메뉴 건너뛰기




Volumn 251, Issue , 2013, Pages 22-46

On-line assurance of interpretability criteria in evolving fuzzy systems - Achievements, new concepts and open issues

Author keywords

Evolving fuzzy system Complexity reduction Interpretability criteria Knowledge expansion On line assurance

Indexed keywords

COMPLEXITY REDUCTION; DISTINGUISHABILITY; EVOLVING FUZZY SYSTEMS; INTERPRETABILITY CRITERION; KNOWLEDGE EXPANSION; ON-LINE ASSURANCES; ON-LINE COMPLEXITY; PRECISE MODELING;

EID: 84883213469     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2013.07.002     Document Type: Article
Times cited : (125)

References (116)
  • 1
    • 13144294059 scopus 로고    scopus 로고
    • Memory retention - The synaptic stability versus plasticity dilemma
    • W.C. Abraham, and A. Robins Memory retention - the synaptic stability versus plasticity dilemma Trends in Neurosciences 28 2 2005 73 78
    • (2005) Trends in Neurosciences , vol.28 , Issue.2 , pp. 73-78
    • Abraham, W.C.1    Robins, A.2
  • 3
    • 79960533640 scopus 로고    scopus 로고
    • Special issue on interpretable fuzzy systems
    • J.M. Alonso, and L. Magdalena Special issue on interpretable fuzzy systems Information Sciences 181 2011 4331 4339
    • (2011) Information Sciences , vol.181 , pp. 4331-4339
    • Alonso, J.M.1    Magdalena, L.2
  • 4
    • 23944495345 scopus 로고    scopus 로고
    • SimpleTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models
    • Reno, Nevada, USA
    • P. Angelov, D. Filev, SimpleTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models, in: Proceedings of FUZZ-IEEE 2005, Reno, Nevada, USA, 2005, pp. 1068-1073.
    • (2005) Proceedings of FUZZ-IEEE 2005 , pp. 1068-1073
    • Angelov, P.1    Filev, D.2
  • 6
    • 79951925823 scopus 로고    scopus 로고
    • Evolving inferential sensors in the chemical process industry
    • P. Angelov, D. Filev, N. Kasabov, John Wiley & Sons New York
    • P. Angelov, and A. Kordon Evolving inferential sensors in the chemical process industry P. Angelov, D. Filev, N. Kasabov, Evolving Intelligent Systems: Methodology and Applications 2010 John Wiley & Sons New York 313 336
    • (2010) Evolving Intelligent Systems: Methodology and Applications , pp. 313-336
    • Angelov, P.1    Kordon, A.2
  • 7
    • 58149524918 scopus 로고    scopus 로고
    • Evolving fuzzy-rule-based classifiers from data streams
    • P. Angelov, and X. Zhou Evolving fuzzy-rule-based classifiers from data streams IEEE Transactions on Fuzzy Systems 16 6 2008 1462 1475
    • (2008) IEEE Transactions on Fuzzy Systems , vol.16 , Issue.6 , pp. 1462-1475
    • Angelov, P.1    Zhou, X.2
  • 9
    • 1142279663 scopus 로고    scopus 로고
    • An approach for fuzzy rule-base adaptation using on-line clustering
    • P.P. Angelov An approach for fuzzy rule-base adaptation using on-line clustering International Journal on Approximate Reasoning 35 3 2004 275 289
    • (2004) International Journal on Approximate Reasoning , vol.35 , Issue.3 , pp. 275-289
    • Angelov, P.P.1
  • 10
    • 84886838236 scopus 로고    scopus 로고
    • Evolving Takagi-Sugeno fuzzy systems from streaming data, eTS+
    • P. Angelov, D. Filev, N. Kasabov, John Wiley & Sons New York
    • P.P. Angelov Evolving Takagi-Sugeno fuzzy systems from streaming data, eTS+ P. Angelov, D. Filev, N. Kasabov, Evolving Intelligent Systems: Methodology and Applications 2010 John Wiley & Sons New York 21 50
    • (2010) Evolving Intelligent Systems: Methodology and Applications , pp. 21-50
    • Angelov, P.P.1
  • 12
    • 53149134642 scopus 로고    scopus 로고
    • Evolving fuzzy classifiers using different model architectures
    • P.P. Angelov, E. Lughofer, and X. Zhou Evolving fuzzy classifiers using different model architectures Fuzzy Sets and Systems 159 23 2008 3160 3182
    • (2008) Fuzzy Sets and Systems , vol.159 , Issue.23 , pp. 3160-3182
    • Angelov, P.P.1    Lughofer, E.2    Zhou, X.3
  • 13
    • 0033280731 scopus 로고    scopus 로고
    • A highly interpretable form of Sugeno inference systems
    • M. Bikdash A highly interpretable form of Sugeno inference systems IEEE Transactions on Fuzzy Systems 7 6 1999 686 696
    • (1999) IEEE Transactions on Fuzzy Systems , vol.7 , Issue.6 , pp. 686-696
    • Bikdash, M.1
  • 16
    • 0035426683 scopus 로고    scopus 로고
    • Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems
    • J. Casillas, O. Cordon, M.J. Del Jesus, and F. Herrera Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems Information Sciences 136 1-4 2001 135 157
    • (2001) Information Sciences , vol.136 , Issue.14 , pp. 135-157
    • Casillas, J.1    Cordon, O.2    Del Jesus, M.J.3    Herrera, F.4
  • 17
    • 2442602088 scopus 로고    scopus 로고
    • A neuro-fuzzy network to generate human-understandable knowledge from data
    • G. Castellano, A.M. Fanelli, and C. Mencar A neuro-fuzzy network to generate human-understandable knowledge from data Cognitive Systems Research 3 2002 125 144
    • (2002) Cognitive Systems Research , vol.3 , pp. 125-144
    • Castellano, G.1    Fanelli, A.M.2    Mencar, C.3
  • 20
    • 0034387057 scopus 로고    scopus 로고
    • Novel fuzzy logic control based on weighting of partially inconsistent rules using neural network
    • J.S. Cho, and D.J. Park Novel fuzzy logic control based on weighting of partially inconsistent rules using neural network Journal of Intelligent and Fuzzy Systems 8 2 2000 99 110
    • (2000) Journal of Intelligent and Fuzzy Systems , vol.8 , Issue.2 , pp. 99-110
    • Cho, J.S.1    Park, D.J.2
  • 21
    • 0033116717 scopus 로고    scopus 로고
    • Heuristic constraints enforcement for training of and knowledge extraction from a fuzzy/neural architecture Part ii: Implementation and application
    • M.-Y. Chow, S. Altug, and H.J. Trussell Heuristic constraints enforcement for training of and knowledge extraction from a fuzzy/neural architecture Part ii: Implementation and application IEEE Transactions on Fuzzy Systems 7 2 1999 151 159
    • (1999) IEEE Transactions on Fuzzy Systems , vol.7 , Issue.2 , pp. 151-159
    • Chow, M.-Y.1    Altug, S.2    Trussell, H.J.3
  • 24
    • 79952714043 scopus 로고    scopus 로고
    • Recursive clustering based on a Gustafson-Kessel algorithm
    • D. Dovzan, and I. Skrjanc Recursive clustering based on a Gustafson-Kessel algorithm Evolving Systems 2 1 2011 15 24
    • (2011) Evolving Systems , vol.2 , Issue.1 , pp. 15-24
    • Dovzan, D.1    Skrjanc, I.2
  • 27
    • 77649154452 scopus 로고    scopus 로고
    • An intelligent decision support system based on machine learning and dynamic track of psychological evaluation criterion
    • J. Kacpzryk, Springer Heidelberg Berlin
    • J. Feng An intelligent decision support system based on machine learning and dynamic track of psychological evaluation criterion J. Kacpzryk, Intelligent Decision and Policy Making Support Systems 2008 Springer Heidelberg Berlin
    • (2008) Intelligent Decision and Policy Making Support Systems
    • Feng, J.1
  • 28
    • 0005540091 scopus 로고    scopus 로고
    • A constrained Takagi-Sugeno fuzzy system that allows for better interpretation and analysis
    • A. Fiordaliso A constrained Takagi-Sugeno fuzzy system that allows for better interpretation and analysis Fuzzy Sets and Systems 118 2 2001 281 296
    • (2001) Fuzzy Sets and Systems , vol.118 , Issue.2 , pp. 281-296
    • Fiordaliso, A.1
  • 30
    • 79960555001 scopus 로고    scopus 로고
    • Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures
    • M.J. Gacto, R. Alcala, and F. Herrera Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures Information Sciences 181 20 2011 4340 4360
    • (2011) Information Sciences , vol.181 , Issue.20 , pp. 4340-4360
    • Gacto, M.J.1    Alcala, R.2    Herrera, F.3
  • 34
    • 84868492821 scopus 로고    scopus 로고
    • Local model network identification for online engine modelling
    • C. Hametner, and S. Jakubek Local model network identification for online engine modelling Information Sciences 220 2013 210 225
    • (2013) Information Sciences , vol.220 , pp. 210-225
    • Hametner, C.1    Jakubek, S.2
  • 35
    • 70350344547 scopus 로고    scopus 로고
    • RBF learning in a non-stationary environment: The stability-plasticity dilemma
    • R.J. Howlett, L.C. Jain, Physica Verlag Heidelberg, New York
    • F.H. Hamker RBF learning in a non-stationary environment: the stability-plasticity dilemma R.J. Howlett, L.C. Jain, Radial Basis Function Networks 1: Recent Developments in Theory and Applications 2001 Physica Verlag Heidelberg, New York 219 251
    • (2001) Radial Basis Function Networks 1: Recent Developments in Theory and Applications , pp. 219-251
    • Hamker, F.H.1
  • 38
    • 34547828776 scopus 로고    scopus 로고
    • Comments on distinguishability quantification of fuzzy sets
    • H.A. Hefny Comments on distinguishability quantification of fuzzy sets Information Sciences 177 2007 4832 4839
    • (2007) Information Sciences , vol.177 , pp. 4832-4839
    • Hefny, H.A.1
  • 39
    • 18844362190 scopus 로고    scopus 로고
    • TaSe, a Taylor series-based fuzzy system model that combines interpretability and accuracy
    • L.J. Herrera, H. Pomares, I. Rojas, O. Valenzuela, and A. Prieto TaSe, a Taylor series-based fuzzy system model that combines interpretability and accuracy Fuzzy Sets and Systems 153 3 2005 403 427
    • (2005) Fuzzy Sets and Systems , vol.153 , Issue.3 , pp. 403-427
    • Herrera, L.J.1    Pomares, H.2    Rojas, I.3    Valenzuela, O.4    Prieto, A.5
  • 40
    • 79952316981 scopus 로고    scopus 로고
    • Incremental linear discriminant analysis for evolving feature spaces in multitask pattern recognition problems
    • M. Hisada, S. Ozawa, K. Zhang, and N. Kasabov Incremental linear discriminant analysis for evolving feature spaces in multitask pattern recognition problems Evolving Systems 1 1 2010 17 27
    • (2010) Evolving Systems , vol.1 , Issue.1 , pp. 17-27
    • Hisada, M.1    Ozawa, S.2    Zhang, K.3    Kasabov, N.4
  • 42
    • 0033704546 scopus 로고    scopus 로고
    • Fuzzy modelling of high dimensional systems: Complexity reduction and interpretability improvement
    • Y. Jin Fuzzy modelling of high dimensional systems: complexity reduction and interpretability improvement IEEE Transactions on Fuzzy Systems 8 2 2000 212 221
    • (2000) IEEE Transactions on Fuzzy Systems , vol.8 , Issue.2 , pp. 212-221
    • Jin, Y.1
  • 43
    • 0031999146 scopus 로고    scopus 로고
    • An on-line self-constructing neural fuzzy inference network and its applications
    • C.F. Juang, and C.T. Lin An on-line self-constructing neural fuzzy inference network and its applications IEEE Transactions on Fuzzy Systems 6 1 1998 12 32
    • (1998) IEEE Transactions on Fuzzy Systems , vol.6 , Issue.1 , pp. 12-32
    • Juang, C.F.1    Lin, C.T.2
  • 44
    • 79952309310 scopus 로고    scopus 로고
    • An online predictor model as adaptive habitually linear and transiently nonlinear model
    • A. Kalhor, B.N. Araabi, and C. Lucas An online predictor model as adaptive habitually linear and transiently nonlinear model Evolving Systems 1 1 2010 29 41
    • (2010) Evolving Systems , vol.1 , Issue.1 , pp. 29-41
    • Kalhor, A.1    Araabi, B.N.2    Lucas, C.3
  • 45
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • N.K. Kasabov, and Q. Song DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction IEEE Transactions on Fuzzy Systems 10 2 2002 144 154
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 46
    • 0004128728 scopus 로고    scopus 로고
    • Kluwer Academic Publishers Dordrecht Norwell New York London
    • E.P. Klement, R. Mesiar, and E. Pap Triangular Norms 2000 Kluwer Academic Publishers Dordrecht Norwell New York London
    • (2000) Triangular Norms
    • Klement, E.P.1    Mesiar, R.2    Pap, E.3
  • 47
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: Example selection vs. example weighting
    • R. Klinkenberg Learning drifting concepts: example selection vs. example weighting Intelligent Data Analysis 8 3 2004 281 300
    • (2004) Intelligent Data Analysis , vol.8 , Issue.3 , pp. 281-300
    • Klinkenberg, R.1
  • 48
    • 84860482184 scopus 로고    scopus 로고
    • Introducing evolving Takagi-Sugeno method based on local least squares support vector machine models
    • M. Komijani, C. Lucas, B.N. Araabi, and A. Kalhor Introducing evolving Takagi-Sugeno method based on local least squares support vector machine models Evolving Systems 3 2 2012 81 93
    • (2012) Evolving Systems , vol.3 , Issue.2 , pp. 81-93
    • Komijani, M.1    Lucas, C.2    Araabi, B.N.3    Kalhor, A.4
  • 52
    • 84860424873 scopus 로고    scopus 로고
    • Evolving fuzzy granular modeling from nonstationary fuzzy data streams
    • D. Leite, R. Ballini, P. Costa, and F. Gomide Evolving fuzzy granular modeling from nonstationary fuzzy data streams Evolving Systems 3 2 2012 65 79
    • (2012) Evolving Systems , vol.3 , Issue.2 , pp. 65-79
    • Leite, D.1    Ballini, R.2    Costa, P.3    Gomide, F.4
  • 54
    • 84864839130 scopus 로고    scopus 로고
    • Adaptive fault detection and diagnosis using an evolving fuzzy classifier
    • A. Lemos, W. Caminhas, and F. Gomide Adaptive fault detection and diagnosis using an evolving fuzzy classifier Information Sciences 220 2013 64 85
    • (2013) Information Sciences , vol.220 , pp. 64-85
    • Lemos, A.1    Caminhas, W.2    Gomide, F.3
  • 56
    • 68849097314 scopus 로고    scopus 로고
    • A hybrid learning algorithm with a similarity-based pruning strategy for self-adaptive neuro-fuzzy systems
    • G. Leng A hybrid learning algorithm with a similarity-based pruning strategy for self-adaptive neuro-fuzzy systems Applied Soft Computing 9 4 2009 1354 1366
    • (2009) Applied Soft Computing , vol.9 , Issue.4 , pp. 1354-1366
    • Leng, G.1
  • 57
    • 11244351634 scopus 로고    scopus 로고
    • An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network
    • G. Leng, T.M. McGinnity, and G. Prasad An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network Fuzzy Sets and Systems 150 2 2005 211 243
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 211-243
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 58
    • 84857877306 scopus 로고    scopus 로고
    • An improved approach of self-organising fuzzy neural network based on similarity measures
    • G. Leng, X.-J. Zeng, and J.A. Keane An improved approach of self-organising fuzzy neural network based on similarity measures Evolving Systems 3 1 2012 19 30
    • (2012) Evolving Systems , vol.3 , Issue.1 , pp. 19-30
    • Leng, G.1    Zeng, X.-J.2    Keane, J.A.3
  • 59
    • 0035131889 scopus 로고    scopus 로고
    • A pruning method for the recursive least squares algorithm
    • C.S. Leung, K.W. Wong, P.F. Sum, and L.W. Chan A pruning method for the recursive least squares algorithm Neural Networks 14 2 2001 147 174
    • (2001) Neural Networks , vol.14 , Issue.2 , pp. 147-174
    • Leung, C.S.1    Wong, K.W.2    Sum, P.F.3    Chan, L.W.4
  • 61
    • 84883257812 scopus 로고    scopus 로고
    • Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network
    • Y.Y. Lin, J.-Y. Chang, and C.-T. Lin Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network IEEE Transactions on Neural Networks and Learning Systems 24 2 2013 310 321
    • (2013) IEEE Transactions on Neural Networks and Learning Systems , vol.24 , Issue.2 , pp. 310-321
    • Lin, Y.Y.1    Chang, J.-Y.2    Lin, C.-T.3
  • 62
    • 0003473124 scopus 로고    scopus 로고
    • Prentice Hall PTR, Prentic Hall Inc. Upper Saddle River, New Jersey
    • L. Ljung System Identification: Theory for the User 1999 Prentice Hall PTR, Prentic Hall Inc. Upper Saddle River, New Jersey
    • (1999) System Identification: Theory for the User
    • Ljung, L.1
  • 64
    • 84901978687 scopus 로고    scopus 로고
    • Human-inspired evolving machines - The next generation of evolving intelligent systems?
    • E. Lughofer Human-inspired evolving machines - the next generation of evolving intelligent systems? SMC Newsletter 36 2011
    • (2011) SMC Newsletter , vol.36
    • Lughofer, E.1
  • 65
    • 78249273286 scopus 로고    scopus 로고
    • On-line incremental feature weighting in evolving fuzzy classifiers
    • E. Lughofer On-line incremental feature weighting in evolving fuzzy classifiers Fuzzy Sets and Systems 163 1 2011 1 23
    • (2011) Fuzzy Sets and Systems , vol.163 , Issue.1 , pp. 1-23
    • Lughofer, E.1
  • 66
    • 84876116243 scopus 로고    scopus 로고
    • Flexible evolving fuzzy inference systems from data streams (FLEXFIS++)
    • M. Sayed-Mouchaweh, E. Lughofer, Springer New York
    • E. Lughofer Flexible evolving fuzzy inference systems from data streams (FLEXFIS++) M. Sayed-Mouchaweh, E. Lughofer, Learning in Non-Stationary Environments: Methods and Applications 2012 Springer New York 205 246
    • (2012) Learning in Non-Stationary Environments: Methods and Applications , pp. 205-246
    • Lughofer, E.1
  • 67
    • 84869138360 scopus 로고    scopus 로고
    • Single-pass active learning with conflict and ignorance
    • E. Lughofer Single-pass active learning with conflict and ignorance Evolving Systems 3 4 2012 251 271
    • (2012) Evolving Systems , vol.3 , Issue.4 , pp. 251-271
    • Lughofer, E.1
  • 68
    • 78751630981 scopus 로고    scopus 로고
    • Handling drifts and shifts in on-line data streams with evolving fuzzy systems
    • E. Lughofer, and P. Angelov Handling drifts and shifts in on-line data streams with evolving fuzzy systems Applied Soft Computing 11 2 2011 2057 2068
    • (2011) Applied Soft Computing , vol.11 , Issue.2 , pp. 2057-2068
    • Lughofer, E.1    Angelov, P.2
  • 69
    • 79961039032 scopus 로고    scopus 로고
    • On-line elimination of local redundancies in evolving fuzzy systems
    • E. Lughofer, J.-L. Bouchot, and A. Shaker On-line elimination of local redundancies in evolving fuzzy systems Evolving Systems 2 3 2011 165 187
    • (2011) Evolving Systems , vol.2 , Issue.3 , pp. 165-187
    • Lughofer, E.1    Bouchot, J.-L.2    Shaker, A.3
  • 70
    • 84881333563 scopus 로고    scopus 로고
    • Reliable all-pairs evolving fuzzy classifiers
    • 10.1109/TFUZZ.2012.2226892
    • E. Lughofer, and O. Buchtala Reliable all-pairs evolving fuzzy classifiers IEEE Transactions on Fuzzy Systems 21 3 2013 10.1109/TFUZZ.2012. 2226892
    • (2013) IEEE Transactions on Fuzzy Systems , vol.21 , Issue.3
    • Lughofer, E.1    Buchtala, O.2
  • 72
    • 84859859096 scopus 로고    scopus 로고
    • On-line redundancy elimination in evolving fuzzy regression models using a fuzzy inclusion measure
    • Elsevier Aix-Les-Bains, France
    • E. Lughofer, and E. Hüllermeier On-line redundancy elimination in evolving fuzzy regression models using a fuzzy inclusion measure Proceedings of the EUSFLAT 2011 Conference 2011 Elsevier Aix-Les-Bains, France 380 387
    • (2011) Proceedings of the EUSFLAT 2011 Conference , pp. 380-387
    • Lughofer, E.1    Hüllermeier, E.2
  • 73
    • 84871941909 scopus 로고    scopus 로고
    • Improving the interpretability of data-driven evolving fuzzy systems
    • Barcelona, Spain
    • E. Lughofer, E. Hüllermeier, E.P. Klement, Improving the interpretability of data-driven evolving fuzzy systems, in: Proceedings of EUSFLAT 2005, Barcelona, Spain, 2005, pp. 28-33.
    • (2005) Proceedings of EUSFLAT 2005 , pp. 28-33
    • Lughofer, E.1
  • 75
    • 80052930921 scopus 로고    scopus 로고
    • On employing fuzzy modeling algorithms for the valuation of residential premises
    • E. Lughofer, B. Trawinski, K. Trawinski, O. Kempa, and T. Lasota On employing fuzzy modeling algorithms for the valuation of residential premises Information Sciences 181 23 2011 5123 5142
    • (2011) Information Sciences , vol.181 , Issue.23 , pp. 5123-5142
    • Lughofer, E.1    Trawinski, B.2    Trawinski, K.3    Kempa, O.4    Lasota, T.5
  • 76
    • 79951895881 scopus 로고    scopus 로고
    • Applications of evolving intelligent systems to the oil and gas industry
    • P. Angelov, D. Filev, N. Kasabov, John Wiley & Sons New York
    • J. Macias-Hernandez, and P. Angelov Applications of evolving intelligent systems to the oil and gas industry P. Angelov, D. Filev, N. Kasabov, Evolving Intelligent Systems: Methodology and Applications 2010 John Wiley & Sons New York 401 421
    • (2010) Evolving Intelligent Systems: Methodology and Applications , pp. 401-421
    • Macias-Hernandez, J.1    Angelov, P.2
  • 77
    • 84857869648 scopus 로고    scopus 로고
    • Evolving fuzzy systems for pricing fixed income options
    • L. Maciel, A. Lemos, F. Gomide, and R. Ballini Evolving fuzzy systems for pricing fixed income options Evolving Systems 3 1 2012 5 18
    • (2012) Evolving Systems , vol.3 , Issue.1 , pp. 5-18
    • Maciel, L.1    Lemos, A.2    Gomide, F.3    Ballini, R.4
  • 78
    • 0017703889 scopus 로고
    • Application of fuzzy logic to approximate reasoning using linguistic systems
    • E.H. Mamdani Application of fuzzy logic to approximate reasoning using linguistic systems Fuzzy Sets and Systems 26 12 1977 1182 1191
    • (1977) Fuzzy Sets and Systems , vol.26 , Issue.12 , pp. 1182-1191
    • Mamdani, E.H.1
  • 79
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • D. Marquardt An algorithm for least-squares estimation of nonlinear parameters SIAM Journal on Applied Mathematics 11 2 1963 431 441
    • (1963) SIAM Journal on Applied Mathematics , vol.11 , Issue.2 , pp. 431-441
    • Marquardt, D.1
  • 81
    • 77949913486 scopus 로고    scopus 로고
    • The impact of diversity on on-line ensemble learning in the presence of concept drift
    • F.L. Minku, A. White, and X. Yao The impact of diversity on on-line ensemble learning in the presence of concept drift IEEE Transactions on Knowledge and Data Engineering 22 2010 730 742
    • (2010) IEEE Transactions on Knowledge and Data Engineering , vol.22 , pp. 730-742
    • Minku, F.L.1    White, A.2    Yao, X.3
  • 82
    • 0034343476 scopus 로고    scopus 로고
    • Adaptive rule weights in neuro-fuzzy systems
    • D. Nauck Adaptive rule weights in neuro-fuzzy systems Neural Computing and Applications 9 2000 60 70
    • (2000) Neural Computing and Applications , vol.9 , pp. 60-70
    • Nauck, D.1
  • 83
    • 0031627851 scopus 로고    scopus 로고
    • How the learning of rule weights affects the interpretability of fuzzy systems
    • Anchorage, Alaska
    • D. Nauck, R. Kruse, How the learning of rule weights affects the interpretability of fuzzy systems, in: Proceedings of Fuzz-IEEE '98, Anchorage, Alaska, 1998, pp. 1235-1240.
    • (1998) Proceedings of Fuzz-IEEE '98 , pp. 1235-1240
    • Nauck, D.1    Kruse, R.2
  • 85
    • 0033716744 scopus 로고    scopus 로고
    • Efficient training of neural nets for nonlinear adaptive filtering using a recursive Levenberg-Marquardt algorithm
    • L.S.H. Ngia, and J. Sjöberg Efficient training of neural nets for nonlinear adaptive filtering using a recursive Levenberg-Marquardt algorithm IEEE Transactions on Signal Processing 48 7 2000 1915 1926
    • (2000) IEEE Transactions on Signal Processing , vol.48 , Issue.7 , pp. 1915-1926
    • Ngia, L.S.H.1    Sjöberg, J.2
  • 86
    • 0039721726 scopus 로고    scopus 로고
    • Towards neuro-linguistic modeling: Constraints for optimization of membership functions
    • J. Valente De Oliveira Towards neuro-linguistic modeling: constraints for optimization of membership functions Fuzzy Sets and Systems 106 1999 357 380
    • (1999) Fuzzy Sets and Systems , vol.106 , pp. 357-380
    • Valente De Oliveira, J.1
  • 87
    • 0033416388 scopus 로고    scopus 로고
    • Handling of inconsistent rules with an extended model of fuzzy reasoning
    • N.R. Pal, and K. Pal Handling of inconsistent rules with an extended model of fuzzy reasoning Journal of Intelligent and Fuzzy Systems 7 1999 55 73
    • (1999) Journal of Intelligent and Fuzzy Systems , vol.7 , pp. 55-73
    • Pal, N.R.1    Pal, K.2
  • 92
    • 79951883690 scopus 로고    scopus 로고
    • The building of interpretable systems in real-time
    • P. Angelov, D. Filev, N. Kasabov, John Wiley & Sons New York
    • J.V. Ramos, C. Pereira, and A. Dourado The building of interpretable systems in real-time P. Angelov, D. Filev, N. Kasabov, Evolving Intelligent Systems: Methodology and Applications 2010 John Wiley & Sons New York 127 150
    • (2010) Evolving Intelligent Systems: Methodology and Applications , pp. 127-150
    • Ramos, J.V.1    Pereira, C.2    Dourado, A.3
  • 93
    • 79960559801 scopus 로고    scopus 로고
    • Identification of transparent, compact, accurate and reliable linguistic fuzzy models
    • A. Riid, and E. Rüstern Identification of transparent, compact, accurate and reliable linguistic fuzzy models Information Sciences 181 20 2011 4378 4393
    • (2011) Information Sciences , vol.181 , Issue.20 , pp. 4378-4393
    • Riid, A.1    Rüstern, E.2
  • 94
    • 84930347608 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system for function approximation problems
    • M. Sayed-Mouchaweh, E. Lughofer, Springer New York
    • H.-J. Rong Sequential adaptive fuzzy inference system for function approximation problems M. Sayed-Mouchaweh, E. Lughofer, Learning in Non-Stationary Environments: Methods and Applications 2012 Springer New York
    • (2012) Learning in Non-Stationary Environments: Methods and Applications
    • Rong, H.-J.1
  • 95
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • H.-J. Rong, N. Sundararajan, G.-B. Huang, and P. Saratchandran Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction Fuzzy Sets and Systems 157 9 2006 1260 1275
    • (2006) Fuzzy Sets and Systems , vol.157 , Issue.9 , pp. 1260-1275
    • Rong, H.-J.1    Sundararajan, N.2    Huang, G.-B.3    Saratchandran, P.4
  • 96
    • 79955737401 scopus 로고    scopus 로고
    • Extended sequential adaptive fuzzy inference system for classification problems
    • H.-J. Rong, N. Sundararajan, G.-B. Huang, and G.-S. Zhao Extended sequential adaptive fuzzy inference system for classification problems Evolving Systems 2 2 2011 71 82
    • (2011) Evolving Systems , vol.2 , Issue.2 , pp. 71-82
    • Rong, H.-J.1    Sundararajan, N.2    Huang, G.-B.3    Zhao, G.-S.4
  • 97
    • 78549245760 scopus 로고    scopus 로고
    • Enforcing local properties in online learning first order TS-fuzzy systems by incremental regularization
    • Lisbon, Portugal
    • N. Rosemann, W. Brockmann, B. Neumann, Enforcing local properties in online learning first order TS-fuzzy systems by incremental regularization, in: Proceedings of IFSA-EUSFLAT 2009, Lisbon, Portugal, 2009, pp. 466-471.
    • (2009) Proceedings of IFSA-EUSFLAT 2009 , pp. 466-471
    • Rosemann, N.1    Brockmann, W.2    Neumann, B.3
  • 98
    • 79951897393 scopus 로고    scopus 로고
    • Stability analysis for an on-line evolving neuro-fuzzy recurrent network
    • P. Angelov, D. Filev, N. Kasabov, John Wiley & Sons New York
    • J.J. Rubio Stability analysis for an on-line evolving neuro-fuzzy recurrent network P. Angelov, D. Filev, N. Kasabov, Evolving Intelligent Systems: Methodology and Applications 2010 John Wiley & Sons New York 173 199
    • (2010) Evolving Intelligent Systems: Methodology and Applications , pp. 173-199
    • Rubio, J.J.1
  • 99
    • 0014534297 scopus 로고
    • A new approach to clustering
    • E.H. Ruspini A new approach to clustering Information and Control 15 1 1969 22 32
    • (1969) Information and Control , vol.15 , Issue.1 , pp. 22-32
    • Ruspini, E.H.1
  • 102
    • 34250751201 scopus 로고    scopus 로고
    • Simplification and reduction of fuzzy rules
    • J. Casillas, O. Cordón, F. Herrera, L. Magdalena, Springer Berlin
    • M. Setnes Simplification and reduction of fuzzy rules J. Casillas, O. Cordón, F. Herrera, L. Magdalena, Interpretability Issues in Fuzzy Modeling 2003 Springer Berlin 278 302
    • (2003) Interpretability Issues in Fuzzy Modeling , pp. 278-302
    • Setnes, M.1
  • 104
    • 84868460926 scopus 로고    scopus 로고
    • Evolving fuzzy patterns trees for binary classification on data streams
    • A. Shaker, R. Senge, and E. Hüllermeier Evolving fuzzy patterns trees for binary classification on data streams Information Sciences 220 2012 34 45
    • (2012) Information Sciences , vol.220 , pp. 34-45
    • Shaker, A.1    Senge, R.2    Hüllermeier, E.3
  • 105
    • 79952317714 scopus 로고    scopus 로고
    • Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling
    • H. Soleimani, K. Lucas, and B.N. Araabi Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling Evolving Systems 1 1 2010 59 71
    • (2010) Evolving Systems , vol.1 , Issue.1 , pp. 59-71
    • Soleimani, H.1    Lucas, K.2    Araabi, B.N.3
  • 107
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi, and M. Sugeno Fuzzy identification of systems and its applications to modeling and control IEEE Transactions on Systems, Man and Cybernetics 15 1 1985 116 132
    • (1985) IEEE Transactions on Systems, Man and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 109
    • 84868513351 scopus 로고    scopus 로고
    • Et2fis: An evolving type-2 neural fuzzy inference system
    • S.W. Tung, C. Quek, and C. Guan et2fis: An evolving type-2 neural fuzzy inference system Information Sciences 220 2013 124 148
    • (2013) Information Sciences , vol.220 , pp. 124-148
    • Tung, S.W.1    Quek, C.2    Guan, C.3
  • 111
    • 58149502268 scopus 로고    scopus 로고
    • An evolving fuzzy predictor for industrial applications
    • W. Wang, and J. Vrbanek An evolving fuzzy predictor for industrial applications IEEE Transactions on Fuzzy Systems 16 6 2008 1439 1449
    • (2008) IEEE Transactions on Fuzzy Systems , vol.16 , Issue.6 , pp. 1439-1449
    • Wang, W.1    Vrbanek, J.2
  • 112
    • 84870267223 scopus 로고
    • The generalization of 'students' problem when several different population variances are involved
    • B.L. Welch The generalization of 'students' problem when several different population variances are involved Biometrika 34 1-2 1947 28 35
    • (1947) Biometrika , vol.34 , Issue.12 , pp. 28-35
    • Welch, B.L.1
  • 113
    • 84867623517 scopus 로고    scopus 로고
    • Medical decision support systems
    • Medical Data Analysis Springer Berlin/Heidelberg
    • T. Wetter Medical decision support systems Lecture Notes in Computer Science Medical Data Analysis 2000 Springer Berlin/Heidelberg 458 466
    • (2000) Lecture Notes in Computer Science , pp. 458-466
    • Wetter, T.1
  • 115
    • 0032205732 scopus 로고    scopus 로고
    • Improving the interpretability of TSK fuzzy models by combining global learning and local learning
    • J. Yen, L. Wang, and C.W. Gillespie Improving the interpretability of TSK fuzzy models by combining global learning and local learning IEEE Transactions on Fuzzy Systems 6 4 1998 530 537
    • (1998) IEEE Transactions on Fuzzy Systems , vol.6 , Issue.4 , pp. 530-537
    • Yen, J.1    Wang, L.2    Gillespie, C.W.3
  • 116
    • 52949088628 scopus 로고    scopus 로고
    • Low-level interpretability and high-level interpretability: A unified view of data-driven interpretable fuzzy systems modelling
    • S.M. Zhou, and J.Q. Gan Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy systems modelling Fuzzy Sets and Systems 159 23 2008 3091 3131
    • (2008) Fuzzy Sets and Systems , vol.159 , Issue.23 , pp. 3091-3131
    • Zhou, S.M.1    Gan, J.Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.