메뉴 건너뛰기




Volumn 181, Issue 20, 2011, Pages 4378-4393

Identification of transparent, compact, accurate and reliable linguistic fuzzy models

Author keywords

Complexity reduction; Fuzzy modeling; Interpretability of fuzzy systems

Indexed keywords

AUTOMATED IDENTIFICATION; COMPLEXITY REDUCTION; FUZZY MODELING; INTERPRETABILITY; LINGUISTIC FUZZY MODELING; LINGUISTIC FUZZY MODELS; OUTPUT PARAMETERS; SIMULTANEOUS OPTIMIZATION;

EID: 79960559801     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2011.01.041     Document Type: Article
Times cited : (19)

References (45)
  • 2
    • 70350057609 scopus 로고    scopus 로고
    • A multiobjective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy-rule-based systems
    • R. Alcala, P. Ducange, F. Herrera, B. Lazzerini, and F. Marcelloni A multiobjective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy-rule-based systems IEEE Trans. Fuzzy Syst. 17 5 2009 1107 1122
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.5 , pp. 1107-1122
    • Alcala, R.1    Ducange, P.2    Herrera, F.3    Lazzerini, B.4    Marcelloni, F.5
  • 3
    • 47049121435 scopus 로고    scopus 로고
    • HILK: A new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism
    • J.M. Alonso, L. Magdalena, and S. Guillaume HILK: a new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism Int. J. Intell. Syst. 23 7 2008 761 794
    • (2008) Int. J. Intell. Syst. , vol.23 , Issue.7 , pp. 761-794
    • Alonso, J.M.1    Magdalena, L.2    Guillaume, S.3
  • 4
  • 7
    • 58049217458 scopus 로고    scopus 로고
    • Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index, soft computing - A fusion of foundations
    • A. Botta, B. Lazzerini, F. Marcelloni, and D.C. Stefanescu Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index, soft computing - A fusion of foundations Method. Appl. 13 5 2009 437 449
    • (2009) Method. Appl. , vol.13 , Issue.5 , pp. 437-449
    • Botta, A.1    Lazzerini, B.2    Marcelloni, F.3    Stefanescu, D.C.4
  • 10
    • 14644430392 scopus 로고    scopus 로고
    • Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction
    • DOI 10.1109/TFUZZ.2004.839670
    • J. Casillas, O. Cordon, M.J. del Jesus, and F. Herrera Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction IEEE Trans. Fuzzy Syst. 13 1 2005 13 29 (Pubitemid 40319306)
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.1 , pp. 13-29
    • Casillas, J.1    Cordon, O.2    Del Jesus, M.J.3    Herrera, F.4
  • 11
    • 30344432125 scopus 로고    scopus 로고
    • A simple method for identification of singleton fuzzy models
    • DOI 10.1080/00207720500327436, PII R35828461236113
    • C.-L. Chen, S.-H. Hsu, C.-T. Hsieh, and T.-C. Wang A simple method for identification of singleton fuzzy models Int. J. Syst. Sci. 36 13 2005 845 854 (Pubitemid 43065529)
    • (2005) International Journal of Systems Science , vol.36 , Issue.13 , pp. 845-854
    • Chen, C.-L.1    Hsu, S.-H.2    Hsieh, C.-T.3    Wang, T.-C.4
  • 12
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • S.L. Chiu Fuzzy model identification based on cluster estimation J. Intell. Fuzzy Syst. 2 1994 267 278
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 14
    • 34447298360 scopus 로고    scopus 로고
    • Building an interpretable fuzzy rule base from data using Orthogonal Least Squares-Application to a depollution problem
    • DOI 10.1016/j.fss.2007.04.026, PII S016501140700200X
    • S. Destercke, S. Guillaume, and B. Charnomordic Building an interpretable fuzzy rule base from data using orthogonal least squares - Application to a depollution problem Fuzzy Sets Syst. 158 18 2007 2078 2094 (Pubitemid 47053936)
    • (2007) Fuzzy Sets and Systems , vol.158 , Issue.18 , pp. 2078-2094
    • Destercke, S.1    Guillaume, S.2    Charnomordic, B.3
  • 16
    • 0001138328 scopus 로고
    • A k-means clustering algorithm
    • J.A. Hartigan, and M.A. Wong A k-means clustering algorithm Appl. Stat. 28 1979 100 108
    • (1979) Appl. Stat. , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 17
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
    • H. Ishibuchi, and Y. Nojima Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning Int. J. Approximate Reasoning 44 1 2007 4 31
    • (2007) Int. J. Approximate Reasoning , vol.44 , Issue.1 , pp. 4-31
    • Ishibuchi, H.1    Nojima, Y.2
  • 19
    • 33749382626 scopus 로고    scopus 로고
    • Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme
    • M.S. Kim, C.H. Kim, and J.J. Lee Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme IEEE Trans. Syst., Man, Cybernet., B: Cybernet. 36 5 2006 1006 1023
    • (2006) IEEE Trans. Syst., Man, Cybernet., B: Cybernet. , vol.36 , Issue.5 , pp. 1006-1023
    • Kim, M.S.1    Kim, C.H.2    Lee, J.J.3
  • 20
    • 0029244502 scopus 로고
    • Optimal fuzzy rules cover extrema
    • B. Kosko Optimal fuzzy rules cover extrema Int. J. Intell. Syst. 10 2 1995 249 255
    • (1995) Int. J. Intell. Syst. , vol.10 , Issue.2 , pp. 249-255
    • Kosko, B.1
  • 21
    • 63149186316 scopus 로고    scopus 로고
    • A hybrid coevolutionary algorithm for designing fuzzy classifiers
    • M. Li, and Z. Wang A hybrid coevolutionary algorithm for designing fuzzy classifiers Inform. Sci. 179 12 2009 1970 1983
    • (2009) Inform. Sci. , vol.179 , Issue.12 , pp. 1970-1983
    • Li, M.1    Wang, Z.2
  • 22
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural system modeling
    • Y. Lin, and G.A. Cunningham A new approach to fuzzy-neural system modeling IEEE Trans. Fuzzy Syst. 3 2 1995 190 198
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.2 , pp. 190-198
    • Lin, Y.1    Cunningham, G.A.2
  • 23
    • 54049102777 scopus 로고    scopus 로고
    • Interpretability constraints for fuzzy information granulation
    • C. Mencar, and A.M. Fanelli Interpretability constraints for fuzzy information granulation Inform. Sci. 178 24 2008 4585 4618
    • (2008) Inform. Sci. , vol.178 , Issue.24 , pp. 4585-4618
    • Mencar, C.1    Fanelli, A.M.2
  • 24
    • 11244318202 scopus 로고    scopus 로고
    • Interpretability issues in data-based learning of fuzzy systems
    • DOI 10.1016/j.fss.2004.06.006, PII S0165011404002428
    • R. Mikut, J. Jäkel, and L. Gröll Interpretability issues in data-based learning of fuzzy systems Fuzzy Sets Syst. 150 2 2005 179 197 (Pubitemid 40056017)
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 179-197
    • Mikut, R.1    Jakel, J.2    Groll, L.3
  • 25
    • 39749093168 scopus 로고
    • The magical number seven, plus or minus two: Some limits on our capacity for processing information
    • G.A. Miller The magical number seven, plus or minus two: some limits on our capacity for processing information The Psychol. Rev. 63 2 1956 81 97
    • (1956) The Psychol. Rev. , vol.63 , Issue.2 , pp. 81-97
    • Miller, G.A.1
  • 27
    • 0029323249 scopus 로고
    • Constructing fuzzy model by self-organizing counterpropagation network
    • J. Nie Constructing fuzzy model by self-organizing counterpropagation network IEEE Trans. Syst., Man, Cybernet. 25 6 1995 963 970
    • (1995) IEEE Trans. Syst., Man, Cybernet. , vol.25 , Issue.6 , pp. 963-970
    • Nie, J.1
  • 28
    • 0000864293 scopus 로고    scopus 로고
    • A simple but powerful heuristic method for generating fuzzy rules from numerical data
    • K. Nozaki, H. Ishibuchi, and H. Tanaka A simple but powerful heuristic method for generating fuzzy rules from numerical data Fuzzy Sets Syst. 65 1997 251 270 (Pubitemid 127683579)
    • (1997) Fuzzy Sets and Systems , vol.86 , Issue.3 , pp. 251-270
    • Nozaki, K.1    Ishibuchi, H.2    Tanaka, H.3
  • 29
    • 0021455631 scopus 로고
    • Identification algorithm in fuzzy relational systems
    • W. Pedrycz An identification algorithm in fuzzy relational systems Fuzzy Sets Syst. 13 1984 153 167 (Pubitemid 14604942)
    • (1984) Fuzzy Sets and Systems , vol.13 , Issue.2 , pp. 153-167
    • Pedrycz Witold1
  • 30
    • 0022093877 scopus 로고
    • Applications of fuzzy relational equations for methods of reasoning in presence of fuzzy data
    • W. Pedrycz Applications of fuzzy relational equations for methods of reasoning in presence of fuzzy data Fuzzy Sets Syst. 16 1985 163 175 (Pubitemid 15528217)
    • (1985) Fuzzy Sets and Systems , vol.16 , Issue.2 , pp. 163-175
    • Pedrycz Witold1
  • 31
    • 84947145047 scopus 로고
    • A generalized inverse for matrices
    • R. Penrose A generalized inverse for matrices Proc. Camb. Philos. Soc. 51 1955 406 413
    • (1955) Proc. Camb. Philos. Soc. , vol.51 , pp. 406-413
    • Penrose, R.1
  • 34
    • 50249171596 scopus 로고    scopus 로고
    • Interpretability of fuzzy systems and its application to process control
    • London
    • A. Riid, E. Rüstern, Interpretability of fuzzy systems and its application to process control, in: Proc. IEEE Int. Conf. Fuzzy Systems, London, 2007, pp. 228-233.
    • (2007) Proc. IEEE Int. Conf. Fuzzy Systems , pp. 228-233
    • Riid, A.1
  • 35
    • 67249115251 scopus 로고    scopus 로고
    • Error-free simplification of transparent mamdani systems
    • Varna 1
    • A. Riid, K. Saastamoinen, E. Rüstern, Error-free simplification of transparent mamdani systems, in: Proc. IEEE Int. Conf. Intelligent Systems, Varna 1, 2008, pp. 2.8-2.13.
    • (2008) Proc. IEEE Int. Conf. Intelligent Systems , pp. 28-213
    • Riid, A.1
  • 36
    • 77957830929 scopus 로고    scopus 로고
    • A method for heuristic fuzzy modeling in noisy environment
    • London
    • A. Riid, E. Rüstern, A method for heuristic fuzzy modeling in noisy environment, in: Proc. IEEE Int. Conf. Intelligent Systems, London, 2010, pp. 468-473.
    • (2010) Proc. IEEE Int. Conf. Intelligent Systems , pp. 468-473
    • Riid, A.1
  • 37
    • 78549259733 scopus 로고    scopus 로고
    • Interpretability improvement of fuzzy systems: Reducing the number of unique singletons in zeroth order Takagi-Sugeno systems
    • Barcelona
    • A. Riid, E. Rüstern, Interpretability improvement of fuzzy systems: reducing the number of unique singletons in zeroth order Takagi-Sugeno systems, in: Proc. IEEE Int. Conf. Fuzzy Systems, Barcelona, 2010, pp. 2013-2018.
    • (2010) Proc. IEEE Int. Conf. Fuzzy Systems , pp. 2013-2018
    • Riid, A.1
  • 38
    • 77957724234 scopus 로고    scopus 로고
    • Redundancy detection and removal tool for transparent mamdani systems
    • V. Sgurev, M. Hadjiski, J. Kacprzyk, Springer-Verlag Heidelberg
    • A. Riid, K. Saastamoinen, and E. Rüstern Redundancy detection and removal tool for transparent mamdani systems V. Sgurev, M. Hadjiski, J. Kacprzyk, Intelligent Systems: From Theory to Practice 2010 Springer-Verlag Heidelberg 397 415
    • (2010) Intelligent Systems: From Theory to Practice , pp. 397-415
    • Riid, A.1    Saastamoinen, K.2    Rüstern, E.3
  • 39
    • 0014534297 scopus 로고
    • A new approach to clustering
    • E.H. Ruspini A new approach to clustering Inform. Control 15 1969 22 32
    • (1969) Inform. Control , vol.15 , pp. 22-32
    • Ruspini, E.H.1
  • 40
    • 77958453890 scopus 로고    scopus 로고
    • Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning
    • J.A. Sanz, A. Fernandez, H. Bustince, and F. Herrera Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning Inform. Sci. 180 19 2010 3674 3685
    • (2010) Inform. Sci. , vol.180 , Issue.19 , pp. 3674-3685
    • Sanz, J.A.1    Fernandez, A.2    Bustince, H.3    Herrera, F.4
  • 41
    • 0000185305 scopus 로고
    • Successive identification of a fuzzy model and its application to prediction of a complex system
    • M. Sugeno, and K. Tanaka Successive identification of a fuzzy model and its application to prediction of a complex system Fuzzy Sets Syst. 42 1991 315 334
    • (1991) Fuzzy Sets Syst. , vol.42 , pp. 315-334
    • Sugeno, M.1    Tanaka, K.2
  • 42
    • 0027544110 scopus 로고
    • A fuzzy-logic-based approach to qualitative modeling
    • M. Sugeno, and T. Yasukawa A fuzzy-logic-based approach to qualitative modeling IEEE Trans. Fuzzy Syst. 1 1 1993 7 31
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , Issue.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 43
    • 84972812688 scopus 로고
    • Synthesis of fuzzy models for industrial processes: Some recent results
    • R.M. Tong Synthesis of fuzzy models for industrial processes: some recent results Int. J. General Syst. 4 1978 143 162
    • (1978) Int. J. General Syst. , vol.4 , pp. 143-162
    • Tong, R.M.1
  • 45
    • 0023209327 scopus 로고
    • Fuzzy model identification and self-learning for dynamic systems
    • C.W. Xu, and Y.Z. Lu Fuzzy model identification and self-learning for dynamic systems IEEE Trans. Syst., Man, Cybernet. 17 1987 683 689
    • (1987) IEEE Trans. Syst., Man, Cybernet. , vol.17 , pp. 683-689
    • Xu, C.W.1    Lu, Y.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.