메뉴 건너뛰기




Volumn 1, Issue 1, 2011, Pages 380-387

On-line redundancy elimination in evolving fuzzy regression models using a fuzzy inclusion measure

Author keywords

Complexity reduction; Evolving fuzzy models; Fuzzy inclusion; Fuzzy set merging; Incremental learning; Regression; Rule merging

Indexed keywords

COMPUTER CIRCUITS; KNOWLEDGE ENGINEERING; MERGING; REDUNDANCY; REGRESSION ANALYSIS;

EID: 84859859096     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.2991/eusflat.2011.51     Document Type: Conference Paper
Times cited : (11)

References (21)
  • 3
    • 78751630981 scopus 로고    scopus 로고
    • Handling drifts and shifts in on-line data streams with evolving fuzzy systems
    • E. Lughofer and P. Angelov, "Handling drifts and shifts in on-line data streams with evolving fuzzy systems," Applied Soft Computing, vol. 11, no. 2, pp. 2057-2068, 2011.
    • (2011) Applied Soft Computing , vol.11 , Issue.2 , pp. 2057-2068
    • Lughofer, E.1    Angelov, P.2
  • 4
    • 34250746929 scopus 로고    scopus 로고
    • Process safety enhancements for data-driven evolving fuzzy models
    • Lake District, UK
    • E. Lughofer, "Process safety enhancements for data-driven evolving fuzzy models," in Proceedings of 2nd Symposium on Evolving Fuzzy Systems, Lake District, UK, 2006, pp. 42-48.
    • (2006) Proceedings of 2nd Symposium on Evolving Fuzzy Systems , pp. 42-48
    • Lughofer, E.1
  • 5
    • 84886838236 scopus 로고    scopus 로고
    • Evolving takagi-sugeno fuzzy systems from streaming data, eTS+
    • P. Angelov, D. Filev, and N. Kasabov, Eds. New York: John Wiley & Sons
    • P. Angelov, "Evolving takagi-sugeno fuzzy systems from streaming data, eTS+," in Evolving Intelligent Systems: Methodology and Applications, P. Angelov, D. Filev, and N. Kasabov, Eds. New York: John Wiley & Sons, 2010, pp. 21-50.
    • (2010) Evolving Intelligent Systems: Methodology and Applications , pp. 21-50
    • Angelov, P.1
  • 8
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 144-154, 2002.
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 9
    • 78751625859 scopus 로고    scopus 로고
    • Evolving fuzzy modeling using participatory learning
    • P. Angelov, D. Filev, and N. Kasabov, Eds. New York: John Wiley & Sons
    • E. Lima, M. Hell, R. Ballini, and F. Gomide, "Evolving fuzzy modeling using participatory learning," in Evolving Intelligent Systems: Methodology and Applications, P. Angelov, D. Filev, and N. Kasabov, Eds. New York: John Wiley & Sons, 2010, pp. 67-86.
    • (2010) Involving Intelligent Systems: Methodology and Applications , pp. 67-86
    • Lima, E.1    Hell, M.2    Ballini, R.3    Gomide, F.4
  • 10
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • H.-J. Rong, N. Sundararajan, G.-B. Huang, and P. Saratchandran, "Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction," Fuzzy Sets and Systems, vol. 157, no. 9, pp. 1260-1275, 2006.
    • (2006) Fuzzy Sets and Systems , vol.157 , Issue.9 , pp. 1260-1275
    • Rong, H.-J.1    Sundararajan, N.2    Huang, G.-B.3    Saratchandran, P.4
  • 12
    • 23944495345 scopus 로고    scopus 로고
    • SimpleTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models
    • Reno, Nevada, U.S.A
    • P. Angelov and D. Filev, "SimpleTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models," in Proceedings of FUZZIEEE 2005, Reno, Nevada, U.S.A., 2005, pp. 1068-1073.
    • (2005) Proceedings of FUZZIEEE 2005 , pp. 1068-1073
    • Angelov, P.1    Filev, D.2
  • 13
    • 84871941909 scopus 로고    scopus 로고
    • Improving the interpretability of datadriven evolving fuzzy systems
    • Barcelona, Spain
    • E. Lughofer, E. Hüllermeier, and E. Klement, "Improving the interpretability of datadriven evolving fuzzy systems," in Proceedings of EUSFLAT 2005, Barcelona, Spain, 2005, pp. 28-33.
    • (2005) Proceedings of EUSFLAT 2005 , pp. 28-33
    • Lughofer, E.1    Hüllermeier, E.2    Klement, E.3
  • 17
    • 0034301495 scopus 로고    scopus 로고
    • Recursive PCA for adaptive process monitoring
    • S. Qin, W. Li, and H. Yue, "Recursive PCA for adaptive process monitoring," Journal of Process Control, vol. 10, pp. 471-486, 2000.
    • (2000) Journal of Process Control , vol.10 , pp. 471-486
    • Qin, S.1    Li, W.2    Yue, H.3
  • 19
    • 52949088628 scopus 로고    scopus 로고
    • Low-level interpretability and high-level interpretability: A unified view of data-driven interpretable fuzzy systems modelling
    • S. Zhou and J. Gan, "Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy systems modelling," Fuzzy Seta and Systems, vol. 159, no. 23, pp. 3091-3131, 2008.
    • (2008) Fuzzy Seta and Systems , vol.159 , Issue.23 , pp. 3091-3131
    • Zhou, S.1    Gan, J.2
  • 20
    • 55249122198 scopus 로고    scopus 로고
    • FLEXFIS: A robust incremental learning approach for evolving TS fuzzy models
    • E. Lughofer, "FLEXFIS: A robust incremental learning approach for evolving TS fuzzy models," IEEE Transactions on Fuzzy Systems, vol. 16, no. 6, pp. 1393-1410, 2008.
    • (2008) IEEE Transactions on Fuzzy Systems , vol.16 , Issue.6 , pp. 1393-1410
    • Lughofer, E.1
  • 21
    • 0002549585 scopus 로고    scopus 로고
    • Eigentaste: A constant time collaborative filtering algorithm
    • K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, "Eigentaste: A constant time collaborative filtering algorithm," Information Retrieval, vol. 4, no. 2, pp. 133-151, 2001.
    • (2001) Information Retrieval , vol.4 , Issue.2 , pp. 133-151
    • Goldberg, K.1    Roeder, T.2    Gupta, D.3    Perkins, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.