메뉴 건너뛰기




Volumn 2, Issue , 1998, Pages 1235-1240

How the learning of rule weights affects the interpretability of fuzzy systems

Author keywords

[No Author keywords available]

Indexed keywords

FUZZY SETS; LEARNING SYSTEMS; MATHEMATICAL MODELS; MEMBERSHIP FUNCTIONS; NEURAL NETWORKS;

EID: 0031627851     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FUZZY.1998.686295     Document Type: Conference Paper
Times cited : (97)

References (12)
  • 1
    • 0002251460 scopus 로고
    • Automated reasoning using possibilistic logic: Semantics, belief revision and variable certainty weights
    • Ontario, Windsor
    • Didier Dubois, Jerome Lang, and Henri Prade. Automated reasoning using possibilistic logic: Semantics, belief revision and variable certainty weights. In Proc. 5th Workshop on Uncertainty in Artificial Intelligence, pages 81-87, Ontario, 1989. Windsor.
    • (1989) Proc. 5th Workshop on Uncertainty in Artificial Intelligence , pp. 81-87
    • Dubois, D.1    Lang, J.2    Prade, H.3
  • 3
    • 0000764772 scopus 로고
    • The use of multiple measurements in tax-onomic problems
    • R.A. Fisher. The use of multiple measurements in tax-onomic problems. Annual Eugenics, 7(Part II):179-188, 1936.
    • (1936) Annual Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 4
    • 33947602485 scopus 로고
    • Neural networks in designing fuzzy systems for real world applications
    • Saman K. Halgamuge and Manfred Glesner. Neural networks in designing fuzzy systems for real world applications. Fuzzy Sets and Systems, 65:1-12, 1994.
    • (1994) Fuzzy Sets and Systems , vol.65 , pp. 1-12
    • Halgamuge, S.K.1    Glesner, M.2
  • 5
    • 0022823858 scopus 로고
    • Probabilistic interpretation for Mycin's certainty factors
    • J.F. Lemmer and L.N. Kanal, editors, North-Holland, Amsterdam
    • D.E. Heckerman. Probabilistic interpretation for mycin's certainty factors. In J.F. Lemmer and L.N. Kanal, editors, Uncertainty in Artificial Intelligence (2), pages 167-196. North-Holland, Amsterdam, 1988.
    • (1988) Uncertainty in Artificial Intelligence , Issue.2 , pp. 167-196
    • Heckerman, D.E.1
  • 10
    • 0001703957 scopus 로고    scopus 로고
    • A neuro-fuzzy method to learn fuzzy classification rules from data
    • Detlef Nauck and Rudolf Kruse. A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets and Systems, 89:277-288, 1997.
    • (1997) Fuzzy Sets and Systems , vol.89 , pp. 277-288
    • Nauck, D.1    Kruse, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.