메뉴 건너뛰기




Volumn 3, Issue 1, 2012, Pages 5-18

Evolving fuzzy systems for pricing fixed income options

Author keywords

Derivatives; Evolving fuzzy systems; Interest rate; Neural networks; Option pricing

Indexed keywords

CLOSED-FORM FORMULAE; COMPUTATIONAL FINANCE; EVOLVING FUZZY SYSTEMS; EVOLVING MODELS; FORECAST MODEL; FUZZY MODELS; INTEREST RATES; OPTION PRICE; OPTION PRICING; PARTICIPATORY LEARNING; PRICE MOVEMENT; SYSTEM ADAPTATION; SYSTEM DYNAMICS;

EID: 84857869648     PISSN: 18686478     EISSN: 18686486     Source Type: Journal    
DOI: 10.1007/s12530-011-9042-1     Document Type: Article
Times cited : (49)

References (41)
  • 1
    • 0036791593 scopus 로고    scopus 로고
    • Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models
    • Abonyi J, Babuska R, Szeifert F (2002) Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models. IEEE Trans Syst Man Cybern Part B 32(5): 612-621.
    • (2002) IEEE Trans Syst Man Cybern Part B , vol.32 , Issue.5 , pp. 612-621
    • Abonyi, J.1    Babuska, R.2    Szeifert, F.3
  • 4
    • 0742272554 scopus 로고    scopus 로고
    • An approach to on-line identification of evolving Takagi-Sugeno fuzzy models
    • Angelov P, Filev D (2004) An approach to on-line identification of evolving Takagi-Sugeno fuzzy models. IEEE Trans Syst Man Cybern Part B 34(1): 484-498.
    • (2004) IEEE Trans Syst Man Cybern Part B , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.1    Filev, D.2
  • 5
    • 23944495345 scopus 로고    scopus 로고
    • Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models
    • FUZZ-IEEE, Reno, USA
    • Angelov P, Filev D (2005) Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models. In: Proceedings of the 2005 international conference on fuzzy systems, FUZZ-IEEE, Reno, USA, pp 1068-1073.
    • (2005) Proceedings of the 2005 international conference on fuzzy systems , pp. 1068-1073
    • Angelov, P.1    Filev, D.2
  • 10
    • 34248483578 scopus 로고
    • The pricing of commodity contracts
    • Black F (1976) The pricing of commodity contracts. J Financ Econ 3: 167-179.
    • (1976) J Financ Econ , vol.3 , pp. 167-179
    • Black, F.1
  • 11
    • 85015692260 scopus 로고
    • The pricing of options and corporate liabilities
    • Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Political Econ 81(3): 637-654.
    • (1973) J Political Econ , vol.81 , Issue.3 , pp. 637-654
    • Black, F.1    Scholes, M.2
  • 12
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2: 267-278.
    • (1994) J Intell Fuzzy Syst , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 13
    • 68249136965 scopus 로고
    • Comparing predictive accuracy
    • Diebold FX, Mariano RS (1995) Comparing predictive accuracy. J Bus Econ Stat 13(3): 253-263.
    • (1995) J Bus Econ Stat , vol.13 , Issue.3 , pp. 253-263
    • Diebold, F.X.1    Mariano, R.S.2
  • 15
    • 0035391107 scopus 로고    scopus 로고
    • Pricing and hedging derivative securities with neural networks:Bayesian regularization, early stopping and bagging
    • Gençay R, Qi M (2001) Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping and bagging. IEEE Trans Neural Netw 12(4): 726-734.
    • (2001) IEEE Trans Neural Netw , vol.12 , Issue.4 , pp. 726-734
    • Gençay, R.1    Qi, M.2
  • 19
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: dynamic evolving neural-fuzzy inference system and its application for time series prediction
    • Kasabov N, Song Q (2002) DENFIS: dynamic evolving neural-fuzzy inference system and its application for time series prediction. IEEE Trans Fuzzy Syst 10(2): 144-154.
    • (2002) IEEE Trans Fuzzy Syst , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 20
    • 0032203243 scopus 로고    scopus 로고
    • A transformed input-domain approach to fuzzy modeling
    • Kim E, Park M, Kim S, Park M (1998) A transformed input-domain approach to fuzzy modeling. IEEE Trans Fuzzy Syst 6(4): 596-604.
    • (1998) IEEE Trans Fuzzy Syst , vol.6 , Issue.4 , pp. 596-604
    • Kim, E.1    Park, M.2    Kim, S.3    Park, M.4
  • 22
    • 79551619179 scopus 로고    scopus 로고
    • Multivariable gaussian evolving fuzzy modeling system
    • Lemos A, Gomide F, Caminhas W (2011) Multivariable gaussian evolving fuzzy modeling system. IEEE Trans Fuzzy Syst 19(1): 91-104.
    • (2011) IEEE Trans Fuzzy Syst , vol.19 , Issue.1 , pp. 91-104
    • Lemos, A.1    Gomide, F.2    Caminhas, W.3
  • 23
    • 77956991815 scopus 로고    scopus 로고
    • A fuzzy time series-based neural network approach to option price forecasting
    • doi:10.1007/978-3-642-12145-6_37
    • Leu Y (2010) A fuzzy time series-based neural network approach to option price forecasting. Lect Notes Comput Sci 5990: 360-369. doi: 10. 1007/978-3-642-12145-6_37.
    • (2010) Lect Notes Comput Sci , vol.5990 , pp. 360-369
    • Leu, Y.1
  • 24
    • 80051478563 scopus 로고    scopus 로고
    • Master's thesis, School of Electrical and Computer Engineering, University of Campinas
    • Lima E (2008) Modelo Takagi-Sugeno evolutivo participativo. Master's thesis, School of Electrical and Computer Engineering, University of Campinas.
    • (2008) Modelo Takagi-Sugeno evolutivo participativo
    • Lima, E.1
  • 26
    • 78751625859 scopus 로고    scopus 로고
    • Evolving fuzzy modeling using participatory learning
    • Angelov P, Filev D, Kasabov N (eds), chap 4. Wiley-IEEE-Press, N
    • Lima E, Hell M, Ballini R, Gomide F (2010b) Evolving fuzzy modeling using participatory learning. In: Angelov P, Filev D, Kasabov N (eds) Evolving intelligent systems, chap 4. Wiley-IEEE-Press, NJ, pp 67-86.
    • (2010) Evolving intelligent systems , pp. 67-86
    • Lima, E.1    Hell, M.2    Ballini, R.3    Gomide, F.4
  • 27
    • 53049109911 scopus 로고    scopus 로고
    • Pricing currency options based on fuzzy techniques
    • Liu F (2009) Pricing currency options based on fuzzy techniques. Eur J Oper Res 193(2): 530-5402.
    • (2009) Eur J Oper Res , vol.193 , Issue.2 , pp. 530-5402
    • Liu, F.1
  • 30
    • 55249122198 scopus 로고    scopus 로고
    • FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno fuzzy models
    • Lughofer ED (2008) FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno fuzzy models. IEEE Trans Fuzzy Syst 16(6): 1393-1410.
    • (2008) IEEE Trans Fuzzy Syst , vol.16 , Issue.6 , pp. 1393-1410
    • Lughofer, E.D.1
  • 33
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2): 461-468.
    • (1978) Ann Stat , vol.6 , Issue.2 , pp. 461-468
    • Schwarz, G.1
  • 36
    • 11844281593 scopus 로고    scopus 로고
    • European option pricing under fuzzy environments
    • Wu H (2005) European option pricing under fuzzy environments. Int J Intell Syst 20(1): 89-102.
    • (2005) Int J Intell Syst , vol.20 , Issue.1 , pp. 89-102
    • Wu, H.1
  • 37
    • 0025491490 scopus 로고
    • A model of participatory learning
    • Yager RR (1990) A model of participatory learning. IEEE Trans Syst Man Cybern 20: 1229-1234.
    • (1990) IEEE Trans Syst Man Cybern , vol.20 , pp. 1229-1234
    • Yager, R.R.1
  • 38
    • 0028482884 scopus 로고
    • Approximate clustering via the mountain method
    • Yager R, Filev D (1994) Approximate clustering via the mountain method. IEEE Trans Syst Man Cybern 24(8): 1279-1284.
    • (1994) IEEE Trans Syst Man Cybern , vol.24 , Issue.8 , pp. 1279-1284
    • Yager, R.1    Filev, D.2
  • 39
    • 0033074333 scopus 로고    scopus 로고
    • Probabilistic neural network in bankruptcy predictions
    • Yang ZR, Platt MB, Platt HD (1999) Probabilistic neural network in bankruptcy predictions. J Bus Res 44(2): 67-74.
    • (1999) J Bus Res , vol.44 , Issue.2 , pp. 67-74
    • Yang, Z.R.1    Platt, M.B.2    Platt, H.D.3
  • 41
    • 0011292509 scopus 로고    scopus 로고
    • Neural networks versus logit regression models for financial distress response variables
    • Zurada JM, Foster BP, Ward TJ, Barker PM (1999) Neural networks versus logit regression models for financial distress response variables. J Appl Bus Res 15: 21-29.
    • (1999) J Appl Bus Res , vol.15 , pp. 21-29
    • Zurada, J.M.1    Foster, B.P.2    Ward, T.J.3    Barker, P.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.