메뉴 건너뛰기




Volumn 1, Issue 1, 2010, Pages 59-71

Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling

Author keywords

Evolving neuro fuzzy model (ENFM); Modeling time varying systems; Online adaptive learning; Recursive Gath Geva clustering; Time series prediction

Indexed keywords

ADAPTIVE LEARNING; MODELING TIME VARYING SYSTEMS; NEURO-FUZZY MODEL; RECURSIVE GATH-GEVA CLUSTERING; TIME SERIES PREDICTION;

EID: 79952317714     PISSN: 18686478     EISSN: 18686486     Source Type: Journal    
DOI: 10.1007/s12530-010-9006-x     Document Type: Article
Times cited : (69)

References (34)
  • 1
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • Angelov PP, Filev DP (2004) An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans Syst Man Cybern B 34(1):484-498.
    • (2004) IEEE Trans Syst Man Cybern B , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.P.1    Filev, D.P.2
  • 2
    • 23944495345 scopus 로고    scopus 로고
    • Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models
    • Angelov PP, Filev DP (2005) Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models. In: Proceedings of IEEE Int Conf on Fuzzy Syst, pp 1068-1073.
    • (2005) Proceedings of IEEE Int Conf on Fuzzy Syst , pp. 1068-1073
    • Angelov, P.P.1    Filev, D.P.2
  • 4
    • 33646933601 scopus 로고    scopus 로고
    • Online clustering of parallel data streams
    • Beringer J, Hullermeier E (2008) Online clustering of parallel data streams. Data Knowl Eng 58:180-204.
    • (2008) Data Knowl Eng , vol.58 , pp. 180-204
    • Beringer, J.1    Hullermeier, E.2
  • 5
    • 0030826840 scopus 로고    scopus 로고
    • Nonlinear identification and control of a heat exchanger: a neural network approach
    • Bittanti S, Piroddi L (1996) Nonlinear identification and control of a heat exchanger: a neural network approach. J Franklin Inst 334(1):135-153.
    • (1996) J Franklin Inst , vol.334 , Issue.1 , pp. 135-153
    • Bittanti, S.1    Piroddi, L.2
  • 6
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2:267-278.
    • (1994) J Intell Fuzzy Syst , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 7
    • 11244353294 scopus 로고    scopus 로고
    • A methodology for dynamic data mining based on fuzzy clustering
    • Crespo F, Weber R (2005) A methodology for dynamic data mining based on fuzzy clustering. Fuzzy Sets Syst 150:267-284.
    • (2005) Fuzzy Sets Syst , vol.150 , pp. 267-284
    • Crespo, F.1    Weber, R.2
  • 10
    • 85135470835 scopus 로고
    • A growing neural gas network learns topologies
    • Fritzke B (1995) A growing neural gas network learns topologies. Adv Neural Inf Process Syst 7:625-632.
    • (1995) Adv Neural Inf Process Syst , vol.7 , pp. 625-632
    • Fritzke, B.1
  • 12
    • 50149106733 scopus 로고    scopus 로고
    • Dynamic data assigning assessment clustering of streaming data
    • Georgieva O, Klawonn F (2008) Dynamic data assigning assessment clustering of streaming data. Appl Soft Comput 8:1305-1313.
    • (2008) Appl Soft Comput , vol.8 , pp. 1305-1313
    • Georgieva, O.1    Klawonn, F.2
  • 13
    • 33750535466 scopus 로고    scopus 로고
    • Predicting chaotic time series using neural and neurofuzzy models: a comparison study
    • Gholipour A, Araabi BN, Lucas C (2006) Predicting chaotic time series using neural and neurofuzzy models: a comparison study. Neural Process Lett 24:217-239.
    • (2006) Neural Process Lett , vol.24 , pp. 217-239
    • Gholipour, A.1    Araabi, B.N.2    Lucas, C.3
  • 16
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665-685.
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.1
  • 17
    • 0001961635 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks-algorithms, applications and biological motivation
    • Yamakawa T, Matsumoto G (eds) World Scientific, Singapore
    • Kasabov N (1998) Evolving fuzzy neural networks-algorithms, applications and biological motivation. In: Yamakawa T, Matsumoto G (eds) Methodologies for the conception, design and applications of soft computing. World Scientific, Singapore, pp 271-274.
    • (1998) Methodologies for the conception, design and applications of soft computing , pp. 271-274
    • Kasabov, N.1
  • 18
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • Kasabov N, Song Q (2002) DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans Fuzzy Syst 10(2):144-154.
    • (2002) IEEE Trans Fuzzy Syst , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 21
    • 55249122198 scopus 로고    scopus 로고
    • FLEXFIS: A Robust Incremental Learning Approach for Evolving Takagi-Sugeno fuzzy models
    • Lughofer ED (2008) FLEXFIS: A Robust Incremental Learning Approach for Evolving Takagi-Sugeno fuzzy models. IEEE Trans Fuzzy Syst 16(6):1393-1410.
    • (2008) IEEE Trans Fuzzy Syst , vol.16 , Issue.6 , pp. 1393-1410
    • Lughofer, E.D.1
  • 22
    • 0017714604 scopus 로고
    • Oscillation and chaos in psychological control systems
    • Mackey M, Glass L (1977) Oscillation and chaos in psychological control systems. Science 197:281-287.
    • (1977) Science , vol.197 , pp. 281-287
    • Mackey, M.1    Glass, L.2
  • 23
  • 25
    • 78549258383 scopus 로고    scopus 로고
    • Introducing recursive learning algorithm for system identification of nonlinear time varying processes
    • Thessaloniki, Greece
    • Mirmomeni M, Lucas C, Araabi BN (2009) Introducing recursive learning algorithm for system identification of nonlinear time varying processes. In: Proceedings of 17th Mediterranean Conf. on Control and Automation, Thessaloniki, Greece, pp 736-741.
    • (2009) Proceedings of 17th Mediterranean Conf. on Control and Automation , pp. 736-741
    • Mirmomeni, M.1    Lucas, C.2    Araabi, B.N.3
  • 26
    • 84902179039 scopus 로고    scopus 로고
    • Local linear model tree for on-line identification of time invariant nonlinear dynamic systems
    • Bochum, Germany
    • Nelles O (1996) Local linear model tree for on-line identification of time invariant nonlinear dynamic systems. In: Proceedings of Int Conf on Artificial Neural Networks (ICANN), Bochum, Germany, pp 115-120.
    • (1996) Proceedings of Int Conf on Artificial Neural Networks (ICANN) , pp. 115-120
    • Nelles, O.1
  • 29
    • 53949120676 scopus 로고    scopus 로고
    • A dynamic data granulation through adjustable fuzzy clustering
    • Pedrycz W (2008) A dynamic data granulation through adjustable fuzzy clustering. Pattern Recognit Lett 29:2059-2066.
    • (2008) Pattern Recognit Lett , vol.29 , pp. 2059-2066
    • Pedrycz, W.1
  • 30
    • 0001071040 scopus 로고
    • A resource allocation network for function interpolation
    • Platt J (1991) A resource allocation network for function interpolation. Neural Comput 3:213-225.
    • (1991) Neural Comput , vol.3 , pp. 213-225
    • Platt, J.1
  • 31
    • 0035494005 scopus 로고    scopus 로고
    • Solar cycle forecasting: a nonlinear dynamic approach
    • Sello S (2001) Solar cycle forecasting: a nonlinear dynamic approach. Astron Astrophys 377(1):312-320.
    • (2001) Astron Astrophys , vol.377 , Issue.1 , pp. 312-320
    • Sello, S.1
  • 33
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern 15:116-132.
    • (1985) IEEE Trans Syst Man Cybern , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.