메뉴 건너뛰기




Volumn 3, Issue 2, 2012, Pages 81-93

Introducing evolving Takagi-Sugeno method based on local least squares support vector machine models

Author keywords

Evolving Takagi Sugeno; Least square support vector machine; Time series prediction

Indexed keywords

CLUSTERING TECHNIQUES; GENERALIZATION ABILITY; GRADIENT-BASED METHOD; IDENTIFICATION ALGORITHMS; LEARNING APPROACH; LEAST SQUARE SUPPORT VECTOR MACHINES; LOCAL LEAST SQUARES; MODELLING ERROR; NON-LINEAR MODEL; NONLINEAR TIME SERIES; ON-LINE IDENTIFICATION METHODS; ONLINE PREDICTION; RECURSIVE ALGORITHMS; T S MODELS; T-S FUZZY MODELS; TAKAGI-SUGENO; TIME SERIES PREDICTION;

EID: 84860482184     PISSN: 18686478     EISSN: 18686486     Source Type: Journal    
DOI: 10.1007/s12530-011-9043-0     Document Type: Article
Times cited : (27)

References (42)
  • 1
    • 0033718976 scopus 로고    scopus 로고
    • Local and global identification and interpretation of parameters in Takagi-Sugeno fuzzy models
    • Abonyi J, Babuska R (2000) Local and global identification and interpretation of parameters in Takagi-Sugeno fuzzy models. In: Proceedings IEEE international conference on fuzzy systems, pp 835-840.
    • (2000) Proceedings IEEE international conference on fuzzy systems , pp. 835-840
    • Abonyi, J.1    Babuska, R.2
  • 2
    • 34147111649 scopus 로고    scopus 로고
    • Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
    • An S, Liu W, Venkatesh S (2007) Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recognit 40(8): 2154-2162.
    • (2007) Pattern Recognit , vol.40 , Issue.8 , pp. 2154-2162
    • An, S.1    Liu, W.2    Venkatesh, S.3
  • 3
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • Angelov P, Filev D (2004) An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans Syst Man Cybern B 34(1): 484-498.
    • (2004) IEEE Trans Syst Man Cybern B , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.1    Filev, D.2
  • 5
    • 34247532567 scopus 로고    scopus 로고
    • Evolving fuzzy systems from data streams in real-time
    • Ambleside, Lake District, UK
    • Angelov PP, Zhou X (2006) Evolving fuzzy systems from data streams in real-time. In: IEEE symposium on evolving fuzzy systems, Ambleside, Lake District, UK, pp 29-35.
    • (2006) IEEE symposium on evolving fuzzy systems , pp. 29-35
    • Angelov, P.P.1    Zhou, X.2
  • 6
    • 58149500793 scopus 로고    scopus 로고
    • Evolving fuzzy systems-preface to the special section
    • Angelov PP, Filev D, Kasabov NK (2008) Evolving fuzzy systems-preface to the special section. IEEE Trans Fuzzy Syst 16(6): 1390-1392.
    • (2008) IEEE Trans Fuzzy Syst , vol.16 , Issue.6 , pp. 1390-1392
    • Angelov, P.P.1    Filev, D.2    Kasabov, N.K.3
  • 7
    • 78249240326 scopus 로고    scopus 로고
    • An incremental support vector machine-trained TS-type fuzzy system for online classification problems
    • Cheng WY, Juang CF (2011) An incremental support vector machine-trained TS-type fuzzy system for online classification problems. Fuzzy Sets Syst 163(1): 24-44.
    • (2011) Fuzzy Sets Syst , vol.163 , Issue.1 , pp. 24-44
    • Cheng, W.Y.1    Juang, C.F.2
  • 8
    • 0037497947 scopus 로고    scopus 로고
    • Recursive update algorithm for least squares support vector machines
    • Chi HM, Ersoy KO (2003) Recursive update algorithm for least squares support vector machines. Neural Process Lett 17: 165-173.
    • (2003) Neural Process Lett , vol.17 , pp. 165-173
    • Chi, H.M.1    Ersoy, K.O.2
  • 9
  • 10
    • 79952714043 scopus 로고    scopus 로고
    • Recursive clustering based on a Gustafson-Kessel algorithm
    • Dovžan D, Škrjanc I (2011) Recursive clustering based on a Gustafson-Kessel algorithm. Evol Syst 2: 15-24.
    • (2011) Evol Syst , vol.2 , pp. 15-24
    • Dovžan, D.1    Škrjanc, I.2
  • 12
    • 3543096272 scopus 로고    scopus 로고
    • The kernel recursive least-squares algorithm
    • Engel Y, Mannor S, Meir R (2004) The kernel recursive least-squares algorithm. IEEE Trans Signal Process 52(8): 2275-2285.
    • (2004) IEEE Trans Signal Process , vol.52 , Issue.8 , pp. 2275-2285
    • Engel, Y.1    Mannor, S.2    Meir, R.3
  • 13
  • 14
    • 79952309310 scopus 로고    scopus 로고
    • An online predictor model as adaptive habitually linear and transiently nonlinear model
    • Kalhor A, Araabi BN, Lucas C (2010) An online predictor model as adaptive habitually linear and transiently nonlinear model. Evol Syst 1: 29-41.
    • (2010) Evol Syst , vol.1 , pp. 29-41
    • Kalhor, A.1    Araabi, B.N.2    Lucas, C.3
  • 15
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • Kasabov NK, Song Q (2002) DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans Fuzzy Syst 10(2): 144-154.
    • (2002) IEEE Trans Fuzzy Syst , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 17
    • 0037507242 scopus 로고    scopus 로고
    • Pruning error minimization in least squares support vector machines
    • de Kruif B, de Vries T (2003) Pruning error minimization in least squares support vector machines. IEEE Trans Neural Netw 14(3): 696-702.
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.3 , pp. 696-702
    • de Kruif, B.1    de Vries, T.2
  • 18
    • 0032638628 scopus 로고    scopus 로고
    • Sparse least squares support vector machine classifiers
    • Suykens JAK, Lukas L and Vandewalle J
    • Leuven KU, Suykens JAK, Lukas L (2000) Sparse least squares support vector machine classifiers, Suykens JAK, Lukas L and Vandewalle J. In: Neural processing letters, pp 293-300.
    • (2000) Neural processing letters , pp. 293-300
    • Leuven, K.U.1    Suykens, J.A.K.2    Lukas, L.3
  • 19
    • 78649928738 scopus 로고    scopus 로고
    • Local weighted LS-SVM online modeling and the application in continuous processes
    • Wang F, Deng H, Gao Y, sheng Lei J (eds) Springer, Berlin
    • Li L, Yu H, Liu J, Zhang S (2010) Local weighted LS-SVM online modeling and the application in continuous processes. In: Wang F, Deng H, Gao Y, sheng Lei J (eds) Artificial intelligence and computational intelligence. Lecture notes in computer science, vol 6320. Springer, Berlin, pp 209-217.
    • (2010) Artificial intelligence and computational intelligence. Lecture notes in computer science , vol.6320 , pp. 209-217
    • Li, L.1    Yu, H.2    Liu, J.3    Zhang, S.4
  • 20
    • 37349125216 scopus 로고    scopus 로고
    • Generalized predictive control with online least squares support vector machines
    • Li LJ, Su HY, Chu J (2007) Generalized predictive control with online least squares support vector machines. Acta Autom Sin 33(11): 1182-1188.
    • (2007) Acta Autom Sin , vol.33 , Issue.11 , pp. 1182-1188
    • Li, L.J.1    Su, H.Y.2    Chu, J.3
  • 21
    • 79955721284 scopus 로고    scopus 로고
    • An efficient evolutionary algorithm for fuzzy inference systems
    • Lin CJ, Chen CH, Lin CT (2011) An efficient evolutionary algorithm for fuzzy inference systems. Evol Syst 2: 83-99.
    • (2011) Evol Syst , vol.2 , pp. 83-99
    • Lin, C.J.1    Chen, C.H.2    Lin, C.T.3
  • 23
    • 36549010042 scopus 로고    scopus 로고
    • Local least squares support vector regression with application to online modeling for batch processes
    • Liu Y, Wang H, Li P (2007) Local least squares support vector regression with application to online modeling for batch processes. J Chem Ind Eng 58: 2846-2851.
    • (2007) J Chem Ind Eng , vol.58 , pp. 2846-2851
    • Liu, Y.1    Wang, H.2    Li, P.3
  • 24
    • 73649091761 scopus 로고    scopus 로고
    • Selective recursive kernel learning for online identification of nonlinear systems with NARX form
    • Liu Y, Wang H, Yu J, Li P (2010) Selective recursive kernel learning for online identification of nonlinear systems with NARX form. J Process Control 20(2): 181-194.
    • (2010) J Process Control , vol.20 , Issue.2 , pp. 181-194
    • Liu, Y.1    Wang, H.2    Yu, J.3    Li, P.4
  • 25
    • 55249122198 scopus 로고    scopus 로고
    • FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno fuzzy models
    • Lughofer E (2008) FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno fuzzy models. IEEE Trans Fuzzy Syst 16(6): 139-1410.
    • (2008) IEEE Trans Fuzzy Syst , vol.16 , Issue.6 , pp. 139-1410
    • Lughofer, E.1
  • 26
    • 23944485710 scopus 로고    scopus 로고
    • FLEXFIS: A variant for incremental learning of Takagi-Sugeno fuzzy systems
    • Reno, Nevada, USA
    • Lughofer E, Klement E (2005) FLEXFIS: a variant for incremental learning of Takagi-Sugeno fuzzy systems. In: Proceedings of FUZZ-IEEE, Reno, Nevada, USA, pp 915-920.
    • (2005) Proceedings of FUZZ-IEEE , pp. 915-920
    • Lughofer, E.1    Klement, E.2
  • 27
    • 79961039032 scopus 로고    scopus 로고
    • On-line elimination of local redundancies in evolving fuzzy systems
    • doi: 10. 1007/s12530-011-9032-3
    • Lughofer E, Bouchot JL, Shaker A (2011) On-line elimination of local redundancies in evolving fuzzy systems. Evol Syst. doi: 10. 1007/s12530-011-9032-3.
    • (2011) Evol Syst
    • Lughofer, E.1    Bouchot, J.L.2    Shaker, A.3
  • 28
    • 69849084766 scopus 로고    scopus 로고
    • A methodology for short-term electric load forecasting based on specialized recursive digital filters
    • Maia C, Goncalves M (2009) A methodology for short-term electric load forecasting based on specialized recursive digital filters. Comput Ind Eng 57(3): 724-731.
    • (2009) Comput Ind Eng , vol.57 , Issue.3 , pp. 724-731
    • Maia, C.1    Goncalves, M.2
  • 29
    • 37749001880 scopus 로고    scopus 로고
    • An incremental clustering method and its application in online fuzzy modeling
    • Martinez B, Herrera F, Fernandez J, Marichal E (2008) An incremental clustering method and its application in online fuzzy modeling. Stud Fuzziness Soft Comput 224: 163-178.
    • (2008) Stud Fuzziness Soft Comput , vol.224 , pp. 163-178
    • Martinez, B.1    Herrera, F.2    Fernandez, J.3    Marichal, E.4
  • 30
    • 79961021605 scopus 로고    scopus 로고
    • Online multi-step ahead prediction of time-varying solar and geomagnetic activity indices via adaptive neurofuzzy modeling and recursive spectral analysis
    • Mirmomeni M, Lucas C, Araabi B, Moshiri B, Bidar M (2011) Online multi-step ahead prediction of time-varying solar and geomagnetic activity indices via adaptive neurofuzzy modeling and recursive spectral analysis. Sol Phys 272: 189-213.
    • (2011) Sol Phys , vol.272 , pp. 189-213
    • Mirmomeni, M.1    Lucas, C.2    Araabi, B.3    Moshiri, B.4    Bidar, M.5
  • 33
    • 79952093417 scopus 로고    scopus 로고
    • Evolving fuzzy optimally pruned extreme learning machine for regression problems
    • Pouzols F, Lendasse A (2010) Evolving fuzzy optimally pruned extreme learning machine for regression problems. Evol Syst 1: 43-58.
    • (2010) Evol Syst , vol.1 , pp. 43-58
    • Pouzols, F.1    Lendasse, A.2
  • 35
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14: 199-222.
    • (2004) Stat Comput , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 36
    • 79952317714 scopus 로고    scopus 로고
    • Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling
    • Soleimani-B H, Lucas C, Araabi BN (2010) Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling. Evol Syst 1: 59-71.
    • (2010) Evol Syst , vol.1 , pp. 59-71
    • Soleimani-B, H.1    Lucas, C.2    Araabi, B.N.3
  • 37
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: robustness and sparse approximation
    • Suykens J, Brabanter JD, Lukas L, Vandewalleb J (2002) Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48(1-4): 85-105.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 85-105
    • Suykens, J.1    Brabanter, J.D.2    Lukas, L.3    Vandewalleb, J.4
  • 38
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9: 293-300.
    • (1999) Neural Process Lett , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 39
    • 33746573365 scopus 로고    scopus 로고
    • Online weighted LS-SVM for hysteretic structural system identification
    • Tang HS, Xue ST, Chen R, Sato T (2006) Online weighted LS-SVM for hysteretic structural system identification. Eng Struct 28(12): 1728-1735.
    • (2006) Eng Struct , vol.28 , Issue.12 , pp. 1728-1735
    • Tang, H.S.1    Xue, S.T.2    Chen, R.3    Sato, T.4
  • 41
    • 78049298680 scopus 로고    scopus 로고
    • Incremental model selection and ensemble prediction under virtual concept drifting environments
    • Yamauchi K (2010) Incremental model selection and ensemble prediction under virtual concept drifting environments. Evol Syst 6230: 570-582.
    • (2010) Evol Syst , vol.6230 , pp. 570-582
    • Yamauchi, K.1
  • 42
    • 58249091399 scopus 로고    scopus 로고
    • Recursive reduced least squares support vector regression
    • Yongping Zhao JS (2009) Recursive reduced least squares support vector regression. Pattern Recognit 42: 837-842.
    • (2009) Pattern Recognit , vol.42 , pp. 837-842
    • Yongping, Z.J.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.