메뉴 건너뛰기




Volumn 3, Issue 2, 2012, Pages 65-79

Evolving fuzzy granular modeling from nonstationary fuzzy data streams

Author keywords

Fuzzy data stream; Granular computing; Information granule; Online learning; Time series prediction

Indexed keywords

APPLICATION EXAMPLES; APPROXIMATE SOLUTION; DATA GRANULARITY; DATA STREAM PROCESSING; FUZZY DATA; GRANULAR MODELING; HIGH QUALITY; INPUT-OUTPUT DATA; MODELING APPROACH; MODELING FRAMEWORKS; NONSTATIONARY; ONE-PASS; ONLINE DATA; ONLINE LEARNING; REGIME SHIFT; RULE-BASED MODELS; STREAM APPLICATION; TEMPERATURE PREDICTION; TIME SERIES PREDICTION; TIME VARYING; UNCERTAIN DATAS;

EID: 84860424873     PISSN: 18686478     EISSN: 18686486     Source Type: Journal    
DOI: 10.1007/s12530-012-9050-9     Document Type: Article
Times cited : (114)

References (43)
  • 2
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • Angelov P, Filev D (2004) An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans Syst Man Cybern Part B 34(1): 484-498.
    • (2004) IEEE Trans Syst Man Cybern Part B , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.1    Filev, D.2
  • 4
    • 58149524918 scopus 로고    scopus 로고
    • Evolving fuzzy-rule-based classifiers from data streams
    • Angelov P, Zhou X (2008) Evolving fuzzy-rule-based classifiers from data streams. IEEE Trans Fuzzy Syst 16(6): 1462-1475.
    • (2008) IEEE Trans Fuzzy Syst , vol.16 , Issue.6 , pp. 1462-1475
    • Angelov, P.1    Zhou, X.2
  • 5
    • 0004255876 scopus 로고
    • 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston
    • Astrom KJ, Wittenmark B (1994) Adaptive control, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston.
    • (1994) Adaptive control
    • Astrom, K.J.1    Wittenmark, B.2
  • 8
    • 42549111230 scopus 로고    scopus 로고
    • Toward a theory of granular computing for human-centered information processing
    • Bargiela A, Pedrycz W (2008) Toward a theory of granular computing for human-centered information processing. IEEE Trans Fuzzy Syst 16(2): 320-330.
    • (2008) IEEE Trans Fuzzy Syst , vol.16 , Issue.2 , pp. 320-330
    • Bargiela, A.1    Pedrycz, W.2
  • 9
    • 51349124012 scopus 로고    scopus 로고
    • Efficient instance-based learning on data streams
    • Beringer J, Hullermeier E (2007) Efficient instance-based learning on data streams. Intell Data Anal 11(6): 627-650.
    • (2007) Intell Data Anal , vol.11 , Issue.6 , pp. 627-650
    • Beringer, J.1    Hullermeier, E.2
  • 10
    • 79952364494 scopus 로고    scopus 로고
    • An evolving classification cascade with self-learning
    • Bouchachia A (2010) An evolving classification cascade with self-learning. Evol Syst 1(3): 143-160.
    • (2010) Evol Syst , vol.1 , Issue.3 , pp. 143-160
    • Bouchachia, A.1
  • 12
    • 0347600680 scopus 로고    scopus 로고
    • On the use of aggregation operations in information fusion processes
    • Dubois D, Prade H (2004) On the use of aggregation operations in information fusion processes. Fuzzy Sets Syst 142(1): 143-161.
    • (2004) Fuzzy Sets Syst , vol.142 , Issue.1 , pp. 143-161
    • Dubois, D.1    Prade, H.2
  • 13
    • 0034187078 scopus 로고    scopus 로고
    • General fuzzy min-max neural network for clustering and classification
    • Gabrys B, Bargiela A (2000) General fuzzy min-max neural network for clustering and classification. IEEE Trans Neural Netw 11(3): 769-783.
    • (2000) IEEE Trans Neural Netw , vol.11 , Issue.3 , pp. 769-783
    • Gabrys, B.1    Bargiela, A.2
  • 17
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • Kasabov N, Song Q (2002) DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans Fuzzy Syst 10(2): 144-154.
    • (2002) IEEE Trans Fuzzy Syst , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 18
    • 85018095215 scopus 로고    scopus 로고
    • Evolving linguistic fuzzy models from data streams
    • In: Trillas E, Bonissone P, Magdalena L, Kacprycz J (eds) Springer, Berlin
    • Leite D, Gomide F (2012) Evolving linguistic fuzzy models from data streams. In: Trillas E, Bonissone P, Magdalena L, Kacprycz J (eds) Studies in fuzziness and soft computing: a homage to Abe Mamdani. Springer, Berlin, pp 209-223.
    • (2012) Studies in fuzziness and soft computing: A homage to Abe Mamdani , pp. 209-223
    • Leite, D.1    Gomide, F.2
  • 19
    • 79959389813 scopus 로고    scopus 로고
    • Evolving granular neural network for semi-supervised data stream classification
    • Leite D, Costa P, Gomide F (2010a) Evolving granular neural network for semi-supervised data stream classification. Int Joint Conf Neural Netw, pp 1-8.
    • (2010) Int Joint Conf Neural Netw , pp. 1-8
    • Leite, D.1    Costa, P.2    Gomide, F.3
  • 20
    • 77954882995 scopus 로고    scopus 로고
    • Granular approach for evolving system modeling
    • In: Hullermeier E, Kruse R, Hoffmann F (eds) Springer, Berlin
    • Leite D, Costa P, Gomide F (2010b) Granular approach for evolving system modeling. In: Hullermeier E, Kruse R, Hoffmann F (eds) Lecture notes in artificial intelligence, vol 6178. Springer, Berlin, pp 340-349.
    • (2010) Lecture notes in artificial intelligence , vol.6178 , pp. 340-349
    • Leite, D.1    Costa, P.2    Gomide, F.3
  • 22
    • 84860483373 scopus 로고    scopus 로고
    • Evolving granular neural networks from fuzzy data streams
    • (Submitted)
    • Leite D, Costa P, Gomide F (2012b) Evolving granular neural networks from fuzzy data streams. Neural Netwo (Submitted).
    • (2012) Neural Netwo
    • Leite, D.1    Costa, P.2    Gomide, F.3
  • 24
    • 79952723039 scopus 로고    scopus 로고
    • Fuzzy evolving linear regression trees
    • Lemos A, Caminhas W, Gomide F (2011) Fuzzy evolving linear regression trees. Evol Syst 2(1): 1-14.
    • (2011) Evol Syst , vol.2 , Issue.1 , pp. 1-14
    • Lemos, A.1    Caminhas, W.2    Gomide, F.3
  • 25
    • 0036460225 scopus 로고    scopus 로고
    • Neural networks, qualitative fuzzy logic and granular adaptive systems
    • Lin TY (2002) Neural networks, qualitative fuzzy logic and granular adaptive systems. World Congress of Computational Intelligence, pp 566-571.
    • (2002) World Congress of Computational Intelligence , pp. 566-571
    • Lin, T.Y.1
  • 26
    • 78751630981 scopus 로고    scopus 로고
    • Handling drifts and shifts in on-line data streams with evolving fuzzy systems
    • Lughofer E, Angelov P (2011) Handling drifts and shifts in on-line data streams with evolving fuzzy systems. Appl Soft Comput 11(2): 2057-2068.
    • (2011) Appl Soft Comput , vol.11 , Issue.2 , pp. 2057-2068
    • Lughofer, E.1    Angelov, P.2
  • 27
    • 79961039032 scopus 로고    scopus 로고
    • On-line elimination of local redundancies in evolving fuzzy systems
    • Lughofer E, Bouchot J-L, Shaker A (2011) On-line elimination of local redundancies in evolving fuzzy systems. Evol Syst 2(3): 165-187.
    • (2011) Evol Syst , vol.2 , Issue.3 , pp. 165-187
    • Lughofer, E.1    Bouchot, J.-L.2    Shaker, A.3
  • 28
    • 67949117116 scopus 로고    scopus 로고
    • A granular reflex fuzzy min-max neural network for classification
    • Nandedkar AV, Biswas PK (2009) A granular reflex fuzzy min-max neural network for classification. IEEE Trans Neural Netw 20(7): 1117-1134.
    • (2009) IEEE Trans Neural Netw , vol.20 , Issue.7 , pp. 1117-1134
    • Nandedkar, A.V.1    Biswas, P.K.2
  • 29
    • 46749112873 scopus 로고    scopus 로고
    • Granular computing-the emerging paradigm
    • Pedrycz W (2007) Granular computing-the emerging paradigm. J Uncertain Syst 1: 38-61.
    • (2007) J Uncertain Syst , vol.1 , pp. 38-61
    • Pedrycz, W.1
  • 30
    • 79952364186 scopus 로고    scopus 로고
    • Evolvable fuzzy systems: some insights and challenges
    • Pedrycz W (2010) Evolvable fuzzy systems: some insights and challenges. Evol Syst 1(2): 73-82.
    • (2010) Evol Syst , vol.1 , Issue.2 , pp. 73-82
    • Pedrycz, W.1
  • 33
    • 0742286684 scopus 로고    scopus 로고
    • The climate of Death Valley, California
    • Roof S, Callagan C (2003) The climate of Death Valley, California. Bull Am Meteorol Soc 84: 1725-1739.
    • (2003) Bull Am Meteorol Soc , vol.84 , pp. 1725-1739
    • Roof, S.1    Callagan, C.2
  • 34
    • 79951897393 scopus 로고    scopus 로고
    • Stability analysis for an online evolving neuro-fuzzy recurrent network
    • In: Angelov P, Filev D, Kasabov N (eds) Wiley/IEEE Press, New York
    • Rubio JJ (2010) Stability analysis for an online evolving neuro-fuzzy recurrent network. In: Angelov P, Filev D, Kasabov N (eds) Evolving intelligent systems: methodology and applications, Wiley/IEEE Press, New York, pp 173-199.
    • (2010) Evolving intelligent systems: Methodology and applications , pp. 173-199
    • Rubio, J.J.1
  • 35
    • 0026927202 scopus 로고
    • Fuzzy min-max neural networks. Part I: Classification
    • Simpson PK (1992) Fuzzy min-max neural networks. Part I: classification. IEEE Trans Neural Netw 3(5): 776-786.
    • (1992) IEEE Trans Neural Netw , vol.3 , Issue.5 , pp. 776-786
    • Simpson, P.K.1
  • 36
    • 0027542561 scopus 로고
    • Fuzzy min-max neural networks. Part II: clustering
    • Simpson PK (1993) Fuzzy min-max neural networks. Part II: clustering. IEEE Trans Fuzzy Syst 1(1): 32-45.
    • (1993) IEEE Trans Fuzzy Syst , vol.1 , Issue.1 , pp. 32-45
    • Simpson, P.K.1
  • 37
    • 38149075118 scopus 로고    scopus 로고
    • Learning from imprecise granular data using trapezoidal fuzzy set representations
    • In: Prade H, Subrahmanian VS (eds) Springer, Berlin
    • Yager RR (2007) Learning from imprecise granular data using trapezoidal fuzzy set representations. In: Prade H, Subrahmanian VS (eds) Lecture notes in computer science. Springer, Berlin, vol 4772, pp 244-254.
    • (2007) Lecture notes in computer science , vol.4772 , pp. 244-254
    • Yager, R.R.1
  • 38
    • 60549107069 scopus 로고    scopus 로고
    • Participatory learning with granular observations
    • Yager RR (2009) Participatory learning with granular observations. IEEE Trans Fuzzy Syst 17(1): 1-13.
    • (2009) IEEE Trans Fuzzy Syst , vol.17 , Issue.1 , pp. 1-13
    • Yager, R.R.1
  • 43
    • 0002263693 scopus 로고
    • Fuzzy sets and information granularity
    • Gupta MM, Ragade RK, Yager RR (eds) North Holland, Amsterdam
    • Zadeh LA (1979) Fuzzy sets and information granularity, In: Gupta MM, Ragade RK, Yager RR (eds) Advances in fuzzy set theory and applications, North Holland, Amsterdam, pp 3-18.
    • (1979) Advances in fuzzy set theory and applications , pp. 3-18
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.