-
80053380337
-
Identification of a microRNA signature in renal fibrosis: Role of miR-21
-
Zarjou A, Yang S, Abraham E, Agarwal A, Liu G. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol. 2011;301(4):F793-F801.
-
(2011)
Am J Physiol Renal Physiol
, vol.301
, Issue.4
-
-
Zarjou, A.1
Yang, S.2
Abraham, E.3
Agarwal, A.4
Liu, G.5
-
49
-
-
62349141343
-
MicroRNA expression in response to murine myocardial infarction: MiR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue
-
Roy S, Khanna S, Hussain SR, et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 2009;82(1):21-29.
-
(2009)
Cardiovasc Res
, vol.82
, Issue.1
, pp. 21-29
-
-
Roy, S.1
Khanna, S.2
Hussain, S.R.3
-
50
-
-
55249089456
-
Focal adhesion kinase (FAK)-related non-kinase inhibits myofibroblast differentiation through differential MAPK activation in a FAK-dependent manner
-
Ding Q, Gladson CL, Wu H, Hayasaka H, Olman MA. Focal adhesion kinase (FAK)-related non-kinase inhibits myofibroblast differentiation through differential MAPK activation in a FAK-dependent manner. J Biol Chem. 2008;283(40):26839-26849.
-
(2008)
J Biol Chem
, vol.283
, Issue.40
, pp. 26839-26849
-
-
Ding, Q.1
Gladson, C.L.2
Wu, H.3
Hayasaka, H.4
Olman, M.A.5
-
51
-
-
79960418116
-
MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes
-
Dey N, Das F, Mariappan MM, et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J Biol Chem. 2011;286(29):25586-25603.
-
(2011)
J Biol Chem
, vol.286
, Issue.29
, pp. 25586-25603
-
-
Dey, N.1
Das, F.2
Mariappan, M.M.3
-
52
-
-
75649113377
-
Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21
-
Sheedy FJ, Palsson-McDermott E, Hennessy EJ, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol. 2010;11(2): 141-147.
-
(2010)
Nat Immunol
, vol.11
, Issue.2
, pp. 141-147
-
-
Sheedy, F.J.1
Palsson-McDermott, E.2
Hennessy, E.J.3
-
53
-
-
81455155655
-
Signaling by the matrix proteoglycan decorin controls inflammation and cancer through PDCD4 and MicroRNA-21
-
Merline R, Moreth K, Beckmann J, et al. Signaling by the matrix proteoglycan decorin controls inflammation and cancer through PDCD4 and MicroRNA-21. Sci Signal. 2011;4(199):ra75.
-
(2011)
Sci Signal
, vol.4
, Issue.199
-
-
Merline, R.1
Moreth, K.2
Beckmann, J.3
-
54
-
-
84857979740
-
Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy
-
Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol. 2012;23(3):458-469.
-
(2012)
J Am Soc Nephrol
, vol.23
, Issue.3
, pp. 458-469
-
-
Putta, S.1
Lanting, L.2
Sun, G.3
Lawson, G.4
Kato, M.5
Natarajan, R.6
-
55
-
-
77955611511
-
miR-192 mediates TGF-beta/Smad3-driven renal fibrosis
-
Chung AC, Huang XR, Meng X, Lan HY. miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J Am Soc Nephrol. 2010;21(8): 1317-1325.
-
(2010)
J Am Soc Nephrol
, vol.21
, Issue.8
, pp. 1317-1325
-
-
Chung, A.C.1
Huang, X.R.2
Meng, X.3
Lan, H.Y.4
-
56
-
-
33847682663
-
MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors
-
Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A. 2007;104(9): 3432-3437.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, Issue.9
, pp. 3432-3437
-
-
Kato, M.1
Zhang, J.2
Wang, M.3
-
57
-
-
84884793994
-
Transforming growth factor-β induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy
-
Deshpande SD, Putta S, Wang M, et al. Transforming growth factor-β induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes. 2013.
-
(2013)
Diabetes
-
-
Deshpande, S.D.1
Putta, S.2
Wang, M.3
-
58
-
-
77949892330
-
Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy
-
Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol. 2010;21(3):438-447.
-
(2010)
J Am Soc Nephrol
, vol.21
, Issue.3
, pp. 438-447
-
-
Krupa, A.1
Jenkins, R.2
Luo, D.D.3
Lewis, A.4
Phillips, A.5
Fraser, D.6
-
59
-
-
77954274715
-
E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta
-
Wang B, Herman-Edelstein M, Koh P, et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes. 2010;59(7):1794-1802.
-
(2010)
Diabetes
, vol.59
, Issue.7
, pp. 1794-1802
-
-
Wang, B.1
Herman-Edelstein, M.2
Koh, P.3
-
60
-
-
84863230332
-
The miR-29 family: Genomics, cell biology, and relevance to renal and cardiovascular injury
-
Kriegel AJ, Liu Y, Fang Y, Ding X, Liang M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics. 2012;44(4):237-244.
-
(2012)
Physiol Genomics
, vol.44
, Issue.4
, pp. 237-244
-
-
Kriegel, A.J.1
Liu, Y.2
Fang, Y.3
Ding, X.4
Liang, M.5
-
61
-
-
51349141401
-
Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
-
van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105(35):13027-13032.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.35
, pp. 13027-13032
-
-
van Rooij, E.1
Sutherland, L.B.2
Thatcher, J.E.3
-
62
-
-
84861916258
-
miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice
-
Xiao J, Meng XM, Huang XR, et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther. 2012;20(6):1251-1260.
-
(2012)
Mol Ther
, vol.20
, Issue.6
, pp. 1251-1260
-
-
Xiao, J.1
Meng, X.M.2
Huang, X.R.3
-
63
-
-
79960946532
-
TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29
-
Qin W, Chung AC, Huang XR, et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol. 2011;22(8): 1462-1474.
-
(2011)
J Am Soc Nephrol
, vol.22
, Issue.8
, pp. 1462-1474
-
-
Qin, W.1
Chung, A.C.2
Huang, X.R.3
-
64
-
-
77954766181
-
Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury
-
Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res. 2010;87(3):535-544.
-
(2010)
Cardiovasc Res
, vol.87
, Issue.3
, pp. 535-544
-
-
Ye, Y.1
Hu, Z.2
Lin, Y.3
Zhang, C.4
Perez-Polo, J.R.5
-
65
-
-
77649270362
-
High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells
-
Du B, Ma LM, Huang MB, et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett. 2010;584(4):811-816.
-
(2010)
FEBS Lett
, vol.584
, Issue.4
, pp. 811-816
-
-
Du, B.1
Ma, L.M.2
Huang, M.B.3
-
66
-
-
77950500403
-
Renal medullary microRNAs in Dahl salt-sensitive rats: MiR-29b regulates several collagens and related genes
-
Liu Y, Taylor NE, Lu L, et al. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension. 2010;55(4):974-982.
-
(2010)
Hypertension
, vol.55
, Issue.4
, pp. 974-982
-
-
Liu, Y.1
Taylor, N.E.2
Lu, L.3
-
67
-
-
84858703841
-
The miR-200 and miR-221/222 microRNA families: Opposing effects on epithelial identity
-
Howe EN, Cochrane DR, Richer JK. The miR-200 and miR-221/222 microRNA families: opposing effects on epithelial identity. J Mammary Gland Biol Neoplasia. 2012;17(1):65-77.
-
(2012)
J Mammary Gland Biol Neoplasia
, vol.17
, Issue.1
, pp. 65-77
-
-
Howe, E.N.1
Cochrane, D.R.2
Richer, J.K.3
-
68
-
-
43049103824
-
The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
-
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593-601.
-
(2008)
Nat Cell Biol
, vol.10
, Issue.5
, pp. 593-601
-
-
Gregory, P.A.1
Bert, A.G.2
Paterson, E.L.3
-
69
-
-
41649091906
-
The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2
-
Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894-907.
-
(2008)
Genes Dev
, vol.22
, Issue.7
, pp. 894-907
-
-
Park, S.M.1
Gaur, A.B.2
Lengyel, E.3
Peter, M.E.4
-
70
-
-
44649163918
-
A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells
-
Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9(6):582-589.
-
(2008)
EMBO Rep
, vol.9
, Issue.6
, pp. 582-589
-
-
Burk, U.1
Schubert, J.2
Wellner, U.3
-
71
-
-
47249091921
-
The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2
-
Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283(22):14910-14914.
-
(2008)
J Biol Chem
, vol.283
, Issue.22
, pp. 14910-14914
-
-
Korpal, M.1
Lee, E.S.2
Hu, G.3
Kang, Y.4
-
72
-
-
84856006423
-
Participation of miR-200 in pulmonary fibrosis
-
Yang S, Banerjee S, de Freitas A, et al. Participation of miR-200 in pulmonary fibrosis. Am J Pathol. 2012;180(2):484-493.
-
(2012)
Am J Pathol
, vol.180
, Issue.2
, pp. 484-493
-
-
Yang, S.1
Banerjee, S.2
de Freitas, A.3
-
73
-
-
84862909357
-
The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression
-
Xiong M, Jiang L, Zhou Y, et al. The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol. 2012;302(3):F369-F379.
-
(2012)
Am J Physiol Renal Physiol
, vol.302
, Issue.3
-
-
Xiong, M.1
Jiang, L.2
Zhou, Y.3
-
74
-
-
78751516162
-
miR-200a prevents renal fibrogenesis through repression of TGF-β2 expression
-
Wang B, Koh P, Winbanks C, et al. miR-200a prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes. 2011;60(1): 280-287.
-
(2011)
Diabetes
, vol.60
, Issue.1
, pp. 280-287
-
-
Wang, B.1
Koh, P.2
Winbanks, C.3
-
75
-
-
78149459698
-
miR-200b precursor can ameliorate renal tubulointerstitial fibrosis
-
Oba S, Kumano S, Suzuki E, et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS ONE. 2010;5(10):e13614.
-
(2010)
PLoS ONE
, vol.5
, Issue.10
-
-
Oba, S.1
Kumano, S.2
Suzuki, E.3
-
77
-
-
34247589595
-
Control of stress-dependent cardiac growth and gene expression by a microRNA
-
van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575-579.
-
(2007)
Science
, vol.316
, Issue.5824
, pp. 575-579
-
-
van Rooij, E.1
Sutherland, L.B.2
Qi, X.3
Richardson, J.A.4
Hill, J.5
Olson, E.N.6
-
78
-
-
84878372360
-
MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling
-
Wei J, Feng L, Li Z, Xu G, Fan X. MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling. Biomed Pharmacother. 2013;67(5): 387-392.
-
(2013)
Biomed Pharmacother
, vol.67
, Issue.5
, pp. 387-392
-
-
Wei, J.1
Feng, L.2
Li, Z.3
Xu, G.4
Fan, X.5
-
79
-
-
80051655553
-
miR-29 is a major regulator of genes associated with pulmonary fibrosis
-
Cushing L, Kuang PP, Qian J, et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol. 2011;45(2):287-294.
-
(2011)
Am J Respir Cell Mol Biol
, vol.45
, Issue.2
, pp. 287-294
-
-
Cushing, L.1
Kuang, P.P.2
Qian, J.3
-
80
-
-
80051784270
-
Suppression of hepatic stellate cell activation by microRNA-29b
-
Sekiya Y, Ogawa T, Yoshizato K, Ikeda K, Kawada N. Suppression of hepatic stellate cell activation by microRNA-29b. Biochem Biophys Res Commun. 2011;412(1):74-79.
-
(2011)
Biochem Biophys Res Commun
, vol.412
, Issue.1
, pp. 74-79
-
-
Sekiya, Y.1
Ogawa, T.2
Yoshizato, K.3
Ikeda, K.4
Kawada, N.5
-
81
-
-
78751476297
-
Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis
-
Roderburg C, Urban GW, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2011;53(1):209-218.
-
(2011)
Hepatology
, vol.53
, Issue.1
, pp. 209-218
-
-
Roderburg, C.1
Urban, G.W.2
Bettermann, K.3
-
82
-
-
77957259450
-
Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice
-
Pogribny IP, Starlard-Davenport A, Tryndyak VP, et al. Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice. Lab Invest. 2010;90(10): 1437-1446.
-
(2010)
Lab Invest
, vol.90
, Issue.10
, pp. 1437-1446
-
-
Pogribny, I.P.1
Starlard-Davenport, A.2
Tryndyak, V.P.3
-
83
-
-
0037498439
-
Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model
-
Lan HY, Mu W, Tomita N, et al. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol. 2003;14(6):1535-1548.
-
(2003)
J Am Soc Nephrol
, vol.14
, Issue.6
, pp. 1535-1548
-
-
Lan, H.Y.1
Mu, W.2
Tomita, N.3
-
84
-
-
67349254469
-
MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells
-
Li T, Li D, Sha J, Sun P, Huang Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun. 2009;383(3):280-285.
-
(2009)
Biochem Biophys Res Commun
, vol.383
, Issue.3
, pp. 280-285
-
-
Li, T.1
Li, D.2
Sha, J.3
Sun, P.4
Huang, Y.5
-
85
-
-
80054066278
-
Overexpression of microRNA-29b induces apoptosis of multiple myeloma cells through down regulating Mcl-1
-
Zhang YK, Wang H, Leng Y, et al. Overexpression of microRNA-29b induces apoptosis of multiple myeloma cells through down regulating Mcl-1. Biochem Biophys Res Commun. 2011;414(1):233-239.
-
(2011)
Biochem Biophys Res Commun
, vol.414
, Issue.1
, pp. 233-239
-
-
Zhang, Y.K.1
Wang, H.2
Leng, Y.3
-
86
-
-
84871916518
-
Circulating microRNAs as biomarkers in health and disease
-
Velu VK, Ramesh R, Srinivasan AR. Circulating microRNAs as biomarkers in health and disease. J Clin Diagn Res. 2012;6(10): 1791-1795.
-
(2012)
J Clin Diagn Res
, vol.6
, Issue.10
, pp. 1791-1795
-
-
Velu, V.K.1
Ramesh, R.2
Srinivasan, A.R.3
-
87
-
-
84874558141
-
Increased circulating miR-21 levels are associated with kidney fibrosis
-
Glowacki F, Savary G, Gnemmi V, et al. Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS ONE. 2013;8(2): e58014.
-
(2013)
PLoS ONE
, vol.8
, Issue.2
-
-
Glowacki, F.1
Savary, G.2
Gnemmi, V.3
-
88
-
-
84872860732
-
Urinary microRNA profiling in the nephropathy of type 1 diabetes
-
Argyropoulos C, Wang K, McClarty S, et al. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS ONE. 2013;8(1):e54662.
-
(2013)
PLoS ONE
, vol.8
, Issue.1
-
-
Argyropoulos, C.1
Wang, K.2
McClarty, S.3
-
89
-
-
84867897248
-
Urinary miR-21, miR-29, and miR-93: Novel biomarkers of fibrosis
-
Wang G, Kwan BC, Lai FM, Chow KM, Li PK, Szeto CC. Urinary miR-21, miR-29, and miR-93: novel biomarkers of fibrosis. Am J Nephrol. 2012;36(5):412-418.
-
(2012)
Am J Nephrol
, vol.36
, Issue.5
, pp. 412-418
-
-
Wang, G.1
Kwan, B.C.2
Lai, F.M.3
Chow, K.M.4
Li, P.K.5
Szeto, C.C.6
-
90
-
-
83655184642
-
Exploring the role of miRNAs in renal cell carcinoma progression and metastasis through bioinformatic and experimental analyses
-
Khella HW, White NM, Faragalla H, et al. Exploring the role of miRNAs in renal cell carcinoma progression and metastasis through bioinformatic and experimental analyses. Tumour Biol. 2012;33(1):131-140.
-
(2012)
Tumour Biol
, vol.33
, Issue.1
, pp. 131-140
-
-
Khella, H.W.1
White, N.M.2
Faragalla, H.3
-
91
-
-
13944260434
-
Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes
-
Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11(3):241-247.
-
(2005)
RNA
, vol.11
, Issue.3
, pp. 241-247
-
-
Baskerville, S.1
Bartel, D.P.2
-
92
-
-
84876287974
-
MicroRNAs in kidney disease: An emerging understanding
-
Khella HW, Bakhet M, Lichner Z, Romaschin AD, Jewett MA, Yousef GM. MicroRNAs in kidney disease: an emerging understanding. Am J Kidney Dis. 2013;61(5):798-808.
-
(2013)
Am J Kidney Dis
, vol.61
, Issue.5
, pp. 798-808
-
-
Khella, H.W.1
Bakhet, M.2
Lichner, Z.3
Romaschin, A.D.4
Jewett, M.A.5
Yousef, G.M.6
|