메뉴 건너뛰기




Volumn 118, Issue 2, 2001, Pages 281-296

Autostructuration of fuzzy systems by rules sensitivity analysis

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; CHAOS THEORY; LEARNING SYSTEMS; MATHEMATICAL MODELS; MEMBERSHIP FUNCTIONS; SENSITIVITY ANALYSIS; TIME SERIES ANALYSIS;

EID: 0005540091     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0165-0114(98)00430-8     Document Type: Article
Times cited : (21)

References (48)
  • 3
    • 0030721834 scopus 로고    scopus 로고
    • Using incremental learning algorithms in the search for minimal and effective fuzzy models
    • H. Bersini, A. Duchateau, N. Bradshaw, Using incremental learning algorithms in the search for minimal and effective fuzzy models, Proc. FUZZ-IEEE '97 Conf., 1997, pp. 1417-1422.
    • (1997) Proc. FUZZ-IEEE '97 Conf. , pp. 1417-1422
    • Bersini, H.1    Duchateau, A.2    Bradshaw, N.3
  • 5
    • 0026954286 scopus 로고
    • Universal fuzzy controllers
    • Buckley J.J. Universal fuzzy controllers. Automat. J. 28:1992;1245-1248.
    • (1992) Automat. J. , vol.28 , pp. 1245-1248
    • Buckley, J.J.1
  • 6
    • 0027696324 scopus 로고
    • Numerical relationships between neural networks, continuous functions and fuzzy systems
    • Buckley J.J., Hayashi Y. Numerical relationships between neural networks, continuous functions and fuzzy systems. Fuzzy Sets and Systems. 60:1993;1-8.
    • (1993) Fuzzy Sets and Systems , vol.60 , pp. 1-8
    • Buckley, J.J.1    Hayashi, Y.2
  • 7
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time series
    • Castagli M. Nonlinear prediction of chaotic time series. Physica D. 35:1989;335-356.
    • (1989) Physica D , vol.35 , pp. 335-356
    • Castagli, M.1
  • 8
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu S.L. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Systems. 2:1994;267-278.
    • (1994) J. Intell. Fuzzy Systems , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 9
    • 0031999494 scopus 로고    scopus 로고
    • Combinatorial rule explosion eliminated by a fuzzy rule configuration
    • Combs W.E., Andrews J.E. Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Trans. Fuzzy Systems. 6:1998;1-11.
    • (1998) IEEE Trans. Fuzzy Systems , vol.6 , pp. 1-11
    • Combs, W.E.1    Andrews, J.E.2
  • 11
    • 0039926885 scopus 로고    scopus 로고
    • A pruning method for the self-structuring of fuzzy systems applied to function approximation
    • A. Fiordaliso, A pruning method for the self-structuring of fuzzy systems applied to function approximation, Proc. EUFIT96 Conf., vol. 1, 1996, pp. 581-586.
    • (1996) Proc. EUFIT96 Conf. , vol.1 , pp. 581-586
    • Fiordaliso, A.1
  • 12
    • 0001499487 scopus 로고    scopus 로고
    • A nonlinear forecasts combination method based on Takagi-Sugeno fuzzy systems
    • Fiordaliso A. A nonlinear forecasts combination method based on Takagi-Sugeno fuzzy systems. Internat. J. Forecasting. 14:1998;367-379.
    • (1998) Internat. J. Forecasting , vol.14 , pp. 367-379
    • Fiordaliso, A.1
  • 16
    • 0001219859 scopus 로고
    • Regularization Theory and Neural Networks Architectures
    • Girosi F., Jones M., Poggio T. Regularization Theory and Neural Networks Architectures. Neural Comput. 7:1995;219-269.
    • (1995) Neural Comput. , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 18
    • 0018057468 scopus 로고
    • Fuzzy clustering with a fuzzy covariance matrix
    • E.E. Gustafson, W.C. Kessel, Fuzzy clustering with a fuzzy covariance matrix, Proc. IEEE CDC, 1979, pp. 761-766.
    • (1979) Proc. IEEE CDC , pp. 761-766
    • Gustafson, E.E.1    Kessel, W.C.2
  • 20
    • 0027647031 scopus 로고
    • Switching regression models and fuzzy clustering
    • Hataway R., Bezdek J. Switching regression models and fuzzy clustering. IEEE Trans. Fuzzy Systems. 1:1993;195-204.
    • (1993) IEEE Trans. Fuzzy Systems , vol.1 , pp. 195-204
    • Hataway, R.1    Bezdek, J.2
  • 21
    • 0024732792 scopus 로고
    • Machine learning: Paradigms and methods
    • Hinton G. Machine learning: paradigms and methods. Artificial Intell. 40:1989;185-234.
    • (1989) Artificial Intell. , vol.40 , pp. 185-234
    • Hinton, G.1
  • 22
    • 0000399750 scopus 로고
    • Dimensions and entropies of chaotic intensity pulsations in a single-mode far-infrared NH3 laser
    • Hübner U., Abraham N.B., Weiss C.O. Dimensions and entropies of chaotic intensity pulsations in a single-mode far-infrared NH3 laser. Phys. Rev. A. 40:1989;6354-6365.
    • (1989) Phys. Rev. a , vol.40 , pp. 6354-6365
    • Hübner, U.1    Abraham, N.B.2    Weiss, C.O.3
  • 24
    • 0002191257 scopus 로고
    • Design of an adaptive fuzzy logic controller using a genetic algorithm
    • C.L. Karr, Design of an adaptive fuzzy logic controller using a genetic algorithm, Proc. 4th Int. Conf. Genetic Algorithms, 1991, pp. 450-457.
    • (1991) Proc. 4th Int. Conf. Genetic Algorithms , pp. 450-457
    • Karr, C.L.1
  • 25
    • 0028532753 scopus 로고
    • Fuzzy systems as universal approximators
    • Kosko B. Fuzzy systems as universal approximators. IEEE Trans. Comput. 43:1994;1329-1333.
    • (1994) IEEE Trans. Comput. , vol.43 , pp. 1329-1333
    • Kosko, B.1
  • 26
    • 0025857963 scopus 로고
    • Arbitrary nonlinearity is sufficient to represent all functions by neural networks: A theorem
    • Kreinovich V.Y. Arbitrary nonlinearity is sufficient to represent all functions by neural networks: a theorem. Neural Networks. 4:1991;381-383.
    • (1991) Neural Networks , vol.4 , pp. 381-383
    • Kreinovich, V.Y.1
  • 27
    • 0001196621 scopus 로고
    • Kolmogorov's theorem is relevant
    • Kurkova V. Kolmogorov's theorem is relevant. Neural Comput. 3:1991;617-622.
    • (1991) Neural Comput. , vol.3 , pp. 617-622
    • Kurkova, V.1
  • 28
    • 0026627415 scopus 로고
    • Kolmogorov's theorem and multilayer neural networks
    • Kurkova V. Kolmogorov's theorem and multilayer neural networks. Neural Networks. 5:1992;501-506.
    • (1992) Neural Networks , vol.5 , pp. 501-506
    • Kurkova, V.1
  • 30
    • 0028369322 scopus 로고
    • Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems
    • Lin C.T., Lee C.S.G. Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems. IEEE Trans. Fuzzy Systems. 2:1994;46-63.
    • (1994) IEEE Trans. Fuzzy Systems , vol.2 , pp. 46-63
    • Lin, C.T.1    Lee, C.S.G.2
  • 31
    • 0024945395 scopus 로고
    • Adaptive radial basis function nonlinearities and the problem of generalization
    • D. Lowe, Adaptive radial basis function nonlinearities and the problem of generalization, Proc. 1st IEEE Internat. Conf. on Artificial Neural Networks, 1989, pp. 171-175.
    • (1989) Proc. 1st IEEE Internat. Conf. on Artificial Neural Networks , pp. 171-175
    • Lowe, D.1
  • 32
    • 0000169232 scopus 로고
    • An algorithm for least squares estimation of nonlinear parameters
    • Marquardt D.W. An algorithm for least squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11:1963;431-441.
    • (1963) J. Soc. Ind. Appl. Math. , vol.11 , pp. 431-441
    • Marquardt, D.W.1
  • 34
    • 0012101644 scopus 로고
    • On approximation of controls by fuzzy systems
    • H.T. Nguyen, V. Kreinovich, On approximation of controls by fuzzy systems, Proc. 5th IFSA, 1993, pp. 1414-1417.
    • (1993) Proc. 5th IFSA , pp. 1414-1417
    • Nguyen, H.T.1    Kreinovich, V.2
  • 36
    • 0001071040 scopus 로고
    • Resource-allocating network for function interpolation
    • Platt J. Resource-allocating network for function interpolation. Neural Comput. 3:1991;213-225.
    • (1991) Neural Comput. , vol.3 , pp. 213-225
    • Platt, J.1
  • 37
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T., Girosi F. Networks for approximation and learning. Proc. IEEE. 78:1990;1481-1497.
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 38
    • 84931762625 scopus 로고
    • A new approach to estimating switching regressions
    • Quandt R.E., Ramsey J.B. A new approach to estimating switching regressions. J. Amer. Statist. Soc. 67:1972;306-310.
    • (1972) J. Amer. Statist. Soc. , vol.67 , pp. 306-310
    • Quandt, R.E.1    Ramsey, J.B.2
  • 39
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Statist. 6:1978;461-464.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 40
    • 0025199496 scopus 로고
    • Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series
    • Sugihara G., May R.M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature. 344:1990;734-741.
    • (1990) Nature , vol.344 , pp. 734-741
    • Sugihara, G.1    May, R.M.2
  • 41
    • 0028370964 scopus 로고
    • Rulebase structure identification in an adaptive network based fuzzy inference system
    • Sun C.T. Rulebase structure identification in an adaptive network based fuzzy inference system. IEEE Trans. Fuzzy Systems. 2:1994;64-73.
    • (1994) IEEE Trans. Fuzzy Systems , vol.2 , pp. 64-73
    • Sun, C.T.1
  • 42
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modelling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its application to modelling and control. IEEE Trans. Systems Man Cybernet. 15:1985;116-132.
    • (1985) IEEE Trans. Systems Man Cybernet. , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 43
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • D. Rand, Young L. Berlin: Springer
    • Takens F. Detecting strange attractors in turbulence. Rand D., Young L. Lecture Notes in Mathematics. vol. 898:1981;336-381 Springer, Berlin.
    • (1981) Lecture Notes in Mathematics , vol.898 , pp. 336-381
    • Takens, F.1
  • 44
    • 0011771987 scopus 로고    scopus 로고
    • Predicting a chaotic time series using a dynamical recurrent neural network
    • B.G. Mertzios, & P. Liatsis. Amsterdam: Elsevier Science
    • Teran R., Draye J.P., Pavisic D., Calderon G., Libert G. Predicting a chaotic time series using a dynamical recurrent neural network. Mertzios B.G., Liatsis P. Proc. IWISP '96. 1996;115-118 Elsevier Science, Amsterdam.
    • (1996) Proc. IWISP '96 , pp. 115-118
    • Teran, R.1    Draye, J.P.2    Pavisic, D.3    Calderon, G.4    Libert, G.5
  • 46
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation and orthogonal least-squares learning
    • Wang L.-X., Mendel J.M. Fuzzy basis functions, universal approximation and orthogonal least-squares learning. IEEE Trans. Neural Networks. 3:1992;807-814.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 807-814
    • Wang, L.-X.1    Mendel, J.M.2
  • 47
    • 0000778985 scopus 로고
    • Predicting sunspots and exchange rates with connectionnist methods
    • M. Castagli, & S. Eubank.
    • Weigend A., Huberman B., Rumelhart D. Predicting sunspots and exchange rates with connectionnist methods. Castagli M., Eubank S. Nonlinear Modelling and Forecasting. Addison-Wesley, New York1992;395-432.
    • (1992) Nonlinear Modelling and Forecasting , pp. 395-432
    • Weigend, A.1    Huberman, B.2    Rumelhart, D.3
  • 48
    • 0028436491 scopus 로고
    • Approximation theory of fuzzy systems: SISO case
    • Zeng X., Singh M.J. Approximation theory of fuzzy systems. SISO case IEEE Trans. Fuzzy Systems. 2:1994;162-176.
    • (1994) IEEE Trans. Fuzzy Systems , vol.2 , pp. 162-176
    • Zeng, X.1    Singh, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.