메뉴 건너뛰기




Volumn 22, Issue 3, 2014, Pages 547-562

Genefis: Toward an effective localist network

Author keywords

evolving fuzzy system; Evolving neuro fuzzy system; GENEFIS; online learning

Indexed keywords

SEMANTICS;

EID: 84897550688     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2013.2264938     Document Type: Article
Times cited : (167)

References (58)
  • 1
    • 26944443854 scopus 로고    scopus 로고
    • Fuzzy sets in the fight against digital obesity
    • T.Martin, "Fuzzy sets in the fight against digital obesity," Fuzzy Sets Syst., vol. 156, no. 3, pp. 411-417, 2005.
    • (2005) Fuzzy Sets Syst , vol.156 , Issue.3 , pp. 411-417
    • Martin, T.1
  • 2
    • 0028534525 scopus 로고
    • Soft computing and fuzzy logic
    • Nov
    • L. A. Zadeh, "Soft computing and fuzzy logic," IEEE Softw., vol. 11, no. 6, pp. 48-56, Nov. 1994.
    • (1994) IEEE Softw , vol.11 , Issue.6 , pp. 48-56
    • Zadeh, L.A.1
  • 3
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • May/Jun
    • J.-S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Syst.. Man, Cybern. B, Cybern., vol. 23, no. 3, pp. 665-684, May/Jun. 1993.
    • (1993) IEEE Trans. Syst.. Man, Cybern. B, Cybern , vol.23 , Issue.3 , pp. 665-684
    • Jang, J.-S.R.1
  • 4
    • 0026943536 scopus 로고
    • Generating fuzzy rules from learning from examples
    • Nov./Dec
    • L. X.Wang and J. M. Mendel, "Generating fuzzy rules from learning from examples," IEEE Trans. Syst. Man, Cybern., B, Cybern., vol. 22, no. 6, pp. 1414-1427, Nov./Dec. 1992.
    • (1992) IEEE Trans. Syst. Man, Cybern., B, Cybern , vol.22 , Issue.6 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2
  • 5
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • Feb
    • P. Angelov and D. Filev, "An approach to online identification of Takagi-Sugeno fuzzy models," IEEE Trans. Syst., Man, Cybern., B, Cybern., vol. 34, no. 1, pp. 484-498, Feb. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern., B, Cybern , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.1    Filev, D.2
  • 6
    • 79952364186 scopus 로고    scopus 로고
    • Evolvable fuzzy systems: Some insights and challanges
    • W. Pedrycz, "Evolvable fuzzy systems: Some insights and challanges," Evolv. Syst., vol. 1, pp. 73-82, 2010.
    • Evolv. Syst , vol.1 , Issue.2010 , pp. 73-82
    • Pedrycz, W.1
  • 7
    • 52149111368 scopus 로고    scopus 로고
    • A Hybrid art-GRNN online neural network with -insensitive loss function
    • Sep
    • K. S. Yap, C. P. Lim, and I. Z. Abidin, "A Hybrid art-GRNN online neural network with -insensitive loss function," IEEE Trans. Neural Netw., vol. 19, no. 9, pp. 1641-1646, Sep. 2008.
    • (2008) IEEE Trans. Neural Netw , vol.19 , Issue.9 , pp. 1641-1646
    • Yap, K.S.1    Lim, C.P.2    Abidin, I.Z.3
  • 8
    • 83655167009 scopus 로고    scopus 로고
    • Improved GART neural network model for pattern classification and rule extraction with application to power system
    • Dec
    • K. S. Yap, C. P. Lim, and M. T. Au, "Improved GART neural network model for pattern classification and rule extraction with application to power system," IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 2310-2323, Dec. 2011.
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.12 , pp. 2310-2323
    • Yap, K.S.1    Lim, C.P.2    Au, M.T.3
  • 9
    • 36348986777 scopus 로고    scopus 로고
    • The Bayesian ARTMAP
    • DOI 10.1109/TNN.2007.900234
    • B. Vigdor and B. Lerner, "The Bayesian ARTMAP," IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 1628-1644, Nov. 2007. (Pubitemid 350148417)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.6 , pp. 1628-1644
    • Vigdor, B.1    Lerner, B.2
  • 10
    • 79961039032 scopus 로고    scopus 로고
    • On-line elimination of local redundancies in evolving fuzzy systems
    • E. Lughofer, J.-L. Bouchot, and A. Shaker, "On-line elimination of local redundancies in evolving fuzzy systems," Evolving Syst., vol. 2, no. 3, pp. 380-387, 2011.
    • (2011) Evolving Syst , vol.2 , Issue.3 , pp. 380-387
    • Lughofer, E.1    Bouchot, J.-L.2    Shaker, A.3
  • 11
    • 33144485895 scopus 로고    scopus 로고
    • Generalized RLS approach to the training of neural networks
    • DOI 10.1109/TNN.2005.860857
    • Y. Xu, K. W. Wong, and C. S. Leung, "Generalized recursive least square to the training of neural network," IEEE Trans. Neural Netw., vol. 17, no. 1, pp. 19-34, Jan. 2006. (Pubitemid 43263937)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.1 , pp. 19-34
    • Xu, Y.1    Wong, K.-W.2    Leung, C.-S.3
  • 12
    • 31744432525 scopus 로고    scopus 로고
    • FITSK: Online local learning with generic fuzzy input Takagi-Sugeno-Kang fuzzy framework for nonlinear system estimation
    • DOI 10.1109/TSMCB.2005.856715
    • K. H. Quah and C.Quek, "FITSK: Online local learning with generic input takagi-sugeno-kang fuzzy framework for nonlinear system estimation," IEEE Trans. Syst., Man Cybern. B, Cybern., vol. 36, no. 1, pp. 166-178, Feb. 2006. (Pubitemid 43174150)
    • (2006) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.36 , Issue.1 , pp. 166-178
    • Quah, K.H.1    Quek, C.2
  • 13
    • 10044221078 scopus 로고    scopus 로고
    • An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks
    • Dec
    • G.-B. Huang, P. Saratchandran, and N. Sundararajan, "An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks," IEEE Trans. Syst., Man, Cybern., B, Cybern., vol. 34, no. 6, pp. 2284-2292, Dec. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern., B, Cybern , vol.34 , Issue.6 , pp. 2284-2292
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 14
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • DOI 10.1109/TNN.2004.836241
    • G.-B. Huang, P. Saratchandran, and N. Sundararajan, "A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation," IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 57-67, Jan. 2005. (Pubitemid 40241910)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 15
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system SAFIS for nonlinear system identification and time series prediction
    • H. J. Rong, N. Sundararajan,G. B.Huang, and P. Saratchandran, "Sequential adaptive fuzzy inference system SAFIS for nonlinear system identification and time series prediction," Fuzzy Sets Syst., vol. 157, pp. 1260-1275, 2006.
    • (2006) Fuzzy Sets Syst , vol.157 , pp. 1260-1275
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Saratchandran, P.4
  • 18
    • 84865752987 scopus 로고    scopus 로고
    • A Dynamic split-and-merge approach for evolving cluster models
    • Sep
    • E. Lughofer, "A Dynamic split-and-merge approach for evolving cluster models," Evolv. Syst., vol. 3, no. 3, pp. 135-151, Sep. 2012.
    • (2012) Evolv. Syst , vol.3 , Issue.3 , pp. 135-151
    • Lughofer, E.1
  • 19
    • 57049179077 scopus 로고    scopus 로고
    • Simultaneous structure identification and fuzzy rule generation for Takagi-Sugeno models
    • Dec
    • N. R. Pal and S. Saha, "Simultaneous structure identification and fuzzy rule generation for Takagi-Sugeno models," IEEE Trans. Syst., Man Cybern. B, Cybern., vol. 38, no. 6, pp. 1626-1638, Dec. 2008.
    • (2008) IEEE Trans. Syst., Man Cybern. B, Cybern , vol.38 , Issue.6 , pp. 1626-1638
    • Pal, N.R.1    Saha, S.2
  • 20
    • 0025404409 scopus 로고
    • Fuzzy logic in control systems: Fuzzy logic controller
    • Mar./Apr, II
    • C. C. Lee, "Fuzzy logic in control systems: Fuzzy logic controller," IEEE Trans. Syst., Man, Cybern., vol. 20, no. 2, pp. 404-436, Mar./Apr. 1990, Pt. I, II.
    • (1990) IEEE Trans. Syst., Man, Cybern , vol.20 , Issue.2 PART I , pp. 404-436
    • Lee, C.C.1
  • 23
    • 0035415951 scopus 로고    scopus 로고
    • A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
    • DOI 10.1109/91.940970, PII S1063670601066590, Fuzzy Logic at the Turn of the Millennium
    • S.-Q.Wu,M. J. Er, and Y. Gao, "A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks," IEEE Trans. Fuzzy Syst., vol. 11, no. 4, pp. 578-594, Aug. 2003. (Pubitemid 32933044)
    • (2001) IEEE Transactions on Fuzzy Systems , vol.9 , Issue.4 , pp. 578-594
    • Wu, S.1    Er, M.J.2    Gao, Y.3
  • 24
    • 84901978687 scopus 로고    scopus 로고
    • Human-inspired evolving machines-The next generation of evolving intelligent systems
    • Sep, Available
    • E. Lughofer, "Human-inspired evolving machines-The next generation of evolving intelligent systems," IEEE SMC Newslett., vol. 36, Sep. 2011, Available: http://www.my-smc.org/news/back/2011-09/main-article2.htm
    • (2011) IEEE SMC Newslett , vol.36
    • Lughofer, E.1
  • 25
    • 0033704546 scopus 로고    scopus 로고
    • Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement
    • Apr
    • Y. Jin, "Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement," IEEE Trans. Fuzzy Syst., vol. 8, no. 2, pp. 212-221, Apr. 2000.
    • (2000) IEEE Trans. Fuzzy Syst , vol.8 , Issue.2 , pp. 212-221
    • Jin, Y.1
  • 26
    • 33947282595 scopus 로고    scopus 로고
    • Design for self organizing fuzzy neural network based on genetic algorithm
    • Dec
    • G. Leng, T. M. McGinnity, and G. Prasad, "Design for self organizing fuzzy neural network based on genetic algorithm," IEEE Trans. fuzzy syst., vol. 14, no. 6, pp. 755-766, Dec. 2006.
    • (2006) IEEE Trans. Fuzzy Syst , vol.14 , Issue.6 , pp. 755-766
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 27
    • 34250751201 scopus 로고    scopus 로고
    • Interpretability issues in fuzzy modeling. Studies in fuzziness and soft computing
    • J. Casillas, O. Cordón, F. Herrera, and L. Magdalena, Eds. Berlin, Germany: Springer
    • M. Setnes, "Interpretability issues in fuzzy modeling. Studies in fuzziness and soft computing," in Simplification and Reduction of Fuzzy Rules, J. Casillas, O. Cordón, F. Herrera, and L. Magdalena, Eds. Berlin, Germany: Springer, 2003, vol. 128, pp. 278-302.
    • (2003) Simplification and Reduction of Fuzzy Rules , vol.128 , pp. 278-302
    • Setnes, M.1
  • 28
    • 0025491490 scopus 로고
    • A model of participatory learning
    • Sep./Oct
    • R. R. Yager, "A model of participatory learning," IEEE Trans. Syst., Man, Cybern., vol. 20, no. 5, pp. 1229-1234, Sep./Oct. 1990.
    • (1990) IEEE Trans. Syst., Man, Cybern , vol.20 , Issue.5 , pp. 1229-1234
    • Yager, R.R.1
  • 29
    • 84886838236 scopus 로고    scopus 로고
    • Evolving takagi-sugeno fuzzy systems fromdata streams (ets+
    • P. Angelov D. Filev, andN.Kasabov, Eds. NewYork, NY, USA: Wiley, Apr
    • P. Angelov, in Evolving Takagi-Sugeno Fuzzy Systems FromData Streams (eTS+), in Evolving Intelligent Systems: Methodology and Applications, P. Angelov, D. Filev, andN.Kasabov, Eds. NewYork, NY, USA:Wiley, Apr. 2010, pp. 21-50.
    • (2010) Evolving Intelligent Systems: Methodology and Applications , pp. 21-50
    • Angelov, P.1
  • 30
    • 79960697024 scopus 로고    scopus 로고
    • Fuzzily connected multimodel systems evolving autonomously from data streams
    • Aug
    • P. Angelov, "Fuzzily connected multimodel systems evolving autonomously from data streams," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 4, pp. 898-910, Aug. 2010.
    • (2010) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.40 , Issue.4 , pp. 898-910
    • Angelov, P.1
  • 31
    • 55249122198 scopus 로고    scopus 로고
    • FLEXFIS: A Robust incremental learning approach for evolving {T-S} fuzzy models
    • Dec
    • E. Lughofer, "FLEXFIS: A Robust incremental learning approach for evolving {T-S} fuzzy models," IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1393-1410, Dec. 2008.
    • (2008) IEEE Trans. Fuzzy Syst , vol.16 , Issue.6 , pp. 1393-1410
    • Lughofer, E.1
  • 32
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • D. Mackay, "A practical Bayesian framework for backpropagation networks," Neural Comput., vol. 4, pp. 448-472, 1992.
    • (1992) Neural Comput , vol.4 , pp. 448-472
    • Mackay, D.1
  • 33
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • M. C. Mackey and L. Glass, "Oscillation and chaos in physiological control systems," Science, vol. 197, pp. 287-289, 1977. (Pubitemid 8130447)
    • (1977) Science , vol.197 , Issue.4300 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 34
    • 23944495345 scopus 로고    scopus 로고
    • Simpl-eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models
    • Proceedings of the IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2005
    • P. Angelov and D. Filev, "Simpl-eTS: A simplified method for learning evolving takagi-sugeno fuzzy models," in Proc. IEEE Int. Conf. Fuzzy Syst., 2005, pp. 1068-1073. (Pubitemid 41189654)
    • (2005) IEEE International Conference on Fuzzy Systems , pp. 1068-1073
    • Angelov, P.1    Filev, D.2
  • 35
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • DOI 10.1109/91.995117, PII S106367060202965X
    • N. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time series prediction," IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144-154, Apr. 2002. (Pubitemid 34554860)
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 36
    • 78751619797 scopus 로고    scopus 로고
    • Identifying static and dynamic prediction models for Nox emissions with evolving fuzzy systems
    • Mar
    • E. Lughofer, V. Macian, C. Guardiola, and E. P. Klement, "Identifying static and dynamic prediction models for Nox emissions with evolving fuzzy systems," Appl. Soft Comput., vol. 11, no. 2, pp. 2487-2500, Mar. 2011.
    • (2011) Appl. Soft Comput , vol.11 , Issue.2 , pp. 2487-2500
    • Lughofer, E.1    Macian, V.2    Guardiola, C.3    Klement, E.P.4
  • 37
    • 80052930921 scopus 로고    scopus 로고
    • On the employing fuzzy modeling algorithms for the valuation of the residential premises
    • E. Lughofer,B. Trawinski,K. Trawinski,O.Kempa, and T. Lasota, "On the employing fuzzy modeling algorithms for the valuation of the residential premises," Inf. Sci., vol. 181, pp. 5123-5142, 2011.
    • (2011) Inf. Sci , vol.181 , pp. 5123-5142
    • Lughofer, E.1    Trawinski, B.2    Trawinski, K.3    Kempa, O.4    Lasota, T.5
  • 38
    • 84857869648 scopus 로고    scopus 로고
    • Evolving fuzzy systems for pricing fixed income options
    • L. S. Maciel, A. P. Lemos, R. Ballini, and F. Gomide, "Evolving fuzzy systems for pricing fixed income options. evolving systems," vol. 3, pp. 5-18, 2012.
    • (2012) Evolving Systems , vol.3 , pp. 5-18
    • Maciel, L.S.1    Lemos, A.P.2    Ballini, R.3    Gomide, F.4
  • 39
    • 78149439885 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining
    • 2nd ed. New York, NY, USA: Springer
    • T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2nd ed. New York, NY, USA: Springer, 2009.
    • (2009) Inference and Prediction
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 40
    • 0003473124 scopus 로고    scopus 로고
    • Upper Saddle River, NJ, USA: Prentice Hall PTR, Prentice Hall Inc
    • L. Ljung, System Identification: Theory for the User. Upper Saddle River, NJ, USA: Prentice Hall PTR, Prentice Hall Inc., 1999.
    • (1999) System Identification: Theory for the User
    • Ljung, L.1
  • 42
    • 79958787095 scopus 로고    scopus 로고
    • Data compression by volume prototypes for streaming data
    • K. Tabata and M. S. M. Kudo, "Data compression by volume prototypes for streaming data," Pattern Recog., vol. 43, no. 9, pp. 3162-3176, 2010.
    • (2010) Pattern Recog , vol.43 , Issue.9 , pp. 3162-3176
    • Tabata, K.1    Kudo, M.S.M.2
  • 49
    • 84869138360 scopus 로고    scopus 로고
    • Single-Pass active learning with conflict and ignorance
    • E. Lughofer, "Single-Pass active learning with conflict and ignorance," Evol. Syst., vol. 3, no. 4, pp. 251-271, 2012.
    • (2012) Evol. Syst , vol.3 , Issue.4 , pp. 251-271
    • Lughofer, E.1
  • 50
    • 84857877306 scopus 로고    scopus 로고
    • An improved approach of selforganising fuzzy neural network based on similarity measures
    • G. Leng, X.-J. Zeng, and J. A. Keane, "An improved approach of selforganising fuzzy neural network based on similarity measures," Evolv. Syst., vol. 3, pp. 19-30, 2012.
    • (2012) Evolv. Syst , vol.3 , pp. 19-30
    • Leng, G.1    Zeng, X.-J.2    Keane, J.A.3
  • 51
    • 53149134642 scopus 로고    scopus 로고
    • Evolving fuzzy classifiers using differentmodel architectures
    • P. Angelov, E. Lughofer, and X. Zhou, "Evolving fuzzy classifiers using differentmodel architectures," Fuzzy Sets Syst., vol. 159, no. 23, pp. 3160-3182, 2008.
    • (2008) Fuzzy Sets Syst , vol.159 , Issue.23 , pp. 3160-3182
    • Angelov, P.1    Lughofer, E.2    Zhou, X.3
  • 52
    • 79551619179 scopus 로고    scopus 로고
    • Multivariable gaussian evolving fuzzy modeling system
    • Feb
    • A. Lemos,W. Caminhas, and F.Gomide, "Multivariable gaussian evolving fuzzy modeling system," IEEE Trans. Fuzzy Syst., vol. 19, no. 1, pp. 91-104, Feb. 2011.
    • (2011) IEEE Trans. Fuzzy Syst , vol.19 , Issue.1 , pp. 91-104
    • Lemos, A.1    Caminhas, W.2    Gomide, F.3
  • 53
    • 0032205732 scopus 로고    scopus 로고
    • Improving the interpretability of TSK fuzzy models by combining global learning and local learning
    • PII S1063670698082629
    • J. Yen, L. Wang, and C.W. Gillespie, "Improving the Interpretability of {TSK} fuzzy models by combining global learning and local learning," IEEE Trans. Fuzzy Syst.,, vol. 6, no. 4, pp. 530-537, 1998. (Pubitemid 128750083)
    • (1998) IEEE Transactions on Fuzzy Systems , vol.6 , Issue.4 , pp. 530-537
    • Yen, J.1    Wang, L.2    Gillespie, C.W.3
  • 55
    • 23944495345 scopus 로고    scopus 로고
    • Simpl-eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models
    • Proceedings of the IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2005
    • P. Angelov and D. Filev, "Simpl-eTS: A simplified method for learning evolving takagi-sugeno fuzzy models," in Proc. IEEE Int. Conf. Fuzzy Syst. FUZZ-IEEE, Reno, NV, USA, 2005, pp. 1068-1073. (Pubitemid 41189654)
    • (2005) IEEE International Conference on Fuzzy Systems , pp. 1068-1073
    • Angelov, P.1    Filev, D.2
  • 56
    • 84856325149 scopus 로고    scopus 로고
    • A new type of simplified fuzzy rule-based system
    • P. Angelov and R. R. Yager, "A new type of simplified fuzzy rule-based system," Int. J. General Syst., vol. 41, no. 2, pp. 163-185, 2012.
    • (2012) Int. J. General Syst , vol.41 , Issue.2 , pp. 163-185
    • Angelov, P.1    Yager, R.R.2
  • 58
    • 69249220427 scopus 로고    scopus 로고
    • Fast and accurate self organizing scheme for parsimonious fuzzy neural network
    • N. Wang, M. Joo, Er, and M. Xianyao, "Fast and accurate self organizing scheme for parsimonious fuzzy neural network," Neurocomputing, vol. 72, pp. 3818-3829, 2009.
    • (2009) Neurocomputing , vol.72 , pp. 3818-3829
    • Wang, N.1    Joo Er, M.2    Xianyao, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.